
The Design and Implementation of a Distributed Hash Table for a
Peer-to-Peer Network

DHT – Distributed Hash Table

Helsinki 27th May 2004

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Marko Räihä
Risto Saarelma
Antti Salonen
Tuomas Toivonen
Tomi Tukiainen
Simo Viitanen

Client
Jussi Lindgren

Project Masters
Juha Taina
Turjo Tuohiniemi

Homepage
http://www.cs.helsinki.fi/group/dht/

Change Log
Version Date Modifications
1.0 2004-05-27 Released version

i

Contents

1 Introduction 1

2 Architecture 2

2.1 Environment . 2

2.1.1 GNUnet . 2

2.1.2 Kademlia . 2

2.2 Modules . 2

2.2.1 DHT API . 2

2.2.2 Client-server communications 2

2.2.3 Kademlia . 2

2.2.4 Datalayer . 3

2.2.5 Tools . 3

2.2.6 RPC . 3

3 Implementation 4

3.1 Modules . 4

3.1.1 DHT API . 4

3.1.2 Client-server . 4

3.1.3 Kademlia . 5

3.1.4 Datalayer . 6

3.1.5 RPC . 7

3.2 Compilation . 8

4 Suggestions 9

4.1 Bugs . 9

4.2 Wishlist . 9

4.2.1 DHT API . 9

4.2.2 Client-server communications 10

4.2.3 Kademlia . 10

4.2.4 Datalayer . 10

5 Conclusion 11

ii

References 12

1

1 Introduction

In this white paper we describe the design and implementation of a distributed hash table
using a peer-to-peer networking approach. We used the GNUnet framework for core
peer-to-peer networking functionality. As the distributed hash table algorithm we used
Kademlia.

The work was performed as part of the Software Engineering Project1 course at the depart-
ment of computer science2, University of Helsinki, Finland. The project team consisted
of six students. Each participant worked on the project for approximately one and half
man months during the spring 2004 term. In addition to the program source code and this
white paper in English, the team produced a set of project and specification documents in
Finnish. An archive of all the materials is available on the project’s web site [RSS+04].

In chapter two we describe the overall architecture of the distributed hash table imple-
mentation. Rationale for using GNUnet and Kademlia as basic building blocks is given
as is an overview of each implemented component. In chapter three we provide compon-
ent by component implementation details. The chapter is intended as a gentle introduction
to the actual source code. In the fourth chapter we describe for example missing features
and suggestions for future improvements.

The project team would like to acknowledge the input of Marianne Korpela and Jussi
Lindgren. As the project instructor Marianne helped our at times unruly group stay fo-
cused. Jussi, as the project customer, was responsive and knowledgeable, a fact we could
have taken more advantage of.

1http://www.cs.helsinki.fi/group/ohtu/
2http://www.cs.helsinki.fi/

2

2 Architecture

2.1 Environment

2.1.1 GNUnet

GNUnet is described at the GNUnet development team’s website [GNU04].

2.1.2 Kademlia

Kademlia is described by Maymounkov and Mazières [MM02].

2.2 Modules

2.2.1 DHT API

To access the distributed hash table (DHT) a client application uses an application pro-
gramming interface (API) implemented in C. The API provides a set of synchronous func-
tions. Each function will invoke the API library and communicate with the local GNUnet
daemon resident DHT module over a TCP socket. The standard GNUnet client/server
protocol is used in communicating with the daemon.

The DHT API offers five primitives for applications:

create Used to create a new hash table. The creating node automatically joins the new
hash table.

join Used to join an existing hash table. After a node has joined to a hash table, it will
be possible for the node to perform searches on the table and store new data to the
table.

leave Used to leave a hash table that the node has previously joined.

insert Used to store a new <key,value> -pair to a joined hash table.

list Used to retrieve a list of all hash tables the node is joined to.

fetch Used to retrieve a <value> using a <key> from a joined hash table.

2.2.2 Client-server communications

Standard GNUnet client-server communication framework is used.

2.2.3 Kademlia

TBD.

3

2.2.4 Datalayer

Datalayer is the module representing storage and lookups for locally stored data. Data is
stored as a mapping from a hash to a value.

