

University of Helsinki
Department of Computer Science

Date: 15.01.2001
Document-Id: UHEL.15.01.04-DR-D1

ESPRIT / HPCN
PROJECT 29737 – HPGIN
High Performance Gigabit I2O Networking Software

Specification of the Software Package D
HPGIN-Linux / Task D1

 Written by: Auvo Häkkinen, Juha Sievänen
 Organization: University of Helsinki, Department of Computer Science
 Date: 15.01.2001

 Delivered by: Frank Hohmann
 Organization: SysKonnect GmbH
 Date: 15.01.2001

 Document-Id: UHEL.15.01.04-DR-D1

ESPRIT / HPCN
PROJECT 29737 – HPGIN
High Performance Gigabit I2O Networking Software

Specification of the Software Package D
HPGIN-Linux / Task D1

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 ii

TABLE OF CONTENTS

1 INTRODUCTION..1

1.1 Description of the deliverable... 1

1.2 Intelligent I/O.. 1

1.3 The Objectives of the HPGIN-Linux.. 3

1.4 Overview of the document... 3

1.5 References .. 4

1.6 Definition of Terms ... 4

1.7 Conventions ... 6

2 I2O EXECUTION ENVIRONMENT ..7

2.1 Communication model ... 7

2.2 Flow of I/O operations .. 8

3 DESIGN ARCHITECTURE DESCRIPTION..10

3.1 Design Principles..10

3.2 Basic Requirements...10
3.2.1 Boot ...10
3.2.2 I2O Subsystem...11
3.2.3 Shared Memory ...11
3.2.4 System Bus...11
3.2.5 Address size ...12
3.2.6 Byte order...12

4 RESOURCE MANAGEMENT AND DATA STRUCTURES13

4.1 Configuration Status Block...13

4.2 Hardware Resource Table (Hrt)..13

4.3 Logical Configuration Table (Lct)..14

4.4 System Table (SysTab) ...14

4.5 Array of I2O Controllers..14

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 iii

4.6 I2O Device Chain..16

5 THE LINUX I2O SUBSYSTEM ...17

6 PCI MODULE..19

6.1 Setup functions ...19

7 CORE MODULE ...21

7.1 Setup functions ...21

7.2 Messenger servi ces ..24
7.2.1 Message Queues..24
7.2.2 Address Translation..25
7.2.3 Sending I2O Messages ...25
7.2.4 Receiving I2O Messages ..26

7.3 Executive functions ...27
7.3.1 Executive class functions implemented in HPGIN-project ...27
7.3.2 Executive class messages not implemented in HPGIN-project ..29

7.4 Utility functions ..31
7.4.1 Utility class functions implemented in HPGIN...31
7.4.2 Utility class messages not implemented in HPGIN-project ..33

7.5 Debugging and Error Reporting functions...34

8 OS SERVICE MODULES ..36

8.1 LAN OSM..36
8.1.1 Layer structure for the network..36
8.1.2 Linux Network Device Interface..38
8.1.3 Setup functions..39
8.1.4 Functions to send LAN class requests...40
8.1.5 Functions to handle replies..42
8.1.6 Other LAN OSM functions...43
8.1.7 Sending packets to the network..44
8.1.8 Preparing to receive packets from the network ...46
8.1.9 Receiving packets from the network ...47
8.1.10 Setting LAN Control Parameters ..49

8.2 Other OSMs ..50
8.2.1 Block Device Interface ..50
8.2.2 Character Device Interface..51

9 CONFIGURATION INTERFACE ..52

9.1 Configuration Dialogue..52

9.2 I2O Configuration API...53

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 iv

9.2.1 Determining active IOPs ...54
9.2.2 Getting Hardware Resource Table ...54
9.2.3 Getting Logical Configuration Table ..54
9.2.4 Getting Parameters ...55
9.2.5 Setting Parameters ..56
9.2.6 Configuration Dialog HTML-pages ..56
9.2.7 Software Management ...57
9.2.8 Events..60

9.3 Configuration Utility...60
9.3.1 I2O...61
9.3.2 IOPDetails ..61
9.3.3 Configure ..62
9.3.4 Download ...62
9.3.5 Upload...62
9.3.6 Remove...62
9.3.7 Validate...63
9.3.8 Common parts ...63

10 INTERFACE TO THE PROC FILE SYSTEM..66

10.1 The /proc/i2o file hierarchy...66

10.2 Interface to the Linux kernel..67
10.2.1 Functions to read from a proc file ...67
10.2.2 Functions to write into a proc file ...67

10.3 Generating /proc/i2o directory tree ..68

10.4 Reading parameter group information ...70

10.5 Setting LAN OSM and DDM parameters...72

11 ERROR HANDLING ..73

12 TESTING..74

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 v

LIST OF FIGURES AND TABLES

Figure 1.1 Split driver model. ..2
Figure 2.1. I2O execution environment. ...7
Figure 2.2 Flow of I/O operations..9
Figure 4.1 i2o_controllers[] table. ..15
Figure 4.2 I2O Device Chain..15
Figure 5.1. I2O subsystem. ...17

Figure 7.1. i2o_handlers[] table. ...26
Figure 8.1 The layer structure of the network..37
Figure 8.2. Data structures used by the LAN OSM...39
Figure 9.1. Configuration dialogue. ...53
Figure 10.1. I2O subtree in the proc file system. ...66

Table 7.1. Executive class messages not implemented in HPGIN-project.30
Table 7.2. Utility class messages not implemented in HPGIN-project.33
Table 10.1 Generic IOP entries..69
Table 10.2 Generic device entries..69
Table 10.3 Generic LAN entries. ...70
Table 10.4 LAN subtype specific statistics..70
Table 10.5 Settings for LAN OSM and DDM. ..72

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 1

1 INTRODUCTION

1.1 Description of the deliverable

This document is the updated version (version 4) of the Specification of the Software
Package D. The previous ones were dated 09.03.1999, 01.10.1999 and 30.3.2000. The
document contains the description of those parts of the Linux I2O environment that was
implemented by the University of Helsinki in the HPGIN-project. The Block Class
OSM, SCSI Class OSM, event handling and the dynamic LCT update were out of the
scope of the HPGIN-project, but have been implemented by other developers. They are
not described in this document.

This document has been submitted in draft to all contractors and has been approved. The
contents of this document are applicable to the partners of the consortium of the
ESPRIT/HPCN project 29737, HPGIN. The report is addressed to the EC Project
Officer.

1.2 Intelligent I/O

Intelligent I/O (I2O) is an industrial standard for high-performance I/O subsystems. It is
defined and maintained by the I2O Special Interest Group.

The I2O Specification [2] defines architecture for I/O that is independent of both the
specific device being controlled, and the host operating system. The specification makes
it easier to implement cross-platform I/O, thus broadening availability and applicability
of reliable intelligent I/O devices.

I2O defines an approach to I/O where low-level interrupts are offloaded from the CPU to
I/O processors specifically designed to handle I/O. With support for message-passing
between multiple independent processors, the I2O architecture relieves the host of
interrupt- intensive I/O tasks. This improves greatly I/O performance in high-bandwidth
applications such as networked video, groupware, and client/server processing.

The I2O Specification [2] defines a split driver model (see Figure 1.1) for creating
drivers that are portable across multiple operating systems and host pla tforms.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 2

The split I2O drivers are composed of two parts: the Operating System Service Module
(OSM), which resides on and interfaces to the host OS, and the Device Driver Module
(DDM), which resides on and interfaces with the adapter to be managed by the driver.

These modules interface with each other through a message-passing system based on
shared memory areas. The OS I/O requests are converted in OSMs into specific I2O
messages and are passed through the Messaging layers to the DDM. Requests are
dispatched to DDMs that process them. DDMs generate replies to be delivered back to
the originators of the requests.

Split driver model decreases significantly the number of drive rs required. OS vendors
write a single I2O-ready driver for each class of device – such as LAN adapter - and
device manufacturers write a single I2O-ready driver for each device, which will work
for any OS that supports I2O.

The I2O model can be applied in single-processor, multiprocessor and clustered-
processor systems, as well as desktop, communications, and real- time system
environments.

I2O is the basis for driver standardization, system performance enhancement, resource
sharing, clustering, and distributed heterogeneous systems. It will be supported by the
Standard Network Operating Systems as well as by specific Real Time Operating

Figure 1.1 Split driver model.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 3

Systems. It is expected that I2O will change the design of I/O subsystems dramatically
within the coming years.

1.3 The Objectives of the HPGIN-Linux

The HPGIN project is aimed to develop I2O communication layer software for high
performance network devices, supporting version 1.5 of the I2O Specification [2].
Results to be achieved within the scope of the HPGIN-project include

• implementation of I2O communication layers for gigabit LAN I/O subsystems,
• implementation of appropriate OS specific I2O communication layers for a Standard

Network Operating System (Linux) and

• implementation of appropriate OS specific I2O communication layers for a high
performance Real Time Operating System (Virtuoso).

The objective of the HPGIN-Linux inside this project is to implement the common parts
of the I2O execution environment into Linux operating system. This includes the
implementation of the I2O message passing layer and I2O resource management, which
establish the base for the adapter class dependent OSMs.
The implementation of an OS Service Module for the LAN adapter class is also within
the scope of the project. The functionality of the implemented I2O support can be
verified by combining an I2O supporting Linux system with an I2O aware network
interface (e.g. a hardware platform running the embedded software package developed
within the project).

Both the HPGIN-project and its objectives are described in detail in the HPGIN Project
Programme [1].

1.4 Overview of the document

Section 2 describes briefly the I2O communication model and illustrates flow of the I/O
operations in the I2O execution environment. The basic requirements for Intelligent I/O
are listed in section 3. Section 4 deals with resource management and its basic data
structures. The design of the Linux I2O subsystem is introduced in section 5, and the I2O
modules (Pci, Core, OSMs) are explained in sections 6, 7 and 7.4.2. Configuration
interface, which implements a controlled mechanism for a human operator is described
in section 9. Its counterpart, configuration information via proc file system, is described
in section 10. Error handling is discussed in section 11. The previous version of this
document contained also a section explaining testing. It has now been moved into a
separate document titled Test Specification Plan.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 4

Since the shell interface (the host OS / IOP API) is described precisely in the I2O
Specification [2], a lot of references back to it is used. You should have the specification
on hands when you are reading this document.

1.5 References

This specification refers to the following documents

[1] EP 29737 – ESPRIT/HPGIN Cost Reimbursement Contract, Annex I – Project

Programme, September 1998.
[2] I2O Special Interest Group: Intelligent I/O (I2O) Architecture Specification Version

1.5, March 1997.
[3] Beck, Böhme, Dziadzka, Kunitz, Magnus, Verworner: Linux Kernel Internals.

2nd ed., Addison-Wesley, 1998.
[4] I2O Special Interest Group: Intelligent I/O (I2O) Shell Up (OSM) Compliance Test

Specification Version 1.5, August 1998.
[5] PCI Special Interest Group. PCI Local Bus Specification, Rev. 2.1, June 1995.
[6] University of Helsinki, EP 29737 – ESPRIT/HPGIN, Task E1. HPGIN-TEST

HPGIN-Linux Test Specification. September 1999.

1.6 Definition of Terms

This specification uses the following terms

Glossary entry Entry definition
DDM – device driver module DDMs are the lowest level in the I2O architecture, and are

directly responsible for control and data transfer of the
hardware device, such as a network connection and storage
device

Hrt – hardware resource table A list of adapters and their configuration information,
including the identity of the controlling DDM. HRT tells the
Host of any adapters the IOP controls, and thus that the Host
should not touch, as well as adapters the IOP can control.

