Algorithms in Genome Analysis,

Spring 2023

Veli Makinen

Week 3

Alignments — some more advanced topics

Connection to edit distance

* An alignment can be interpreted as editing
Instructions to convert A into B:

e A[i] is aligned with B[j] = Substitute A[i] with BJj]
e AJi] is aligned with a gap "-" = Delete A[l]
e Gap ’-" is aligned with B[j] = Insert BJj]
e DIi,jJ=min(
e D[i-1,j-1]+(A[i]=BJj]?0:1),
o D[i-1,j]+1,
e D[i,j-1]+1)
e DJ[O,j]=j, D[1,0]=I as initialization, D(A,B)=D[|A|,|B]] as
finalization
 Here D(A,B) is the unit cost edit distance.

e

More variations of the theme

B

B

A—

Approximate string matching

Shortest detour

Speeding—up edit distance computation

O(kn) time, where K is a threshold

e Assume |A|=|B|=n for simplicity of exposition

e Consider a diagonal zone i —j € [—S ——+1,. —]

 If traceback to D[n,n] uses a cell
outside the diagonal zone, it corresponds to an alignment with at
least k/2+1 deletions and k/2+1 insertions, and the total cost is at

least k+2.
B

e To decide if D(A,B)=k, it is thus 012k
sufficient to do computation inside
the diagonal zone: O(kn) time. /2

A

O(dn) time, where d is D(A,B)

* We can use doubling: Run computation with k=1, k=2, k=4, ...

e As soon as D[n,n]<k, we know that any traceback path that goes
outside the diagonal zone will have cost greater than D[n,n]. That
IS, d=D(A,B)=D[n,n].

* As we didn’t stop earlier, k/2<d.

e The running time is

1+log, d
° 2x=00g2 27Xy < P2tlogz d

e = (0(dn)

» Algorithm and its analysis
extend to the general case,
where |A|#|B].

Longest Common Subsequence

Sparse dynamic programming

Longest Common Subsequence (LCS)

» LCS(A,B) is a longest sequence that can be obtained both by
deleting characters from A and by deleting characters from B
e E.g. LCS("AGCTAG”,’ACCACC")="ACA’
e Consider edit distance D,,(A,B) with insertions and deletions only
* Djgll,j]J=min(
* Dili-1,)-1]+(Ali]=B[]]?0:=),
e Dyli-1,j]+1,
* DyliJ-1]+1)
e D,4[0,]]=), Diyli,0]=1 as initialization, D,4(A,B)= D4[|A],|B|] as
finalization
o |[LCS(A,B)|=(|Al+|B|-D;y(A,B))/2 (proof as exercise)

e

- 4= 0-9a0 -4 -

Sparse dynamic programming for LCS

CGAGGOCGCGGCGGGOGAGGGGGC...

\

Compute L(i,j)=
| LCS(A[1..i],B[1..j]) | for (i,]) € M,
M = {(0,0} u{Q DI Ali] = B[jI}

L=+ max L(i',j")

i'<i,j'<j
We compute the values in reverse
column order and add (key,value) pairs
(i,L(1,j)) into a search treeT.
L(i,j)=1+T.rangemax(0,i-1)
A standard balanced binary search tree
can be used for supporting the
operations in O(log |A|) time.
Running time O(|M|log |A|),

assuming M given.

Co-linear chaining

Like LCS computation but the set of matches replaced by a set of

alignment anchors

e

Co-linear chaining (CLC)

Co-linear chaining (CLC)

e Alignment anchors = e.g., set of N minimizer matches or MEMs
between read R and reference T

e Chain = Subset of anchors forming a linear order in both Rand T
» Objective: Score of chain, e.g, coverage of R

» Key facts:

e Many variants: different ways of handling overlaps of anchors, assigning
penalties to gaps

e Many algorithms: Most variants can be solved in O(N log N) time or
slightly worse running time

e Can be applied to the alignment of both DNA (variant calling) and RNA
long-reads (spliced alignment, transcript prediction)

» Course book gives an O(N log N) algorithm for allowing overlaps
and for optimizing coverage of R
» Next slide illustrates a simplication of it: no overlaps allowed

e [t uses the same search tree as in the sparse dynamic programming LCS
solution

e In fact, if alignment anchors = set of matches, this algorithm solves LCS

e

Co-linear chaining (CLC)

Affine gap penalties

Sparse dynamic programming --> Gotoh’s algorithm

e
Global alignment with affine gaps

» Consider global alignment where a run of gaps of length g is
penalized with —a + (g — 1), rather than with —gd.

ACA-GA-T-AA
ACAG--G-GAA

-
g==56

e This looks like LCS computation...

e

\

Global alignment with affine gaps

. j

* Sli,jl = s(Ali], B[jD +

max(S[i—1,j — 1],

max Sli',j']
i'<i,j'<j,(i’,jN#(i-1j-1)

—a—-p((i—-i"-1)
+(G—-j -1 -1)

* Sli,jl = s(Alil, BliD +

max(S[i—1,j — 1],
—a—B@+j—3)+

max S[i'j']
i'<i,j'<j,(i’j=#(-1j-1)

+B(" + /1)

e

\

Global alignment with affine gaps

One can proceed as in the

LCS algorithm adding (key,value)

pairs (i', S[i",j'1 + B(A" +j)) toa

search tree, and querying the tree

for max value in a range adding
—a—Bi+j—3)

This yields an O(|A| |B|log |A])

time algorithm.

Now that we are not storing a sparse

set, search tree becomes obsolete.

Instead, we can keep some simple

row and column maxima values to

obtain O(|A| |B|) time

(see course book).

Gotoh’s algorithm

* Even simpler than the one derived through LCS connection.

» |dea: Compute two tables, one storing optimal score for
alignments ending with a match and the other for alignments
ending with a gap.

e MIi,j]=S(A[1..1],B]i..J] | match)

1LJ]=S(A[1..1.B[I..]] | gap)

1,j]=s(A[i],B[j]))+max(M[i-1,j-1],G[i-1,j-1])

i,j]=max M[i —1,j] —a,M][i,j — 1] — «,

Gli—1,jl=B.Gli,j —1] = B)
» These can be evaluated in synchronization in O(|A||B|) time.

® 20