Datalayer supports multiple tables and in addition to storing nodes it supports four differ-
ent lookups. These include:

by key All data stored to a mapping from a single key.

by own flag All data stored by the local node.

by expiration All data with expiration time exceeding .

by xor metric distance All data units that are closer to another unit in xor metric topo-
logy.

In addition datalayer supports persistence module for the data.

2.2.5 Tools

For testing and demonstration purposes a set of command line tools have been developed.
Each tool invokes one of the DHT API functions. If the tools are used in a sequence,
the output of one tool can be used as the parameters for other tools. For example, the
output of dht-join tool is a hash table handle which can then be used as a parameter to eg.
dht-create or dht-leave.

2.2.6 RPC

The RPC module is a generic Remote Procedure Call (RPC) mechanism on top of GNUnet’s
message-based communication. By generic it is meant that it is not specific to the DHT
application. Any node may either register a callback function in order to receive RPC’s,
or node may make an RPC to a remote node. RPC’s take a set of request and response
parameters, whose values may be of arbitrary length.

The RPC module serializes the request (or response) parameters into a data packet which
is then divided into segments that can be transmitted as GNUnet messages to another
node. On top of GNUnet’s unreliable communication semantics, the RPC module attemps
to provide reliable communication, so the messages sent are acknowledged by the receiver
and if necessary, retransmitted by the sender.

4

Directory Description
gtkui A (partially implemented) GTK+ user interface to the DHT API.
include The DHT API headers for use by client applications.
module Implementation of the DHT as a GNUnet module.
tools Command line tools for testing the DHT module and API.
util Utility functions used by the DHT module.

Table 1: Subdirectories containing the DHT source code.

3 Implementation

The DHT module has been implemented to form part of the GNUnet source tree. All DHT
related code can be found in the directory .../src/applications/dht/ (relative to the root of
the GNUnet source tree). Table 1 presents an overview of the subdirectories containing
the DHT source code.

3.1 Modules

3.1.1 DHT API

Interface dht_api.h, api_errorcodes.h, api_structs.h, client-server.h

Implementation dht-api.c

The DHT API provides a C language application programming interface to client applic-
ations that wish to use the distributed hash table. The API is synchronous. Each function
only returns after a definitive set of return values have been prepared (eg. all values have
been fetched). The API uses the GNUnet client-server -protocol to communicate with the
GNUnet daemon resident DHT implementation. It is thus possible to connect over TCP
to remote GNUnet daemons as well.

Full documentation (in Doxygen compatible comments) of the API is given in the dht_api.h
header. As an example the source code of testing tools in directory .../tools/ can be per-
used. Also .../tools/Makefile.am can be used as a example on how to incorporate new
client applications to the GNU autoconf framework for compilation.

3.1.2 Client-server

Interface client-server.h

Implementation client-server.c

Undocumented. See Doxygen comments in code.

5

3.1.3 Kademlia

Interface dht.h

Implementation dht.c, kademlia.h, kademlia.c

Kademlia is the module that implements the actual distributed hash table functionality.
The interface in dht.h provides functions for joining and leaving tables in the network,
creating new tables, inserting <key, value> pairs and fetching <key, value> pairs from the
dht network based on key.

The file kademlia.c contains the internal implementation of the dht system using the
Kademlia algorithm. The Kademlia implementation stores local information using the
datalayer module and queries for and receives remote information using the rpc module.
The Kademlia implementation maintains a fixed-size local routing table in each node.
Routing information is updated when the implementation communicates with other nodes.
Using the routing tables, the implementation should be able to find a specific dht node in
O(log n) time.

The most important functions in the interface are the following:

• create(tableConfig, metaData, tableId) - creates a new table and writes its identifier
into tableId

• join(nodeAddress, tableId) - joins the table with a given identifier that is hosted in
the given node

• leave(tableId) - leaves the table with the given identifier

• insert(tableId, key, value) - inserts a <key, value> pair in a table

• fetch(tableId, key, result) - searches for <key, value> pairs with the given key and
writes them in the result set

• tables(nodeAddress, tableSet) - lists all tables a given node has joined

Nodes cannot join the dht network by themselves because they are not initially aware of
any nodes which are running the dht service. To have the node join the dht network, the
user must be aware of at least one other node already on the network. The node will
then be able to join the network by joining into one or more tables in the other node.
After the node has joined some tables, the Kademlia implementation will take over and
begin routing queries, updating its routing information and storing <key, value> pairs as
necessary.