Host Host is composed of one or more application processors and
their associated resources. Host execute a single
homogenous OS and is dedicated to process applications.
The Host is responsible for configuring and initializing the
IOP into the system.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 5

I2O – intelligent input/output device
driver model

An open, standards-based split driver I/O model which
provides device driver portability across multiple OSs,
processor and bus technology independence, and support for
intelligent, message passing I/O subsystems.

Inbound queue A message queue of a particular I/O platform that receives
messages from Host or from another IOP.

IOP - I/O platform A platform consisting of a processor, memory, I/O, adapters
and I/O devices. They are managed independently from
other processors within the system.

IRTOS – I2O Real-Time OS A special purpose real-time OS for the IOP to support high-
speed, low-overhead I/O operations.

Lct – logical configuration table A list of logical devices whose service is abstracted by the
IOP (through a DDM). The Host and other IOPs query this
table about available resources.

MFA – message frame address The address of an I2O message buffer residing on Inbound
queue or in Outbound queue.

Message layer The message layer provides the communication and queuing
model between service modules. The messages passed are in
OS-neutral format.

Messenger The messaging layer running on a particular platform,
initializing, configuring, and operating its client modules.
Each processor or SMP group has a single Messenger. Each
IOP has a Messenger.

OSM - operating system service
module

A driver module that provides the interface between the Host
OS and the I2O Message Layer. It represents the portion of
the driver that forwards Host OS requests to a DDM for
processing.

Outbound queue A message queue for a specific IOP for posting messages to
the local host, in lieu of the Host's Inbound queue.

PCI - peripheral component
interconnect

An industry standard for a high-performance expansion bus.
PCI supports bus concurrency, auto-configuration and
multiple bus masters.

PDB - packet description block LAN DDM describes each bucket it consumes, the bucket's
order, and the location and length of each packet in the
bucket, by building a PDB. Is part of a LanReceivePost
reply.

SGL - scatter-gather list A structured list of memory addresses that specifies data
buffers and their respective lengths.

SMP – symmetric multi processing A multiprocessor environment where all processors share the
same main memory and the same I/O subsystem.

SysTab - system configuration table A table build by the Host that informs the I/O platform of the
existence and addresses of other IOPs.

TID – target id Logical address of a service registered with the message
layer. The target ID is the address the message layer uses to
deliver requests to a service mo dule.

TRL – transaction reply list A structured list of replies to I2O messages containing
transaction contexts and transaction details.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 6

1.7 Conventions

The conventions used in this document are presented below.

Text Description Example
italics Reference to document I2O Specification

Bold Italics I2O message names ExecStatusGet
Courier Function names, field of a

message
i2o_lan_receive_post(),
InitiatorContext

The basic principle of naming the functions is presented below. In some cases one or
more parts may be omitted.

result i2o_{class}_{verb}_{noun}(Parameters)
class is the I2O base class of the object
verb is the function to perform on that object
noun is the abbreviation for the name of the object

Example:

int i2o_lan_register_device(struct i2o_device *i2o_dev)
lan identifies the base class of the message
register describes the operation
device identifies the target of the operation

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 7

2 I2O EXECUTION ENVIRONMENT

This section gives an introduction to the basics of the I2O execution environment and
describes the flow of the I/O operations. This description focuses only to the host OS’s
view of the system. For a more detailed description refer to the I2O Specification [2].

2.1 Communication model

The system execution environment is outlined in Figure 2.1.

Figure 2.1. I2O execution environment.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 8

The host OS provides a number of OSMs and the communication service (so called
Messenger). In addition to the message transport function, the OS provides

• Executive functions that initialize and maintain the I2O system.

• System resource management that configures and maintains I2O system.

• Configuration functions that provide the user interface, file system access, and
configuration dialogue with an IOP and its DDMs. These functions enable installing
and configuring IOPs and their DDMs.

The communication model used by the I2O architecture is a message-passing protocol.
The communication service provides message transport service for OSMs and DDMs.
Each message contains a header and a payload. Message header format is constant for all
messages and provides the return address to the originator. The format for the payload
varies between messages and is established by the function type value in the header.

Each device is a virtual interface for a particular class of I/O messages. A TID (target id)
identifies a device and, thus, an instance of a device class specific interface. The IOP
administers TIDs when a device is first created, and the TID acts as the local address of
the device. Responses are addressed to the initiator of the request.

In addition, the OS provides ability to install OSMs produced by third-party vendors.
The OSM interface provides the ability to query the Messenger for the list of IOPs and
their registered devices (i.e., logical configuration table information) and the ability to
send request and receive replies.

2.2 Flow of I/O operations

Figure 2.2 illustrates the flow of the I/O operations in I2O execution environment. The
following text describes the events (the numbers corresponds to the steps in
Figure 2.2).

1. The host OS issues an I/O request.
2. The OSM accepts the request, reads a message frame address (MFA) from the IOP

inbound queue and translates the request into an I2O message addressed to a DDM.
The InitiatorContext field is set to indicate the message handler for the reply.
The OSM has the option to place a pointer to the OS I/O request in the message's
TransactionContext field.

3. The host's Messenger queues the message by writing the MFA to IOP’s inbound
queue.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 9

4. The IOP's Messenger reads the MFA from the inbound queue, and posts the message
to the DDM's event queue.

5. The DDM processes the request.
6. The DDM builds a reply, copies the InitiatorContext and TransactionContext

fields from the request to the reply, addresses the reply to the Initiator, and finally
invokes the IOP's Messenger.

7. The IOP's Messenger queues the reply by copying it into an outbound queue
message frame residing at the host's Messenger.

8. The IOP alerts the host's Messenger via an interrupt. The control is moved to
interrupt handler. The host's Messenger reads the reply from the IOP's outbound
queue, copies it into a local buffer, and frees the message frame by writing the MFA
to the IOP's outbound queue.

9. The host's Messenger inspects message's InitiatorContext field and invokes the
OSM's message handler with the reply.

10. The OSM retrieves the pointer to the OS‘s I/O request from the message's
TransactionContext field to establish the original request context and completes
the I/O request.

11. The Driver returns the request to the OS.

Figure 2.2 Flow of I/O operations.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 10

3 DESIGN ARCHITECTURE DESCRIPTION

This section describes the design principles of the Linux I2O environment, and the basic
requirements for the host/IOP message passing.

3.1 Design Principles

The main target architecture in this project is Intel x86. It is the most common
environment for Linux, and the Linux environment of the Department of Computer
Science at University of Helsinki is composed solely of Intel x86 based Linux machines.
The portability issues will be considered, although we are not able to test on all Linux
platforms (like Alpha, MIPS, Sparc, M68000, and PowerPC). A lot of the portability
issues are already handled in Linux kernel at the source level. Internal data structures
can be tailored at the source level to match the hardware requirements as closely as
necessary. The compiler is also free to optimize away operations not needed on a
specific architecture.

The implementation is started on Linux version 2.2. The later modifications to the Linux
kernel will be tracked during the project.

The SMP (Symmetric Multi Processing) needs also to be considered. This means that
the critical data structures must be locked when they are processed.

Linux is based on monolithic kernel, and the base of the implementation may be
compiled straight into the kernel. The I2O adapter class dependant modules (OSMs) will
be programmed as separate dynamically loadable modules. Therefore only those OSMs
needed in a specific environment need to be loaded to memory.

3.2 Basic Requirements

The following subsections list the basic requirements for the host platform and for the
I/O platform. Most of the cases listed (e.g. booting, shared memory and cache) are
implemented completely on the hardware level (or firmware level) and don’t need any
attention from the OS level. Some of the cases have to be considered on the software
level, e.g. address size and byte order, locations and usage of the message queues.

3.2.1 Boot

In a system with I2O compliant OS, the BIOS (or its extensions) does not need to be I2O
aware unless it boots the OS from an I2O device. However, BIOS that is I2O aware

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 11

allows an OS that is not I2O aware to access an I2O device. In this instance the BIOS (or
its extensions) must abstract the I2O subsystem to the OS and provide I2O functionality
via its normal BIOS function calls.

3.2.2 I2O Subsystem

A hardware, or a system vendor supplying an I2O adapter (e.g. an intelligent adapter
card providing both the IOP and embedded controllers), without supporting third party
DDMs, must adhere to the requirements for the shell interface (chapter 4) and the
message requirements in chapters 3 and 6 of the I2O Specification [2]. Although the
device need not implement the core interface (chapter 5) it must function externally as if
it does. When responding to an installation or load request for a DDM, the IOP can
reject the request, reporting function not supported.

A vendor supplying an I2O subsystem (e.g. an IOP on the motherboard) that can support
third party DDMs must also adhere to the core interface (chapter 5 of the I2O
Specification [2]). Features that differentiate between designs include the amount of
non-volatile memory for storing third party DDMs, as well as the physical expansion
bus capability.

3.2.3 Shared Memory

I2O message passing is based on shared memory. IOPs must have access to shared
system memory for the hardware level queuing model. Each IOP must provide its own
units for receiving messages from the host and other IOPs and for queuing messages to
the host. At a minimum, a region of memory accessible via system bus contains the
inbound message frames where the host and the IOPs deposit their messages.

Memory allocated as shared system memory must be cache coherent. That is, it should
not be cached unless the processor and memory controller support cache-coherent
protocols. Efficient memory coherency support is required if shared memory writes
involve a write-to-cache, versus a write-through or copy-back. If so, an efficient
mechanism to flush modified cache lines must be provided.

3.2.4 System Bus

Because PCI is the predominant bus in new server designs, the version 1.5 of the I2O
Specification [2] focuses on current PCI bus specification, and describes functional
interfaces based only on the current PCI bus specification (refer to PCI Specification [5]
for details). This does not preclude other bus types, but defining extensions for other bus
types is left out until support comes necessary. The possible new coming bus types will
be prepared in the design of the Linux I2O implementation.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 12

The host identifies and locates an IOP by its PCI class code. The class code has three
fields: base class, subclass, and programming interface. Locations of the inbound and the
outbound queue are specified by the programming interface. The data passed through
the queues are either free message frames or posted messages. Queues are accessed
through two port locations in the PCI address space. The inbound queue port is at
memory offset 0x40, and the outbound queue is at memory offset 0x44 in the PCI
address space.

3.2.5 Address size

Three domains affect address size: the OS, the I/O subsystem, and the IOP. The version
1.5 of the I2O Specification [2] specifies operation for 32-bit IOP physical addressing,
32-bit I/O subsystem operation, and both 32-bit and 64-bit OS operation. The OS
address size relates to the size of the MessageContext fields. The MessageVersion
field in the message header supports future capabilities, such as 64-bit physical
addressing. Critical messages for initializing the IOP are address-size generic, allowing
the OS to appropriately instate the IOP into the system.

3.2.6 Byte order

The version 1.5 of the I2O Specification [2] discusses operation for little endian
addressing only. The MessageVersion field supports future capabilities, such as big
endian messages.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 13

4 RESOURCE MANAGEMENT AND DATA STRUCTURES

The I2O resource management is distributed among distinct IOPs. Each IOP has its own
Configuration Status Block, Hardware Resource Table (Hrt) and Logical Configuration
Table (Lct). During the initialization the host reads the configuration status block and
the Hrt from each IOP, and builds a global System Table (SysTab). The SysTab is posted
to each IOP, so they get information about other IOPs and their devices in the system.
Based on the information given in the SysTab, each IOP creates its local Lct.

