
C Programming, Autumn 2013, Exercises for the Fifth Week

1. Wite a function

double maxi(double x, double y, double (*fp)(double z));

which takes three parameters, two double values x and y, and a pointer to
a function. The function has a double value as its parameter and it returns
a double value. The function maxi returns the larger of the function values
(*fp)(x) and (*fp)(y). Test your function with various parameter functions.

2. Write a function

int compareGen(const void *block1, const void *block2,

size_t elemSize, size_t block1Size, size_t block2Size,

int (*compareIt)(const void * const void *));

which performs a lexicographical comparison of the two blocks. This function
returns the value of compareIt when there is a differing element. Otherwise
it return -1, 0 or 1, depending on blocksizes. The given blocksize parameters
are given as bytes, as is element size. Test your program using various types of
blocks.

3. Write a function

void printGen(const void * block, size_t elemSize, size_t blockSize,

void (*printIt) (const void *));

which prints all the elements in the block using the callback function printIt.
Test your program with various types, for example a block of doubles and a
block of pointers to doubles.

Intrusive Linked List

Because you guys like linked lists so much, we decided to give you another one
to implement. :) Let’s build an intrusive linked list. An intrusive linked list is
an awesome data structure that does not contain data (also called payload) in
its nodes. Nodes constist only of pointers to next and prev nodes.

typedef struct intrusiveListNode {

struct intrusiveListNode *next;

struct intrusiveListNode *prev;

} IntrusiveListNode;

1



You might wonder how to use this list for anything. Well, intrusiveness here
means that the list nodes themselves are part of the data that are added to
the list. This makes intrusive lists also generic, since the nodes do not really
care to what kind of data they belong to. If one wanted to add integers to an
intrusive list, this could be done via a wrapper struct such as this:

typedef struct wrapInt {

int i;

IntrusiveListNode node;

} WrapInt;

In addition to the actual data, we want a list type that contains the pointer to
the first element. To make operations nice an easy, we use a headered cyclic
doubly linked list. This means that we do not have to take into account any
nasty special cases! In case you have forgotten, a headered linked list is a linked
list where the first node is not a node with any real data, and a cyclic doubly
linked list is a list where the last node’s next pointer points to the first element
(here the header), and the prev pointer of the first node (here the header) points
to the last node. Here is the list struct used in this exercise:

typedef struct intrusiveList {

IntrusiveListNode header;

} IntrusiveList;

4. Now implement function create_intrusive_list() which allocates memory
for the list and returns a pointer to that list. Remember to intialize the header
node as it should be in a cyclic doubly linked list.

5. Now let’s implement

add_node(IntrusiveList *list, IntrusiveListNode *node)

which takes a node and adds it to the front of the list. Remember that the list
is cyclic, and be careful not to do weird things to the header node (this node
should be inserted to the right side of the header node).

6. Now to do things with the list we also need to implement

remove_node(IntrusiveList *list, IntrusiveListNode *node)

which removes a given node from the list. Here you should note that since
our list is cyclic and headered, you don’t need to worry about special cases
when updating links. You can simply update next and prev pointers of the
appropriate prev and next nodes.

2



7. Now that we have all basic list operations implemented, let’s add actual inte-
gers. We’ll do this by adding the WrapInt structures introduced before. Im-
plement function add_int(IntrusiveList *list, int i) that takes as pa-
rameter and int value that is wished to add to the list. The function should
allocate memory for a WrapInt structure, and add the int to it’s appropriate
field. This structure should then be added to the list. Adding this structure to
the list is done by adding the node of the struct with the operation add_node

we just implemented. This may seem weird at first, but you will understand
how to access the data very soon.

Now let’s address the headache of how to access this data. This might seem
like an awfully unclear or impossble operation. Well, C has a cool macro called
offsetof, which gives the offset in memory (in bytes) of a field of struct with
respect to the address of the struct itself. We do not need to use this macro,
however. Instead a macro called container_of (stolen and modified from the
linux kernel) is given, which uses offsetof:

#define container_of(ptr, type, member) (type*)((char*)(ptr) - offsetof(type, member))

This macro returns a pointer to the the wrapping struct (typedefed in this
exercise, do not get confused). It is given a pointer to the node whose corre-
sponding value you wish to access, the name of the struct (or in our case we
can and should use the typdefed name) as a word, not a string and the name
of the field containing the node again not as a string. In this case, that field is
called node. Let’s use these concepts that we just learned.

8. Now that you know how to access data from nodes, let’s implement the func-
tion
remove_int(IntrusiveList *list, int r) which seeks for a node in the list
containing a value equal to r. If there are multiple occurrences, it is enough to
remove the first of these. Hint: you know that you have searched the entire list,
when the node you are currently inspecting points to the header as the next
node. In case it is unclear how container_of should be used, here is an exam-
ple: WrapInt *wi = container_of(list->header.next, WrapInt, node).
This call to container_of returns the pointer to the WrapInt struct of the
first node in the list.

Now to further demonstrate what is so cool about this list and also to introduce
the important concept of union, let’s add ints and doubles to the same list. We
will wrap these types in Numeric, which is a union type. A union type is a type
that reserves enough memory to fit the largest possible value it should hold.
These values are defined inside the union block. In a union

typedef union numeric {

int i;

double d;

} Numeric;

3



a variable of that union type can be used as both integer and double. Here is
an example of usage.

4



Numeric num;

num.i = 10;

printf(%i", num.i); // This prints 10

num.d = 10.1; //

pritnf("%i", num.i); // This prints 858993459

printf("%lf", num.d); // This prints 10.100000

So you see that by using the correspondingly typed field of the union, we treat
the union variable as a variable of that type. Note that just like in the example
if you assign to any field of a union type, values of all types will be affected,
since they use the same block of memory. Now we can wrap this union type
in a wrapper that also contains an extra field called type, which contains an
identifier of the type of the variable that the union should be treated as. This
frees the programmer from headaches when trying to figure out what was the
type of this node’s value. Possible types are defined in macros INT TYPE and
DOUBLE TYPE in the header file. To save some memory, we’ll put these in
an uint8_t field. Here is the wrapping struct also found in the header file:

typedef struct wrapNumeric {

uint8_t type;

Numeric num;

IntrusiveListNode node;

} WrapNumeric;

9. Let’s implement a function
add_numeric(IntrusiveList *list, Numeric numi uint8_t type) that al-
locates memory to a WrapNumeric strucutre and adds it to the list, much in the
same way as with add_int. Remember to also set given type in the allocated
wrapper.

By checking the type from the type field, we can infer as which type (int or
double) we should treat each element in the list. Let’s practice the use of this,
and the union type by implementing two functions: one for computing the sum
of all int variables in the list, and another for computing the sum of all double
variables in the list.

10. Implement functions int_sum(IntrusiveList *list) and
double_sum(IntrusiveList *list). These function should go through each
element in the list. Again you can conclude that the whole list has been gone
through once you are back to the header node. Now for each value you have to
check what is the type of the value corresponding to each node. This can be
done by checking the type field of the struct that you access via container_of.
If the node is of the correct type, then you can include the value of the union
type (as that type) in the sum.

Now you should know something about intrusive lists, which are a good way to
produce generic lists. Intrusive lists are useful because they keep memory allo-
cation away from the actual list operations. Also it does not involve expensive

5



copying operations, when adding new nodes. You should also know something
about union types. If you are still confused about union types, have a look at
for example http://www.tutorialspoint.com/cprogramming/c unions.htm

6