6

3.1.4 Datalayer

Interface datalayer.h, datalayer_persistance.h

Implementation datalayer.c, datalayer_persistance.h

Datalayer is the module representing all local lookups for <key,value> -pairs. Interface
of the datalayer is presented in the file datalayer.h. It also presents the structs needed
by the datalayer. These structs include DHT_DataStoreUnit, DHT_LocalStoreResultSet,
DHT_LocalTableSet and DHT_TableDef.

DHT_DataStoreUnit is the basic entity for storing units. It contains hash, data, creation-
and expiration time and flags. So datastore stores only mapping between a hash and a
data. How these are constructed is not datalayer’s concern.

DHT_TableDef is the struct which defines all that datalayer needs to know about one
table. This includes table id, metadata and config information. Table id is the TableId
identifier of the table. Metadata is strictly for user interfaces and config information is
stored because it needs to be copied to new nodes joining the table.

DHT_LocalStoreResultSet and DHT_LocalTableSet are structs representing results. They
both present an abstract iteration pattern for the search results with an abstract typedef for
both: LocalStoreTableIter and LocalStoreResultIter. Implementation of these iterators is
not visible for the user of the datastore. The implementations are defined in file data-
store.c.

Datalayer is split in two layers: search layer and persistence layer. Search layer, as the
name indicates, is responsible for implementing searches for the data. It implements four
different searches:

• localStoreGet(tableId, key) - searches all <key,value>-pairs stored to the specified
table with the specified key

• localStoreGetOwnData(tableId) - searches all <key,value>-pairs stored to the spe-
cified table with the flag myData on

• localStoreGetExpired(tableId, TIME_T now) - searches all <key,value>-pairs stored
to the specified table with the expiration time older than the now parameter

• localStoreGetCloserTo(tableId, myID, newID) - searches all <key,value>-pairs stored
to the specified table with the key hash closer to the new id than my id. Closeness
of the hashes is implemented in Kademlia’s XOR metric.

Persistence layer is responsible for persisting the datastore. At the moment it is not imple-
mented and the datastore only stores the data units to the search data structures of search
layer.

7

3.1.5 RPC

Interface module/rpc.h

Implementation module/rpc.c

The RPC module provides an generic RPC mechanism on top of GNUnet’s message-
based communication primitives. Unlike GNUnet’s unreliable communication semantics,
the RPC module attempts to provide a reliable communication mechanism through ac-
knowledgement and retransmission of messages in case they get lost.

The interface is very straight-forward:

• RPC_init - Registers peer-to-peer message handlers, etc.

• RPC_register - Registers an RPC locally, identified by a string name and implemen-
ted by a callback function

• RPC_execute - Executes an RPC on another node (possibly itself)

In addition, the interface includes the type RPC_Param, which represents a set of para-
meters. The parameter names are strings and their values arbitrary data. No limit has been
implemented for the size of a parameter’s value. A set of functions is provided to access
parameter sets and the same type is used for passing both request and response paramet-
ers. The parameter sets are accessed in an indexed fashion, and perhaps unconventionally,
there can be several parameters with the same name in a set.

Every successful RPC call in a GNUnet network includes the caller sending a request
which is acknowledged by the receiver, and after the receiver has executed the RPC loc-
ally it returns a response which is again acknowledged by the caller. The RPC module
serializes the request (or response) and its parameters into a data packet, which is then di-
vided into numbered segments which are eventually transmitted with GNUnet messages.
The RPC module defines three new GNUnet message types for transmitting request data
(REQ), response data (RES) and acknowledgements (ACK).

Every REQ or RES message is acknowlegded by the receiver and if an acknowledgement
is not received, retransmitted by the sender. The RPC module was designed to use a slid-
ing window mechanism similar to TCP, with the send window’s size being increased until
problems arise. However, with the current implementation the size remains 1, although
the module has otherwise been implemented so that the send window could be of arbitrary
size. In order to utilize the bandwidth of the network between the sender and the receiver,
some sort of slow-start mechanism should be implemented.