Any Messenger can query from any IOP its Lct to find out which services are available
and how to use them. To each service is assigned a Target Id (TID), which are unique
inside one IOP. All communication is performed using a TID, which is carried in each
message as an initiator or a target.

This section lists the basic ideas of these tables, refer to I2O Specification [2] for more
detailed information, e.g. for the detailed structure of the table entries.

4.1 Configuration Status Block

The host gets IOP’s configuration status by sending the ExecStatusGet message. There
is no reply to this message, but the IOP writes its status block directly to the buffer
specified by the host. Thus, it is possible to send this message before the IOP’s outbound
queue is initialized or the IOP’s state is known. The status block describes the
capabilities and the parameters of the IOP. These include among others the identity of
the IOP, locations of the private memory, the size and the number of the inbound
message frames, as well as the number of outbound message frames.

The Configuration Status Block is defined in figure 4-38 in the I2O Specification [2].

4.2 Hardware Resource Table (Hrt)

The hardware resource table (Hrt) is a list of devices and their configuration
information, including the identity of the controlling DDM. Each IOP builds its own Hrt
during the boot (based on the permanent configuration). The host or another IOP obtains
a copy of the IOP’s Hrt by sending the ExecHrtGet message. Hrt tells the host and other
IOPs of any devices controlled by the IOP. In general, the Hrt lists all devices and
locations that the IOP controls or can control.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 14

Hrt and its entries are defined in figures 4-19 and 4-20 in the I2O Specification [2].

4.3 Logical Configuration Table (Lct)

The logical configuration table (Lct) is a list of logical devices whose service is
abstracted through a DDM by the IOP. The host and other IOPs query this table about
available resources by sending the ExecLCTNotify request. DDMs may send this
message to the local IOP to determine when configuration is complete.

When the DDM registers a device, it provides the configuration information for the Lct
entry. Each entry in the IOP’s Lct contains ClassId and SubClassInfo. ClassId is the
I2O message class of the registered device. The structure of SubClassInfo is defined
by each class and identifies the major capabilities of the device. The OSM uses this
information when it determines which devices to query.

Lct and its entries are defined in figures 4-27 and 3-36 in the I2O Specification [2].

4.4 System Table (SysTab)

The System Table (SysTab) describes the system as a set of IOPs and their message
attributes. SysTab informs an IOP of the existence and addresses of other IOPs. Once
the host finishes initializing IOPs (i.e. has read the configuration status and Hrt from
each IOP), it builds the SysTab and sends it to each IOP in an ExecSysTabSet request.
This message gives each IOP the identity (location) of the other IOPs in the system, as
well as declarations of memory and I/O for private space. The private memory and I/O
space declarations lets the IOP hide devices from the system and bring devices on- line
after the system is configured.

SysTab and its entries are defined in figures 4-46 and 4-47 in the I2O Specification [2].

4.5 Array of I2O Controllers

In Linux IOPs’ configuration information is saved into the i2o_controllers[]table
(see Figure 4.1). Each entry in this table is a pointer to struct i2o_controller, which
describes one IOP and collects the previous tables (status block, Hrt, Lct). Devices
controlled by one IOP are linked in a separate list pointed by the devices field in the
IOP’s entry.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 15

Figure 4.1 i2o_controllers[] table.

Figure 4.2 I2O Device Chain.

i2o_device i2o_device

next

controller

owner

i2o_handler

devices
*reply
name
context
class

next

i2o_handler

name
context
class

i2o_handler*i2o_handler

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 16

4.6 I2O Device Chain

The devices controlled by each IOP are linked in a list pointed by the devices field in
the IOP’s struct i2o_controller (see Figure 4.2). Each i2o_device has also a link
back to the controlling IOP and to Logical Table Entry associated to this device.

Users claiming the device are registered into struct i2o_device. The device has only
one primary user (owner), but it may have multiple management users (managers).
Generally management agents do not claim devices unless they desire to change
parameters (for details refer to section 6.1.3.2 in the I2O Specification [2]).

The struct i2o_device is also linked to the conventional Linux Driver API. For
network devices this is done via a pointer on the private area in the network driver API
(dev->priv->i2o_dev). For block devices this is done through an auxiliary table by
indexing with the respective unit number (i2ob_dev[unit]->i2o_dev). For character
devices this can be done respectively.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 17

5 THE LINUX I2O SUBSYSTEM

The Linux I2O subsystem consists of several modules, which are described in detail in
next sections. By module we mean here loadable Linux kernel module, although the I2O
modules can be also completely compiled into the kernel. Loadable modules that belong
to the Linux I2O host environment are illustrated in Figure 5.1.

Pci module (i2o_pci) contains the PCI bus specific part of the initialization.

Core module (i2o_core) implements the common parts of the host I2O environment. It
includes functions to initialize and set up the system, Messenger services to send and

Figure 5.1. I2O subsystem.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 18

receive I2O messages, and Executive and Utility class functions to maintain
configuration and resource management information.

OS Service Modules implement device class specific parts of the I2O split driver model.
In this project, only LAN class OSM (i2o_lan) is implemented. Block Storage OSM,
Tape Storage OSM, SCSI OSM, and Bus Adapter OSM are out of the scope of this
project.

Configuration module (i2o_config) implements the configuration API to install and
configure IOPs and their DDMs. The Configuration Utility is the user level application
to use this API.

Proc module (i2o_proc) implements the Linux proc file system interface to list and to
set I2O configuration information.

All these modules use Messenger services to send I2O messages. Each module has to
implement at least one handler for the replies and register that for the Messenger. The
registering returns a unique context number, which is used in the InitiatorContext
field in messages. When the reply arrives, the Messenger dispatches the reply to the
right handler according to the contents of the InitiatorContext field. Currently only
the lowest 7 bits are used for the context, the highest bits can be used for module
specific purposes e.g. LAN OSM puts also device unit number into InitiatorContext.

The current device driver interface to Linux OS is preserved. The names and arguments
to device methods are kept unchanged, so that all existing non-I2O drivers will work as
well.

Following sections describe the Linux I2O subsystem in more details.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 19

6 PCI MODULE

Pci module (i2o_pci) contains bus specific functions to find I2O capable controllers
(IOPs) on the PCI bus. Linux creates at boot time a global pci_devices list from the
adapters on the bus. I2O class devices (IOPs) are picked from this list and a new struct
controller entry is added to the i2o_controllers[] table (see section 4.5) for each
I2O capable controller. Rests of the functions needed during the setup, i.e. functions that
are not dependent of the underlying bus, are located in the Core module.

PCI bus is currently the only bus supported by the I2O Specification [2]. Later, if the
specification supports also other buses, this module should be updated or a new module
should be implemented.

6.1 Setup functions

int init_module(void) / void cleanup_module(void)

These dummy functions are called by module initialization and by module cleanup.

void __init i2o_pci_init(void)

This function calls i2o_pci_scan() during the initialization if the code is
compiled into the kernel (instead of using as a module). Otherwise not used.

int __init i2o_pci_scan(void)

This function scans kernels global struct pci_dev list to find I2O class
controllers from the PCI bus and to install them into Linux environment.

int i2o_pci_core_attach(struct i2o_core_func_table *table)

If i2o_pci module is used as a loadable module, this function calls
i2o_pci_init(), and attaches i2o_pci module to i2o_core module, so that
i2o_core module is dependent of i2o_pci module, not the other way round.

void i2o_pci_core_detach(void)

This function detaches the i2o_pci module from i2o_core module.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 20

static int i2o_pci_bind(struct i2o_controller *iop,
struct i2o_device i2o_dev)

This function is currently just a placeholder (dummy) for the bus specific handling
on I2O initialization.

static int i2o_pci_unbind(struct i2o_controller *iop,

 struct i2o_device *i2o_dev)

This function is currently just a placeholder (dummy) for bus specific handling on
I2O shutdown.

static void i2o_pci_enable(struct i2o_controller *iop)

This function enables PCI bus by clearing the PCI IRQ mask register and enables
PCI bus.

static void i2o_pci_disable(struct i2o_controller *iop)

This function disables PCI bus by setting PCI IRQ mask register to 0xFFFFFFFF.

static i2o_pci_dispose(struct i2o_controller *iop)

This function frees the IRQ and unmaps the shared memory from the system
memory.

int __init i2o_pci_install(struct pci_dev *dev)

This function creates and fills an i2o_controller entry for the IOP, maps
shared memory area into system memory and request an IRQ for the IOP. This
function calls i2o_install_controller() (in i2o_core module) to install i2o
class devices.

static void i2o_pci_interrupt(int irq, void *dev_id, struct pt_regs *r)

This is the interrupt handler routine called by the Linux kernel. The identity of the
interrupting device is passed in (struct i2o_controller *)dev_id. Other
parameters are unused. This function calls Messengers dispatcher function
i2o_run_queue().

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 21

7 CORE MODULE

Core module (i2o_core) contains functions needed to setup, initialize and shutdown the
I2O environment, functions for message passing (Messenger), Executive and Utility
class functions and functions for debugging.

The host has to adhere to the requirements specified in chapters 4 (I2O Shell Interface
Specification) and chapter 3 (Basic Requirements) of the I2O Specification [2]. This
means support for the complete set of Executive class messages (chapter 4.4) and Utility
class messages (chapter 6.1).

7.1 Setup functions

Setup functions are used to bring the I2O system into operational state, and to shut down
the system. These includes functions to

• add / remove I2O controller to the i2o_controllers[] table,

• add / remove I2O device to I2O device chain pointed from struct i2o_controller
and

• initialize all IOPs found.

The I2O initialization sequence is illustrated in chapter 4.5.1 in the I2O Specification [2].
The initialization consists of two phases: first, the Status Block and the Hardware
Resource table (Hrt) of each IOP are read, and the outbound queues of each IOP are
initialized. In the second phase, the host creates a global System Table (SysTab) from all
the status blocks and Hrts, and sends it to each IOP. Then the host reads the Logical
Configuration Table (Lct) from each IOP and finishes the initialization. After that all
IOPs are in OPERATIONAL state.