The RPC module is inherently multi-threaded. In addition to the interface function RPC_execute,
control can be returned to the RPC module from GNUnet core with several callbacks. As
GNUnet may call the callbacks concurrently, the callback functions and RPC_execute use
a mutex to control access to shared data structures. The following callback functions are
registered with GNUnet.

8

• handleRPCMessageReq - Called when a REQ message is received

• handleRPCMessageRes - Called when a RES message is received

• handleRPCMessageAck - Called when an ACK message is received

• retransmitTimerExpire - Called when the retransmission timer of sent message ex-
pires

• ackTimerExpire - Called when the acknowledgement timer of a received message
expires

3.2 Compilation

The DHT module is implemented as part of the GNUnet source tree and is integrated
with the GNU autoconf based compilation framework used by GNUnet. See autoconf
documentation and Makefile.am files in the various DHT source code directories for more
information.

9

Operation Single node Multiple nodes
dht-create OK ??
dht-fetch OK ERROR
dht-insert ERROR ERROR
dht-join OK OK
dht-leave OK ??
dht-list OK ERROR
dht-inserted-drop ?? ERROR
dht-inserted-list ERROR N/A

Table 2: Summary of test results for each DHT API operation. OK signifies successful
test case, ERROR a failure. N/A means that the operation doesn’t apply to the single or
multiple nodes case. Question marks point to cases that haven’t been tested.

4 Suggestions

4.1 Bugs

Some of the bugs and missing features identified at the time of project closure are listed
in the GNUnet bug tracking system, Mantis3.

Table 2 summarises test results for each of the DHT API functions. The tests were per-
formed using the command line tools. Success or failure indication was derived from
debug logs and output of the tools. A more complete report of test cases and their results
is available in Finnish at the project site [RSS+04].

4.2 Wishlist

4.2.1 DHT API

• Add support for multiple threads; ie. make the API asynchronous.

• The DHT implementation inside the GNUnet daemon doesn’t differentiate between
clients. For example, two unrelated users can connect to tha same daemon and issue
operations. User A can join a table, but before executing fetches or inserts, user B
could have unsubscribed (leave) the node from the previously joined table. There
would appear to be no easy workaround to this. The decision to implement all
DHT functionality inside GNUnet daemon instead of using an end-to-end model is
inherent in the design. Perhaps from the perspective of the Kademlia algorithm we
should have modelled each client application as a node of the peer-to-peer network.
Functionality could thus have been pushed to the edge.

3Mantis is available at http://www.ovmj.org/~mantis/.

10

4.2.2 Client-server communications

• Implement better checks for incoming messages.

• Limit size of reply messages.

• Implement process status queries (csStatus-function).

4.2.3 Kademlia

• Joining a table — Joining could be improved with at least following:

– Receiver:

∗ Send the DHT_TableConfig to the sender.

∗ Send information about n random nodes in the same table.

– Sender

∗ Send join to multiple nodes (the Byzantine General Problem).

• Timed tasks (crons) — All cron jobs maintaining the dht. These include:

– Republishing own data (every 24 hours).

– Dropping expired data (every now and then).

– Distibuting data to the closest nodes in table (newly joined nodes) (every
hour).

4.2.4 Datalayer

• Enhanced data structures:

– Hashtable for mapping.

– Use the general Vector data structure (used also by RPC and Kademlia).

• Implement the persistence layer properly:

– One file per table.

– A daemon thread that writes the units to file.

11

5 Conclusion

As a whole the project can be considered a moderate success. Almost all of the designed
functionality was implemented. However, not all of the implementation was adequately
tested and several critical bugs have been identified. Also, the design centralises function-
ality in the DHT module instead of pushing it to the client applications on the network
edges. This may not be the most opportune design charasteristic.

12

References

GNU04 GNUnet, Website of the GNUnet project. URL http://www.ovmj.
org/GNUnet/. 2004.

MM02 Maymounkov, P. and Mazières, D., Kademlia: A peer-to-peer information
system based on the xor metric. Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS).

RSS+04 Räihä, M., Saarelma, R., Salonen, A., Toivonen, T., Tukiainen, T. and
Viitanen, S., The Distributed Hash Table project: Archive of project doc-
umentation and source code. URL http://www.cs.helsinki.fi/
group/dht/. 2004.