The I2O messages used by the following functions are described in chapter 7.3
Executive functions.

int init_module(void)

This function is called if i2o_core is compiled as a loadable module. This function
registers a handler for the replies processed in i2o_core module, attaches i2o_pci
module to i2o_core module and starts the system initialization by calling
i2o_sys_init(). Returns 0.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 22

int __init i2o_init(void)

This function is called if i2o_core is compiled to kernel. This function registers a
handler for the replies to be processed in i2o_core module, starts the system
initialization by calling i2o_sys_init() and calls initialization routines in other I2O
modules. Returns 0.

static void __init i2o_sys_init(void)

This function runs the initialization sequence described in figure 4-56 in the I2O
Specification [2]. All IOPs outbound queues are initialized, their Hardware
resource tables are read, System Table is created and posted to all IOPs, Logical
configuration tables are read and all IOPs are enabled. When this function finishes,
IOPs are in OPERATIONAL state.

void cleanup_module(void)

This function is called if i2o_core is compiled as a loadable module. This function
calls i2o_sys_shutdown() to shut the I2O subsystem, detaches i2o_pci module
from i2o_core module and removes the reply handler.

static void i2o_sys_shutdown(void)

This function deletes IOPs from the i2o_controller chain. That will reset all IOP’s
into RESET state.

int i2o_install_device(struct i2o_controller *iop,

 struct i2o_device *i2o_dev)

This function adds a device *i2o_dev into the iop->devices chain. Returns 0.

int i2o_delete_device(struct i2o_device *i2o_dev)

This function removes device *i2o_dev from the iop->devices list. Returns 0
(succeed), -EBUSY (the device is on use) or –EINVAL (device not found in the list).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 23

int i2o_install_controller(struct i2o_controller *iop)

This function adds a new i2o_controller structure *iop to i2o_controllers[]
table. The global counter i2o_num_controllers is increased. Returns 0 (succeed)
or –EBUSY (no space left in the table).

int i2o_delete_controller(struct i2o_controller *iop)

This function deletes all devices from the iop->devices list, resets the *iop and
removes the entry from the i2o_controllers[] table. The global counter
i2o_num_controllers is decreased. Returns 0 (succeed), -EBUSY (the *iop is on
use, the device is on use) or –ENOENT (*iop not found).

struct i2o_controller *i2o_find_controller(int n)

This function gets an iop number n and returns a pointer to the corresponding
i2o_controller structure. The iop->users counter in the i2o_controller structure is
increased. Returns NULL, if there is no corresponding entry.

void i2o_unlock_controller(struct i2o_controller *iop)

This function decrements the iop->users counter in the i2o_controller structure.

int i2o_activate_controller(struct i2o_controller *iop)

This function brings IOP into HOLD state, i.e. reads the status, initializes the
outbound queue and reads the Hardware resource table. Returns 0 (succeed) or –1.

int i2o_online_controller(struct i2o_controller *iop)

This function brings IOP from HOLD state to OPERATIONAL state, i.e. sends
System table to all IOPs, enables them and reads their Logical configuration
tables. Returns 0 (succeed) or –1.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 24

7.2 Messenger services

Messenger implements the functionality needed for message passing. Messenger deals
with message queues, IOPs’ interrupts and address translations. The basic task is to
dispatch messages from the IOPs’ outbound queue to the registered message handlers.

7.2.1 Message Queues

The I2O messaging layer delivers I/O transaction messages (request and replies) from
one software module to another, anywhere in the I2O domain. The physical portion of
the interface specifies a single queuing model for shared memory architectures. This
queuing technique for transferring messages uses

• One inbound queue for each IOP. The inbound queue of a platform receives
messages from all other platforms, including the host.

• One outbound queue for each IOP. The outbound queue of all IOPs collectively
functions as the inbound queue for the host. This allows each IOP to provide
hardware support for efficiently passing messages without requiring additional host
hardware.

Each Messenger is running on a single platform: there is one instance per processor or
Symmetric Multi Processor group. Each Messenger communicates by placing I2O
messages in the target’s inbound queue. The data passed through the queues are either
free messages or posted messages.

Queues are accessed through two port locations in the PCI address space (the current I2O
Specification focuses only on PCI bus). The inbound queue port is at memory offset
0x40, and the outbound queue port is at memory offset 0x44 in the PCI address space of
each IOP. Both queues consist of two FIFOs: Free_List FIFO and Post_List FIFO.
When the host reads from the IOP’s inbound queue port, it gets a free message frame to
fill, and when it writes to the IOP’s inbound queue port, it gets the frame delivered to the
IOP. Similarly, when the host reads from the IOP’s outbound port, it gets a message
(reply) from the IOP. The message frame is released when the host writes the message
frame address (MFA) to the IOP’s outbound queue. If the queue is empty, address
0xFFFFFFFF is returned.

IOP initializes its inbound queue during the boot. The host initializes IOP’s outbound
queue by allocating free message frames and writing their addresses into the IOP’s
outbound queue.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 25

7.2.2 Address Translation

The implementation of the message queues is based on physically shared memory. IOP
and its DDMs use system addresses to refer to a shared memory location when
communicating with the host or other IOPs. A translation mechanism is needed to
convert host’s local memory address references (virtual addresses) to a system address
references (physical addresses), and vice versa. The difference between the system and
the local address is a constant for all shared memory, so the translation is easy.

In Linux address translations are done by functions

inline unsigned long virt_to_bus(volatile void * address)
inline void * bus_to_virt(unsigned long address)

7.2.3 Sending I2O Messages

To send a message (I2O request), the host reads a free message frame from the target
IOP’s inbound queue, fills the I2O message header and the message payload with I2O
specific data, and finally writes the address of the frame (MFA) to the target IOP’s
inbound queue. Messenger functions for these purposes are i2o_post_message(),
i2o_post_this() and i2o_post_wait().

inline void i2o_post_message(struct i2o_controller *iop, u32 addr)

This function writes the message frame address addr into the iop’s inbound
queue.

int *i2o_post_this(struct i2o_controller *iop, u32 *data, int len)

This function reserves an inbound queue message frame from the *iop, copies
the message pointed by *data into it and posts the message. Returns 0 (succeed)
or -ETIMEDOUT (inbound free queue empty)

int *i2o_post_wait(struct i2o_controller *iop, u32 *msg, int len,
int timeout)

This function calls i2o_post_this()to send an I2O request *msg to *iop. The
sending process is put into wait queue maximum for timeout seconds to wait for a
reply. Returns I2O_POST_WAIT_OK (success), -ETIMEDOUT (timeout) or
-DetailedStatus (ReqStatus!=SUCCESS).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 26

static void i2o_post_wait_complete(u32 context, int status)

When the reply for the request posted in i2o_post_wait() arrives, this function
copies the reply status into the wait queue structure and wakes up the waiting
process.

7.2.4 Receiving I2O Messages

Before modules start to send I2O requests, they have to register at least one call back
function as a handler for the incoming replies. The data structure for a handler contains a
pointer to the function to be called when an I2O interrupt is generated (see Figure 7.1).
Registered handlers are collected into i2o_handlers[] table. The dispatching via this
table is based on the unique context number (i.e. the array index), which is delivered to
IOP in the I2O requests’ InitiatorContext field (last 16 bits). The IOP copies the
InitiatorContext field unchanged into the reply, where from the interrupt handler is
able to find it.

Figure 7.1. i2o_handlers[] table.

Functions to register and remove reply handlers are i2o_install_handler() and
i2o_remove_handler(). Functions that process replies written to IOP’s outbound
queue are i2o_run_queue() and i2o_flush_reply().

int i2o_install_handler(struct i2o_handler *h)

This function adds a handler structure *h into the i2o_handlers[] table. The
struct handler contains the address of the callback function to be run when
the reply arrives, and a context number h->context (same as the index of the new
entry) to be used as an identification part of the InitiatorContext field in the
I2O requests (last 16 bits). Returns h->context (succeed) or –ENOSPC (no space
left in the table).

context

i2o_handlers[]

i2o_handler
*reply()
name

context
class

i2o_handler

name

context
class

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 27

int i2o_remove_handler(struct i2o_handler *h)

This function sets h->context to –1, and removes handler structure *h from the
i2o_handlers[] table. Returns 0.

static void i2o_run_queue(struct i2o_controller *iop)

This interrupt service routine reads replies from the IOP’s outbound queue and
runs the correct OSM’s handler, until the outbound queue is empty. The identity of
the interrupting IOP is passed in i2o_controller structure pointed by *iop. The
function uses reply’s InitiatorContext field to identify the handler.

while ((m = *iop->read_port) != 0xFFFFFFFF) {
 msg = (struct i2o_message *)bus_to_virt(m);
 context = msg.InitiatorContext & 0xFFFF;

handler = i2o_handlers[context];
 handler->reply(handler, iop, msg);

i2o_flush_reply(iop, m);
}

The handler checks the message status and does module specific tasks, e.g. copies
bytes to device specific buffers. When the control later returns back from the
handler, the message frame is freed by calling i2o_flush_reply().

inline void i2o_flush_reply(struct i2o_controller *iop, u32 m)

This function frees the message frame used for the reply by writing its physical
address m into outbound queue of the pointed *iop. This is implemnetd as an
inline code to be done efficiently.

7.3 Executive functions

Executive class messages are defined in Chapter 4 of I2O Specification [2]. The
messages are targeted to the IOP and its Executive DDM. The functions in this class
manage IOPs system initialization, configuration and peer-to-peer connections.

7.3.1 Executive class functions implemented in HPGIN-project

Currently only a subset of the Executive class messages are used and implemented. They
include functions needed during the initialization and functions needed by Software
management and by Configuration management. The function names and short
descriptions are given below. Section numbers after the I2O message name refer to
corresponding chapter in the I2O Specification [2], where the details of the requests and
the replies are described.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 28

int i2o_hrt_get(struct i2o_controller *iop)

This function posts ExecHrtGet request (4.4.3.15) to get the IOP’s hardware
resource table. The function reserves memory for the table and sets *iop->hrt to
point to it. Returns 0 (success), -ETIMEDOUT (timeout) or -DetailedStatus
(ReqStatus!=SUCCESS).

int i2o_clear_controller(struct i2o_controller *iop)

This function posts ExecIopClear request (4.4.3.16) to the *iop to abort pending
requests. The IOP rebuilds its inbound message queues and deletes all entries in
external connection table. Since in the beginning of the initialization normal I2O
replies can’t be delivered (the IOP’s outbound queue is not initialized), there is no
normal reply to this request and memory polling is used instead. Returns 0
(success), -ETIMEDOUT (timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

int i2o_reset_controller(struct i2o_controller *iop)

This function posts ExecIopReset request (4.4.3.18) to the *iop to abort pending
requests The IOP rebuilds its environment – reloads IRTOS and resident DDMs.
Since in the beginning of the initialization normal I2O replies can’t be delivered
(the IOP’s outbound queue is not initialized), there is no normal reply and memory
polling is used instead. Returns 0 (state=RESET), –ETIMEDOUT (timeout) or -
ENOMEM (kernel memory allocation error).

int i2o_lct_get(struct i2o_controller *iop)

This function posts ExecLctNotify request (4.4.3.19) to the *iop to get IOP’s
logical configuration table after next configuration change. The function reserves
memory for the table and sets *iop->lct to point to it. When the target IOP
modifies its Lct, it replies to this message, sending Lct (i.e. broadcasting) to
everyone who made this request. Returns 0 (success), -ENOMEM (kernel memory
allocation error), -ETIMEDOUT (timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

int i2o_parse_lct(struct i2o_controller *iop)

This function parses the Lct, prints debugging information to log and installs
i2o_device structures for I2O devices by calling i2o_install_device(). Returns
0 (succeed) or -ENOMEM (kernel memory allocation error).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 29

int i2o_init_outbound_q(struct i2o_controller *iop)

This function posts ExecOutboundInit request (4.4.3.20) to the *iop to clear IOPs
outbound message queue to its initial (empty) state. Returns 0 (success), -ENOMEM
(kernel memory allocation error), -ETIMEDOUT (timeout) or -EINVAL (initialize
rejected).

int i2o_status_get(struct i2o_controller *iop)

This function posts ExecStatusGet request (4.4.3.26) to the *iop to get the IOP
status: state, size of message frames, and size of inbound and outbound queues,
etc. Returns 0 (succeed), -ENOMEM (kernel memory allocation error) or -ETIMEDOUT
(timeout).

int i2o_enable_controller(struct i2o_controller *iop)

This function posts ExecSysEnable request (4.4.3.30) to the *iop to release
ExecSysQuiesce state and resume normal operation. Returns 0 (success),
-ETIMEDOUT (timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

int i2o_quiesce_controller(struct i2o_controller *iop)

This function posts ExecSysQuiesce request (4.4.3.32) to the *iop to stop IOP
sending messages and ignore all except system messages. Returns 0 (success),
-ETIMEDOUT (timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

int i2o_systab_send(struct i2o_controller *iop)

This function posts ExecSysTabSet request (4.4.3.33) to the *iop to provide
system configuration table (SysTab) and to enable peer operation. Returns 0
(success), -ETIMEDOUT (timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

7.3.2 Executive class messages not implemented in HPGIN-project

The following table (Table 7.1) lists Executive class messages that are out of the scope
of the HPGIN-project and are not implemented.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 30

ExecAdapterAssign 4.4.3.1 Assign an adapter to the specified HDM.

ExecAdapterRead 4.4.3.2 Request that the IOP read the registers of a hidden
adapter.

ExecAdapterRelease 4.4.3.3 Revoke the adapter assignment.

ExecBiosInfoSet 4.4.3.4 Indicate a device accessible via BIOS function call –
sets field in logical configuration table.

ExecBootDeviceSet 4.4.3.5 Indicate device used to boot the OS – set field in logical
configuration table.

ExecConnSetup 4.4.3.7 Establish aliases for sending messages between I2O
devices on different IOPs.

ExecDdmDestroy 4.4.3.8 Terminate local DDM operation – release all signed
adapters and I2O devices; destroy all devices created
(registered) by the specified module.

ExecDdmEnable 4.4.3.9 Release ExecDdmQuiesce state and resume normal
operation with specified DDM.

ExecDdmQuiesce 4.4.3.10 Stop sending messages to specified remote DDM (on
another IOP) and ignore messages from that DDM. Used
when shutting down the other DDM.

ExecDdmReset 4.4.3.11 Clear all connections with the specified DDM. Sent
when reloading the DDM.

ExecDdmSuspend 4.4.3.12 Suspend local DDM operation – quiesce devices created
(i.e., registered) by the specified module

ExecDeviceAssign 4.4.3.13 Assign a device to the specified ISM (i.e., invite a
connection between the ISM and the device)

ExecDeviceRelease 4.4.3.14 Release a device – break connection.

ExecIopConnect 4.4.3.17 Establish aliases for sending messages between IOP
executives.

ExecPathEnable 4.4.3.21 Release PathQuiesce state and resume normal operation
with specified IOP.

ExecPathQuiesce 4.4.3.22 Stop sending messages to specified IOP and ignore
messages from that IOP. Used when shutting down the
other IOP. Sent before resetting the other IOP.

ExecPathReset 4.4.3.23 Clear all connections with specified IOP. Sent when
resetting the other IOP.

ExecStaticMfCreate 4.4.3.24 Create and stuff a static message frame.

ExecStaticMfRelease 4.4.3.25 Release a static message frame.

ExecSysModify 4.4.3.31 Stop sending messages and ignore all but system
messages. Also, suspend all activity to adapters on the
system bus, in preparation for a physical system
configuration change. Especially useful when the host is
about to change PCI configuration (e.g. physical address
of one or more IOPs).

Table 7.1. Executive class messages not implemented in HPGIN-project.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 31

7.4 Utility functions

Utility class messages are defined in section 6.1.3 in the I2O Specification [2]. Utility
class messages are common to all driver classes.

7.4.1 Utility class functions implemented in HPGIN

Currently only a subset of the Utility class messages are used and implemented. They
include functions to claim and release devices, to handle events and to get and set
parameters. The names of the functions and short descriptions are given below. Section
numbers after the I2O message names refer to corresponding chapters in the I2O
Specification [2], where the details of the requests and the replies are described.

int i2o_claim_device(struct i2o_device *i2o_dev, struct i2o_handler *h)

This function posts UtilClaim (6.1.3.2) message to request use of the i2o device
*i2o_dev. i2o_dev->owner is set to *h. Returns 0 (succeed), -EBUSY (has already
a primary user or too many managers) or –ETIMEDOUT (timeout).

int i2o_release_device(struct i2o_device *i2o_dev,
 struct i2o_handler *h)

This function posts UtilClaimRelease (6.1.3.3) request to release the claimed
device *i2o_dev owned by *h. Returns 0 (success), -ENOENT (not owner) or
-ETIMEDOUT (timeout).

int i2o_event_ack(struct i2o_controller *iop, u32 *msg)

This function posts UtilEventAck (6.1.3.7) request to *iop acknowledge an event.
*msg is the original UtilEventRegister reply. Returns 0 (success), -ETIMEDOUT
(timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

int i2o_event_register(struct i2o_controller *iop, int tid,

 int init_context, u32 tr_context, u32 evt_mask)

This function posts UtilEventRegister (6.1.3.8) to turn on/off event notification.
The init_context is the value for the InitiatorContext field (i.e. unit number and
handler_context), tr_context is the value for the TransactionContext field and
evt_mask contains new value for the event mask. To turn off the event
notification, use zero value for the evt_mask. The target device is identified by
*iop and tid. Returns 0 (success), -ETIMEDOUT (timeout) or -DetailedStatus
(ReqStatus!=SUCCESS).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 32

int i2o_query_scalar(struct i2o_controller *iop, int tid,
 int group, int field, void *buf, int buflen)

This function posts UtilParamsGet (6.1.3.12) request to read selected field from
a device scalar parameter group or a whole parameter group if field==-1. The
result value or the list of result values is returned in memory area *buf. The target
device is identified by *iop and tid. See chapter 3.4.7 in the I2O Specification for
the operation result details. Returns number of bytes written into *buf, -ETIMEDOUT
(timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

int i2o_query_table(int oper,

 struct i2o_controller *iop, int tid,
 int group,
 int fieldcount, void *ibuf, int ibuflen,

 void *resblk, int reslen)

This function posts UtilParamsGet (6.1.3.12) request to read fields from a device
table parameter group. The device is identified by *iop and tid. The result block
is given in a memory buffer *resblk. The length of the buffer (in bytes) is given
in reslen. Returns number of bytes written into *resblk, -ETIMEDOUT (timeout) or
-DetailedStatus (ReqStatus!=SUCCESS).

1) If oper==I2O_PARAMS_TABLE_GET, returns from all rows

• all fields when fieldcount==-1. In this case *ibuf and ibuflen are
unused.

• specified fields when fieldcount>0. Field indexes are given in the
memory buffer *ibuf, and fieldcount is the number of indexes. The
length of the buffer (in bytes) is given in ibuflen.

 2) If oper==I2O_PARAMS_LIST_GET, returns from specified rows

• all fields when fieldcount==-1. The memory buffer pointed by *ibuf
contains the row count and key values for queried rows.

• specified fields when fieldcount>0. Field indexes, number of following
row keys (key count) and key values are given in the memory buffer
*ibuf. fieldcount is the number of field indexes in the buffer. The
length of the buffer (in bytes) is given in ibuflen.

See chapter 3.4.7 in the I2O Specification for the operation list details and for
operation results details.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 33

int i2o_set_scalar(struct i2o_controller *iop, int tid,
 int group, int field, void *buf, int buflen)

This function posts UtilParamsSet (6.1.3.13) request to set a selected field in a
device scalar parameter group or to set all fields in the group if field==-1.
Memory area *buf contains the operation list. The target device is identified by
*iop and tid See chapter 3.4.7 in the I2O Specification for the operation list
details. Returns number of bytes used in *buf, -ETIMEDOUT (timeout) or
-DetailedStatus (ReqStatus!=SUCCESS).

int i2o_clear_table(struct i2o_controller *iop, int tid, int group)

This function posts UtilParamsSet (6.1.3.13) request to clear a table parameter
group i.e. to delete all rows. The target device is identified by *iop and tid.
Returns 0 (success), -ETIMEDOUT (timeout) or -DetailedStatus
(ReqStatus!=SUCCESS).

int i2o_row_add_table(struct i2o_controller *iop, int tid,
 int group, int fieldcount, void *buf, int buflen)

This function posts UtilParamsSet (6.1.3.13) request to add rows to a table
parameter group group. The target device is identified by *iop and tid. Field
indexes, number of following row keys (key count) and key values are given in the
memory buffer *buf. fieldcount is the number of field indexes in the buffer. The
length of the buffer (in bytes) is given in buflen. Returns 0 (success), -ETIMEDOUT
(timeout) or -DetailedStatus (ReqStatus!=SUCCESS).

7.4.2 Utility class messages not implemented in HPGIN-project

The following Utility class messages are out of the scope of the HPGIN project and are
not yet implemented.

UtilAbort 6.1.3.1 Abort previous transaction(s).

UtilDeviceRelease 6.1.3.5 Release ownership of device.

UtilDeviceReserve 6.1.3.6 Acquire ownership of device.

UtilLock 6.1.3.9 Request temporary exclusive control of device.

UtilLockRelease 6.1.3.10 Release lock.

UtilReplyFaultNotify 6.1.3.14 Reply message can’t be delivered by the transport
layer.

Table 7.2. Utility class messages not implemented in HPGIN-project.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 34

7.5 Debugging and Error Reporting functions

Functions whose name start by i2o_report_ and function i2o_dump_message are for
debugging and error reporting.

void i2o_dump_message(u32 *msg)

This function prints to log the contents of the message frame *msg.

void i2o_report_status(const char *severity, const char *str, u32 *msg)

This function prints the string *str, the command name, the request status and the
detailed status of the reply *msg.

void i2o_report_failure(const char *severity,

const struct i2o_controller *iop, const char *str, u32 *msg)

This function prints the string *str, the request status and the detailed status of the
reply *msg, and dumps out the contents of the message.

void i2o_report_transaction_error(const char *severity,

const char *str, u32 *msg)

This function prints the string *str, the request status and the detailed status of the
reply *msg, when the request is rejected for a general cause.

static void i2o_report_exec_cmd(u8 cmd)

This function prints the Executive class command name corresponding to number
cmd.

static void i2o_report_util_cmd(u8 cmd)

This function prints the Utility class command name corresponding to number
cmd.

static void i2o_report_lan_cmd(u8 cmd)

This function prints the LAN class command name corresponding to number cmd.

static void i2o_report_common_status(u8 req_status)

This function prints the request status string corresponding to req_status code.
The common request status codes are used by all I2O class replies.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 35

static void i2o_report_common_dsc(u16 detailed_status)

This function prints the detailed status string corresponding to detailed_status
code. The common detailed status codes are used by all I2O class replies.

static void i2o_report_lan_dsc(u16 detailed_status)

This function prints the LAN detailed status string corresponding to
detailed_status code.

static void i2o_report_fail_status(u8 req_status)

This function prints request status string corresponding to req_status code, when
a message failure has occurred.

static void i2o_report_controller_unit(struct i2o_controller *iop,
int unit)

This function queries and prints vendor and device information of the *iop whose
unit number unit.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 36

8 OS SERVICE MODULES

The OSM must adhere to the message requirements specified in chapter 3 (Basic
Requirements) and chapter 6 (Class Specifications) of the I2O Specification [2]. This
means support for all drivers’ Base class messages (chapters from 6.4 to 6.12), and
optional support for private messages.

The OSM must send only messages specified for the class for which the target is
registered. The OSM must be capable of processing replies from the message layer as
well as replies from its intended target. The OSM must be able to correlate replies with
the appropriate request, based on the context of the TransactionContext field. OSMs
only send requests and receive replies. They neither send replies nor receive requests.
OSMs do not need to establish connections, but they do need to claim devices they
intend to consume.

There are three basic types of device in Linux: block-oriented devices, character-
oriented devices and network devices. Block devices are those to which there is random
access, which means that any block can be read or written to at will. Character devices
are devices, which can usually be processed sequentially. Network devices are used to
connect to other computers.

8.1 LAN OSM

The LAN OSM module (i2o_lan) implements the interface to the local area network
devices. This section describes the layer structure for the network, the Linux network
interface and the functionality of the I2O LAN class messages.

8.1.1 Layer structure for the network

When a user process communicates via the network, it uses functions provided by the
BSD socket layer (Figure 8.1). This administers a general data structure for sockets.
Below BSD socket layer is the INET socket layer, which manages the communication
end points for IP-based protocols TCP and UDP. The layer that underlies the INET
socket layer is determined by the type of socket, and may be the UDP or TCP layer or
the IP layer directly. The UDP layer implements the User Datagram Protocol on the
basis of IP, and the TCP layer implements the Transmission Control Protocol for reliable
communication links. The IP layer contains the code for the Internet Protocol.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 37

Below the IP layer are the network device drivers, to which the IP passes the final
packets. These take care of physical transport of the information. For I2O aware devices,
only the LAN class OSM is needed. For conventional devices, there is one driver for
each type of network device.

The data sent by a user process is passed downwards through the protocol stack. Each
layer takes care of administrative functions and adds its own header. A feature of Linux
is that all headers are written to memory in a linear sequence. If the length of the data
exceeds the maximum segment size, it is divided into number of packets. It is also
possible for short data blocks to be collected together in one segment.

Each packet handled by the kernel is contained in a socket buffer structure (struct
sk_buff *skb, see include/linux/skbuff.h). Each network packet belongs to a socket in
the higher network layers, and the input/output buffers of any socket are lists of struct
sk_buff structures. The same sk_buff structure is used to host network data
throughout all the Linux network subsystems, but a socket buffer is just a packet as far
as the interface is concerned.

Finally the IP layer calls the network driver method hard_start_xmit(struct
sk_buff *, struct net_device *), which passes the packet to the driver and to the
network.

Figure 8.1 The layer structure of the network.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 38

The various layers are also connected together in the opposite direction. When packets
are received from the network, the hardware triggers an interrupt. The interrupt is
handled on the interrupt handler registered by the driver. In the I2O implementation this
is done by the host Messenger’s i2o_run_queue() function. The incoming I2O
message is then dispatched to the LAN OSM, that forwards sk_buff structures to
higher layers of the network implementation by calling Linux Driver API method
netif_rx().

8.1.2 Linux Network Device Interface

The Linux interface to network device is as follows (Refer e.g. to Linux Kernel Internals
[3] for details, see also include/linux/netdevice.h):

struct net_device
{ ...
 /* Pointer to the devices private memory area. */
 void *priv;
 ...
 /* Pointers to the fundamental device methods. */
 int (*open)(struct net_device *dev);
 int (*stop)(struct net_device *dev);
 int (*hard_start_xmit) (struct sk_buff *skb,
 struct net_device *dev);
 struct net_device_stats* (*get_stats)(struct net_device *dev);
 void (*set_multicats_list)(struct net_device *dev);
 ...
 /* Pointers to the optional device methods */
 ...
}

The network device interface can be conceptually divided into two parts: “visible” and
“invisible”. The visible part of the structure is composed of the fields that are explicitly
assigned in the struct net_device. The remaining fields are used internally. Some of
them are accessed by drivers, e.g. during the initialization, while some shouldn’t be
touched in drivers. Some of the fields convey information about the interface, while
some exists only for the benefit of the driver.

There are also other fields in struct net_device, most notably the device methods
that are part of the kernel-driver interface. Device methods can be divided into
fundamental and optional methods. Fundamental methods include those that are needed
to be able to use the interface; optional methods implement more advanced functions
that are not strictly required. The device methods in LAN OSM convert network issues
into I2O messages and post them to the IOP, which dispatches them to the destination
LAN DDM.

The device is linked into the global network device chain by calling function
register_netdev(struct net_device *).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 39

Figure 8.2. Data structures used by the LAN OSM.

The new I2O device dependent data is registered separately in the struct i2o_device.
It is linked to the struct net_device through the private data area (priv->i2o_dev,
see Figure 8.2). The private data area and the appropriate device methods are set
during the initialization.

The I2O reply handler gains access to the struct net_device by indexing the table
i2o_landevs[] with the unit number. The unit number is passed to the DDM in the
request’s InitiatorContext field together with the OSM specific handler context
number. The InitiatorContext field is copied unchanged into the reply.

8.1.3 Setup functions

Section numbers after the following I2O message names refer to corresponding chapters
in the I2O Specification [2]. Refer to these chapters for the details of the requests and
replies.

int __init i2o_lan_init(void) / init_module(void)

This is the module initialization function. The function installs reply handlers for
LanPacketSend (6.10.8.1), LanSduSend (6.10.8.2) and LanReceivePost
(6.10.8.3) requests and registers to kernel LAN class devices found in global
i2o_controllers[] table.

void cleanup_module(void)

This is the module cleanup function. The function unregisters all LAN class
devices and removes reply handlers.

i2o_device

priv

net_device

Linux Driver API

i2o_lan_local

unit

i2o_landevs[] unit

controller

i2o_controller
status

lct

i2o_dev

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 40

static struct net_device *i2o_lan_register_device(
struct i2o_device *i2o_dev)

This function registers the network device into the kernel. The function reserves
memory for the net_device structure and for the private area (dev->priv) and
initializes it with module parameters, with values queried from the DDM and with
callback function addresses. Returns a pointer to the created net_device structure.

static int i2o_lan_open(struct net_device dev)

This function opens the network device for the transfering. The function claims the
device, registers an event mask, resets the device, sets it into batch mode, posts
free buckets to the controlling DDM and starts the Linux network queue. Return 0
(succeed), -EAGAIN (unable to claim) or –ENOMEM (kernel memory allocation error).

static int i2o_lan_close(struct net_device *dev)

This function ends the transfering. The function stops the Linux network queue,
suspends the device and releases the device. Return 0 (success) or –EBUSY (unable
to release).

static void i2o_lan_set_ddm_parameters(struct net_device *dev)

This function sets default values for LAN Class parameters in DDM. The into
batch mode.

8.1.4 Functions to send LAN class requests

The DDM registers a LAN class device for each port it provides, and identifies devices
by a unique Target ID. The OSM claims the device and performs LAN operations by
sending requests to target LAN devices, and by listening for replies from all LAN class
devices. Both sending and receiving can be in batch mode, i.e. requests and replies may
contain multiple buckets of packets.

LAN class messages are defined in chapter 6.10 of the I2O Specification [2]. Functions
to create and send LAN class requests to the target IOP’s inbound queue are
i2o_lan_packet_send(), i2o_lan_sdu_send(), i2o_lan_batch_send(),
i2o_lan_receive_post(), i2o_lan_reset() and i2o_lan_suspend(). Each function
gets a pointer *dev to device to which the request will be send. Functions
i2o_lan_packet_send() and i2o_lan_sdu_send() get also a pointer *skb to a socket
buffer containing the outgoing packet.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 41

static int i2o_lan_packet_send(struct sk_buff *skb,
struct net_device *dev)

This function creates a message containing a batch of packets to be sent to the
DDM. This function is registered to the Linux network API as callback function
hard_start_xmit(). The batch is filled on subsequent calls. Each time a packet
to be added is passed in a socket buffer pointed by *skb. The address *skb is
copied to message TransactionContext field, and is copied to the reply. The
function increments dev->priv->tx_out counter. Returns 0 (success) or 1 (out of
free message frames).

static int i2o_lan_sdu_send(struct sk_buff *skb,
struct net_device *dev)

This function is similar to i2o_lan_packet_send()except, that the MAC header
is excluded and is generated by the DDM.

static void i2o_lan_batch_send(struct net_device *dev)

This function posts the batch LanPacketSend request or LanPacketSend request
pointed by dev->priv->m. The function sets dev->priv->tx_count to 0 and
dev->priv->send _active to 0.

static void i2o_lan_tx_timeout(struct net_device *dev)

This is the timeout function to be called by the Linux network interface when a
timeout occurs during the above packet send. The function restarts the network
queue if it is stopped.

static int i2o_lan_receive_post(struct net_device *dev)

This function reserves socket buffers for buckets to receive incoming packets and
posts them in a LanReceivePost request. The function increments dev->priv-
>buckets_out counter. Returns 0 (success), -ENOMEM (kernel memory allocation
error) or –ETIMEDOUT (out of free message frames)

static int i2o_lan_reset(struct net_device *dev)

This function posts LanReset request (6.10.8.5) to the target DDM and causes a
hardware reset to be issued. Returns 0 (success) or –ETIMEDOUT (timeout or
request failed).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 42

static int i2o_lan_suspend(struct net_device *_dev)

This function posts LanSuspend request (6.10.8.6) to put the adapter in an idle
(suspended) state. Returns 0 (success) or –ETIMEDOUT (timeout or request failed).

8.1.5 Functions to handle replies

The above mentioned functions fill request’s InitiatorContext field with a unit
number and a handler context number. The InitiatorContext is copied unchanged
into reply by the DDM. The unit number is an index to i2o_landevs[] entry, which
points directly to struct net_device structure identifying the requestor.

unit = msg.InitiatorContext >> 16;
dev = (struct net_device *)i2o_landevs[unit];

The handler context is an index to the i2o_handlers[]entry, which points to an
i2o_handler structure. The structure contains the address of the handler routine, which is
called from the interrupt handler in i2o_core module when the reply arrives.

The handlers for the incoming replies in LAN OSM are i2o_lan_send_post_reply(),
i2o_lan_receive_post_reply() and i2o_lan_reply(). They are registered when the
LAN OSM is loaded. The corresponding handler context numbers are stored into
lan_post_context, lan_receive_context and lan_context. Also the functions
called by the handlers are presented below.

static void i2o_lan_send_post_reply(struct i2o_handler *h,

struct i2o_controller *iop, struct i2o_message *m)

This is the handler for LanPacketSend and LanSduSend replies. The function
inspects the reply status, calls error handling functions if necessary, and frees
socket buffers listed in the reply’sTransaction List. The function decrements
dev->priv->tx_out counter.

static void i2o_lan_receive_post_reply(struct i2o_handler *h,

struct i2o_controller *iop, struct i2o_message *m)

This is the handler for LanReceivePost replies. The function inspects the reply
status, calls error handling functions if necessary, and calls netif_rx() function
for all packets (i.e. socket buffers) listed in the Packet Description Block. If the
DDM is just returning unused buckets (i.e. socket buffers), they are freed. The
function decrements dev->priv->buckets_out counter. If the DDM has already
used dev->priv->treshhold buckets, the function posts new buckets to the
DDM.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 43

static void i2o_lan_release_buckets(struct net_device *dev, u32 *msg)

This function is used to release unused buckets returned by the DDM.

static void i2o_lan_reply(struct i2o_handler *h,

struct i2o_controller *iop, struct i2o_message *m)

This is the handler for other incoming replies. The function inspects the reply
status, calls error handling functions if necessary, and calls
i2o_lan_handle_event() for event notifications.

static void i2o_lan_handle_event(struct net_device *dev, u32 *msg)

This function handles the incoming UtilEventRegister or UtilEventAck replies.

static void i2o_lan_handle_failure(struct net_device *dev, u32 *msg)

This function is called if the reply’s MSG_FAIL bit is set. The function prints
error information into log, frees returned socket buffers and releases the preserved
message.

static void i2o_lan_handle_status(struct net_device *dev, u32 *msg)

This function inspects reply’s request status and detailed status fields and calls
i2o_lan_handle_failure() or i2o_lan_handle_transaction_error() functions.

static void i2o_lan_handle_transaction_error(struct net_device *dev,

u32 *msg)

This function is called if the reply’s detailed status indicates that a transaction
error has occured. The function prints error information into log and frees returned
socket buffer.

8.1.6 Other LAN OSM functions

static struct net_device_stats *i2o_lan_get_stats(
struct net_device *dev)

This function queries device statistics from the DDM and fills dev->priv->stats
with the replied values. Returns a pointer to the dev->priv->stats.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 44

static void i2o_lan_set_mc_filter(struct net_device *dev)

This function inspect dev->flags and sets the corresponding value to the
FilterMask in LAN_MAC_ADDRESS parameter group. By setting the mask the
network device is enabled to receive packets not send to the protocol address.

static void i2o_lan_set_mc_table(struct net_device *dev)

This function inspect dev->flags and sets the corresponding value to the
FilterMask in LAN_MAC_ADDRESS parameter group. By setting the mask the
network device is enabled to receive packets not send to the protocol address.

static void i2o_lan_set_multicast_list(struct net_devive *dev)

This function simply queues a task to call later i2o_lan_set_mc_list().

static int i2o_lan_change_mtu(struct net_device *dev, int new_mtu)

This function changes the dev->mtu value to new_mtu. Returns 0 (succeed) or
-EFAULT (new_mtu out of range).

The following subsections describe in details the flow of operations when the host sends
packets to the network, prepares to receive packets and receives packets from network.

8.1.7 Sending packets to the network

The LAN OSM sends packets using LanPacketSend or LanSduSend request. For the
LanPacketSend, the user supplies the complete packet. For LanSduSend the LAN
device supplies the MAC header and the user supplies the rest of the packet.

1. The OS issues an I/O request by calling the network driver API function registered
by the OSM:

i2o_lan_packet_send(struct sk_buff *skb, struct net_device *dev)

Linux’s socket/protocol layers write all headers and data to memory in linear
sequence, so *skb points to a single packet.

2. The OSM creates an I2O message addressed to target device

i2o_dev = dev->priv->i2o_dev;

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 45

iop = i2o_dev->controller;
msg = i2o_wait_message(iop);
msg->TargetAddress = i2o_dev->lct_data->tid;
msg->Function = I2O_LAN_PACKET_SEND;
msg->InitiatorContext = priv->unit << 16 | lan_send_context;
msg->SGL[0]->PhysicalAddress = virt_to_bus(skb->data);
msg->SGL[0]->Flags = 0xD5000000 | skb->len;
msg->SGL[0]->TransactionContext = skb;

TransactionContext is used to identify this packet in the reply so that it can be
freed later. InitiatorContext is set to indicate this device (unit) and the message
handler for the reply (lan_send_context).

3. The OSM calls i2o_post_this(iop, i2o_dev->id, msg, sizeof(msg)) and

the host's Messenger queues the message into the IOP's inbound queue port.

4. The IOP and target DDM process the message, and send LanPacketSend reply.

5. The IOP alerts the host's Messenger via an interrupt. Control is moved to the

interrupt handler i2o_interrupt(), which reads the reply from the IOP’s outbound
queue and calls the handler for the reply

context = msg.InitiatorContext & 0xFFFF; // use last 16 bytes
i2o_handlers[context]->reply(context, iop, msg);

6. In this case we get reply to LanSend and the registered handler is

i2o_lan_send_post_reply(struct i2o_handler *h,
 struct i2o_controller *iop, struct message *m)

Reply’s InitiatorContext contains also the unit number. It is an index to the
i2o_landevs[] entry, which points directly to the struct net_device structure,
which is the basic Linux interface to network device.

unit = msg->InitiatorContext >> 16;
dev = i2o_landevs[unit];

7. The OSM handler inspects the transmission status and message failures and

transaction errors are handled if necessary.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 46

A single reply may acknowledge multiple packet transmissions of multiple requests.
The Transaction Reply List (TRL) is processed, and socket buffers used by the sent
packets are freed. The TRL contains pointers to the original packets (which were
passed to DDM in requests’ TransactionContext fields). The detailed TRL format
is explained in I2O Specification [2] on section 3.4.3.

trl_count = msg->trl_count;
while (trl_count) {
 skb = msg->TRL[trl_count];

dev_kfree_skb_irq(skb);
trl_count—-;

 }

8. Finally the control returns back to the interrupt handler i2o_interrupt(). The

interrupt handler frees the message frame back to outbound free queue by calling
i2o_flush_reply(iop, m).

8.1.8 Preparing to receive packets from the network

All received packets are transferred from the DDM by using buckets reserved in
forehand by the OSM. The Initiator (LAN OSM) allocates memory buffers, and
describes them in LanReceivePost messages using SGLs. Each buffer marked by the
end_of_buffer entry in the SGL corresponds to one bucket. Buckets do not have to be
physically contiguous, and they can be of varying sizes.

The DDM writes incoming packets into these buckets. The DDM describes in reply in a
Packet Descriptor Block (PDB) each bucket it consumes, the bucket's order, and the
location and length of each packet in the bucket.

The SGL element of each bucket contains a BufferContext field, analogous to the
TransactionContext in messages. The host tracks buckets by BufferContext, which
is passed to the DDM in the SGL and reported back in the PDB.

When buckets are posted to the DDM, the DDM owns them. When a packet is received,
the DDM (or its hardware) copies the packet into one or more buckets, depending on its
size and the space remaining in the particular bucket. The DDM can use buckets in
arbitrary order. When the DDM reports a packet buffer back in the PDB, the ownership
of the bucket returns to the host. The DDM does not touch that bucket again unless it is
reposted by the Initiator. The detailed bucket format is explained in I2O Specification [2]
on page 6-103.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 47

1. The OSM calls function

i2o_lan_receive_post(struct net_device *dev).

2. Host OSM reads a free MFA from the IOP inbound queue.

i2o_dev = dev->priv->i2o_dev;
iop = i2o_dev->controller;
m = i2o_wait_message(iop);
msg = bus_to_virt(iop->mem_ofset + m);

3. OSM allocates memory for buffers of size = MTU (maximum transfer unit), and
describes this memory by using a SGL. Each buffer marked in the SGL corresponds
to a bucket. BufferContext is set to identify the allocated buffer in the reply so that
it can be later freed. In addition, the total number of buckets is passed to the DDM.
InitiatorContext is set to indicate the reply handler.

msg->Function = I2O_LAN_RECEIVE_POST;
msg->TargetAddress = i2o_dev.id;
msg->InitiatorContext = priv->unit << 16 | lan_receive_context;
do

skb = dev_alloc_skb(dev->mtu + dev->hard_header_len);
msg->SGL[i]->PhysicalAddress = virt_to_bus(skb->data);
msg->SGL[i]->Flags = 0x51000000 | skb->len;
msg->SGL[i]->BufferContext = skb;

 while (i++ <= N_BUFS);
msg->BucketCount = N_BUFS;

4. The OSM calls Host Messenger’s function i2o_post_message()to write the
request into the IOP’s inbound queue port.

5. IOP and DDM process the message. There is no immediate reply to LanReceivePost
request. LanReceivePost replies are send later, when there are incoming packets to
be delivered. The reply is handled as described in the following section.

8.1.9 Receiving packets from the network

In immediate mode and under a low load in batch mode, the DDM indicates a receiving
packet immediately. Under a heavy load, the DDM collects receiving packets until a
threshold is exceeded or a timer expires. In both cases, the DDM indicates the received
packets in PDB in the LanReceivePost reply. The BucketsRemaining field is the
running count of buckets that DDM has left to consume. The host judges how badly the

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 48

DDM needs more buckets by this field. If DDM runs out of buckets, it posts an Overrun
code in DetailedStatusCode.

1. DDM writes incoming packets into buckets allocated earlier by the OSM. The DDM
describes each bucket it consumes, the bucket's order, and the location and length of
each packet in the bucket, by building a PDB into the LanReceivePost reply.

2. DDM copies the InitiatorContext and BucketContext fields from the earlier
request to the reply, addresses the reply to the Initiator, and finally invokes the IOP's
Messenger. Messenger queues the message into the IOP’s outbound queue.

3. The Host is interrupted and the host’s Messenger dispatches the reply to the handler
(see chapter 8.1.7 numbered item 5). In this case the handler is

i2o_lan_receive_post_reply(struct i2o_handler *h,

 struct i2o_controller *iop, struct message *m)

4. The OSM handler inspects the transmission status, and message failures and
transaction errors are handled if necessary.

5. PDB is a list of packet buffers that contain the received packets in the order DDM
received them. The BucketContext field identifies the previously posted buckets.
The handler goes through the list of buckets and passes the packets to upper protocol
layers by calling netif_rx(struct sk_buff *).

i2o_dev = dev->priv->i2o_dev;
do
 skb = msg->PDB[i].BucketContext

 netif_rx(skb);
 i++;
 while (i < msg->trl_count);

Note, that in the current Linux solution one bucket may not contain several packets,
or one packet may not be split into two or more buckets (PacketOrphanLimit is set
to maximum packet size, see LAN_OPERATION parameter group in I2O
Specification [2]).

6. The OSM keeps account of outstanding buckets. If the DDM has already used as
many buckets as a chosen threshold, the host allocates and sends new buckets to the
DDM calling again i2o_lan_receive_post().

if (priv->buckets_out <= priv->max_buckets_out – priv->buckettresh)

 i2o_lan_receive_post(dev);

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 49

8.1.10 Setting LAN Control Parameters

The user can query and adjust various control parameters of the LAN device both for the
OSM and for the DDM.

OSM parameters are read and set via the /proc file system (see chapter 10). The user
configurable parameters for each port in the OSM are

• MaxBucketsOut - maximum number of buckets send to DDM

• BucketThresh - send more buckets to DDM when this many used
• TxBatchMode

0: use immediate mode for transmissions, always send one packet per bucket
and post immediately

1: use batch mode for transmissions
2: switch automatically between immediate and batch mode

• rx_copybreak - copy receiving packet into a new socket buffer and reuse the old
socket buffer if the packet lenght < rx_copybreak

• event_mask – set the UtilEventRegister mask to get replies when the specified
events occur. Use 0xFFC00002 to get all generic and LAN events, 0x00000000 for
none. See I2O Specification [2] for event codes.

LAN parameter groups includes various set of parameters for LAN devices (i.e. for
DDMs), e.g. batch control, error control, timeouts and timeout policy, number of retries,
recovery etc. Refer to for a complete list of LAN DDM parameters and parameter
groups. These DDM specific parameters are read via Configuration API (see chapter 9)
or via the /proc file system (see chapter 10). Currently DDM parameter values can be
set only via Configuration API. The /proc interface will be implemented later.

Batch control specifies how to batch up packets into buffers, and when to notify the user
of their arrival. Under a light load the only few packets are put into each bucket and are
returned quickly, to minimize latency. Under a heavy load, multiple packets are filled
into buckets and multiple buckets are reported with a single reply. Batch control
specifies the load conditions when the DDM switches between batch and light modes,
and how much to batch in batch mode. See I2O Specification [2] section 6.10.7 LAN
Configuration and Operating Parameters.

Error control specifies which transaction errors to report in the transaction status. Since
the protocol stack above the LAN OSM (and the user itself) uses various timeouts on
packets, it may be pointless to report most errors. Therefore, the DDM supports turning
off reporting of individual transmission errors. If a packet encounters a transmission
error when errors are disabled, the transaction is reported successful. Other errors, such
as in the format of the packets or their batch list, are always reported.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 50

8.2 Other OSMs

Although the implementation of other I2O class OSMs than LAN OSM are out of the
scope of HPGIN project, we present here a short description of block device and
character device interface. Currently there exist prototypes also for Block OSM
(i2o_block) and for SCSI OSM (i2o_scsi) made by third parties.

The common parts of the Linux I2O implementation are designed to be general enough
to fulfil the needs for other OSMs too. Adding new OSM should be straightforward.

8.2.1 Block Device Interface

The host OS interface for block storage devices is as follows (see fs/devices.c,
include/linux/fs.h). Each block device has an i-node associated through the directory
entry /dev/name. The name of the device and its methods are registered in device tables
indexed by the major device numbers.

static struct device_struct blkdevs[MAX_BLKDEV];

struct device_struct {
 const char * name;
 struct file_operations * fops;
};

struct file_operations {
 loff_t (*llseek)(struct file *, loff_t, int);
 ssize_t (*read)(struct file *, char *, size_t, loff_t *);
 ssize_t (*write)(struct file *, const char *, size_t,loff_t *);
 ...
 int (*ioctl)(struct inode *, struct file *, unsigned int,

 unsigned long);
 ...
 int (*lock) (struct file *, int, struct file_lock *);
 };

The entries in the blkdevs[] and the chrdevs[] tables are initialized by functions

 register_blkdev(unsigned int major, const char *name,
 struct file_operations *fops)
and
 register_chrdev(unsigned int major, const char *name,
 struct file_operations *fops)

Pointers to the I2O device methods corresponding to file operations are set during the
initialization. The device methods convert requests to I2O messages and deliver them to
IOP. IOP’s Messenger dispatches them to the destination DDM.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 51

To reach the I2O dependent data, a new table is created during the initialization:

 struct i2ob_device * i2ob_dev[];

struct i2ob_device {
 struct i2o_controller *iop;
 struct i2o_device *i2odev;
 int tid;
 int flags;
 int refcnt;
 struct request *head, *tail;
 int done_flag;

};

The entry contains pointer to struct i2o_controller and to struct i2o_device
identifying the target IOP and target device. Also this table is indexed by the major
device number.

8.2.2 Character Device Interface

The character device interface is similar to block device interface and the I2O
implementation can be done respectively.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 52

9 CONFIGURATION INTERFACE

The following sections describe the basic idea of the configuration dialogue and how the
user level programs can use it.

9.1 Configuration Dialogue

The purpose of the configuration dialogue mechanism is to have a DDM-defined and
controlled communication mechanism with a human operator. The facility is self-
contained in a downloaded DDM and is available in any I2O-enabled system.

Static operating parameters, which can be modified only before a session starts, are read-
only and must be changed by the configuration dialogue. Several messages support
installing and loading DDMs. Installation primarily stores the module’s executable code
in the IOP’s permanent store so that it can be loaded next time the IOP initializes.

DDM’s configuration mechanism is invoked when the host sends a UtilConfigDialog
request. The reply to a configuration dialogue request is a set of instructions for
displaying configuration information on the console, prompting the user for input,
accessing disk drive, and terminating the session. This dialogue modifies the IOP’s
profile, establishing user-configurable parameters, such as the number of inbound
message frames.

The host can initiate the configuration dialogue at any time. The IOP indicates its need
for a configuration dialogue by setting a flag bit in its logical configuration table (Lct).
The configuration dialogue also applies to each module loaded on the IOP, but the
dialogue is invoked independently for each device, using a UtilConfigDialog request
addressed to it. Again, a flag bit for the device in Lct entry indicates that a configuration
dialogue is requested. Setting the flag causes a response to the ExecLctNotify request, if
one was posted. Resetting the flag does not.

The host-to-IOP dialogue protocol is based on HTML (Figure 9.1). Every device
supplies a page number 0, the device’s home page. Other pages are typically accessed by
HTML links. The I2O request message to IOP’s specific DDM contains a number of the
dialogue page, any form data being returned and a buffer where the device places the
reply. The form data is typically generated from an HTML form submitted with the
HTTP POST method. The text is in the form field1=value1&field2=value2, and
usually represents new values for selected fields in selected parameter groups. The reply
contains HTML text that the host presents to the human operator via an HTML viewer,
such as a Web browser.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 53

To make possible centralized configuration of I2O systems safely, the HTTP
request/response chain is secured by using a SSL (Secure Sockets Layer) wrapper,
which encrypts connections from outside to the server.

9.2 I2O Configuration API

Access to the I2O subsystem is provided through the device file named /dev/i2octl.
This file is a character file with major number 10 and minor number 166. The device
interface provides a set of ioctl() commands that can be utilized by user space
applications to communicate with IOPs and devices on individual IOPs. These ioctl()
commands post respective I2O messages to the specified IOP (<iop>) and its target
device (<tid>), and copies data from I2O replies to the user space buffer.

The following interface was originally specified by Depax Saxena. It includes basic
functions to determine active IOPs, to read Hardware resource table (Hrt) and Logical
configuration table (Lct), to get and set parameters in parameter groups, to use HTHL-

Figure 9.1. Configuration dialogue.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 54

based configuration interface and to manage IOP’s software. The event handling is not
yet specified.

9.2.1 Determining active IOPs

Synopsis
ioctl(fd, I2OGETIOPS, int *count);
 u8 count[MAX_I2O_CONTROLLERS];

This function fills the system's active IOP table. *count should point to a buffer
containing MAX_I2O_CONTROLLERS entries. Upon returning, each entry will contain a
non-zero value if the given IOP unit is active, and 0 if it is inactive or non-existent.
Returns 0 (succeed) or –1. If an error occurs, errno is set appropriately:

EFAULT Invalid user space pointer was passed

9.2.2 Getting Hardware Resource Table

Synopsis
ioctl(fd, I2OHRTGET, struct i2o_cmd_hrt *hrt);

 struct i2o_cmd_hrtlct {
u32 iop; /* IOP unit number */
void *resbuf; /* Buffer for result */
u32 *reslen; /* Buffer length in bytes */

 };

This function fetches the Hardware Resource Table of the IOP specified by hrt->iop
into the buffer pointed to by hrt->resbuf. The actual size of the data is written into
*(hrt->reslen). Returns 0 (succeed) or –1. If an error occurs, errno is set
appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ENOBUFS Buffer not large enough. If this occurs, the required buffer

length is written into *(hrt->reslen)

9.2.3 Getting Logical Configuration Table

Synopsis
ioctl(fd, I2OLCTGET, struct i2o_cmd_lct *lct);

struct i2o_cmd_hrtlct {
u32 iop; /* IOP unit number */

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 55

 void *resbuf; /* Buffer for result */
 u32 *reslen; /* Buffer length in bytes */
 };

This function returns the Logical Configuration Table of the IOP specified by lct->iop
in the buffer pointed to by lct->resbuf. The actual size of the data is written into
*(lct->reslen). Returns 0 (succeed) or –1. If an error occurs, errno is set
appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ENOBUFS Buffer not large enough. If this occurs, the required buffer

 length is written into *(lct->reslen)

9.2.4 Getting Parameters

Synopsis
ioctl(fd, I2OPARMGET, struct i2o_parm_setget *ops);

 struct i2o_parm_setget {
u32 iop; /* IOP unit number */
u32 tid; /* Target device TID */
void *opbuf; /* Operation List buffer */
u32 oplen; /* Operation List buffer length in bytes */
void *resbuf; /* Result List buffer */
u32 *reslen; /* Result List buffer length in bytes */

 };

This function posts a UtilParamsGet message to the device identified by ops->iop and
ops->tid. The operation list for the message is sent through the ops->opbuf buffer,
and the result list is written into the buffer pointed to by ops->resbuf. The actual size
of data written is placed into *(ops->reslen). Returns 0 (succeed) or –1. If an error
occurs, errno is set appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ENOBUFS Buffer not large enough. If this occurs, the required buffer

 length is written into *(ops->reslen)
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 56

A return value of 0 does not mean that the value was actually properly retrieved. The
user should check the result list to determine the specific status of the transaction.

9.2.5 Setting Parameters

Synopsis
ioctl(fd, I2OPARMSET, struct i2o_parm_setget *ops);

struct i2o_cmd_psetget {
u32 iop; /* IOP unit number */
u32 tid; /* Target device TID */
void *opbuf; /* Operation List buffer */
u32 oplen; /* Operation List buffer length in bytes */
void *resbuf; /* Result List buffer */
u32 *reslen; /* Result List buffer length in bytes */

 };

This function posts a UtilParamsSet message to the device identified by ops->iop and
ops->tid. The operation list for the message is sent through the ops->opbuf buffer,
and the result list is written into the buffer pointed to by ops->resbuf. The number of
bytes written is placed into *(ops->reslen). Returns the size in bytes of the data
written into ops->resbuf. If an error occurs, -1 is returned and errno is set appropriatly:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ENOBUFS Buffer not large enough. If this occurs, the required buffer

 length is written into *(ops->reslen)
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

A return value of 0 does not mean that the value was actually changed properly on the
IOP. The user should check the result list to determine the specific status of the
transaction.

9.2.6 Configuration Dialog HTML-pages

Synopsis
ioctl(fd, I2OHTML, struct i2o_html *htquery);
 struct i2o_html {
 u32 iop; /* IOP unit number */
 u32 tid; /* Target device ID */
 u32 page; /* HTML page */

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 57

 void *resbuf; /* Buffer for reply HTML page */
 u32 *reslen; /* and its length in bytes */
 void *qbuf; /* Pointer to HTTP query string */
 u32 qlen; /* and ist length in bytes */
 };

This function posts an UtilConfigDialog message to the device identified by
htquery->iop and htquery->tid (see Figure 9.1). The requested HTML page number
is provided by the htquery->page field, and the resultant HTML text is stored in the
buffer pointed by htquery->resbuf. If there is an HTTP query string that is to be sent
to the device, it should be sent in the buffer pointed to by htquery->qbuf. If there is no
query string, this field should be set to NULL. The actual size of the reply received is
written into *(htquery->reslen). Returns 0 (succeed) or –1. If an error occurs,
errno is set appropriately:

 EFAULT Invalid user space pointer was passed
 ENXIO Invalid IOP number

ENOBUFS Buffer not large enough. If this occurs, the required

 buffer length is written into *(htquery->reslen)
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7 Software Management

Any time a new or replacement driver is installed on an IOP, it is tagged experimental.
The old driver is tagged obsolote and retained until the new driver is validated by the
user. The next time the IOP is booted, it loads the experimental version of the driver,
changes its status to suspect, and waits for the host to send a configuration validation
message (see section 9.2.7.4). If the IOP does not receive confirmation within a
reasonable period, it may invoke a configuration dialogue asking the user to accept,
reject, or defer the suspect driver. If the user accepts the new (suspect) version, the old
(obsolete) version is removed from the IOP’s store and the suspect status of the new
driver is changed to validated. If the user rejects the suspect version, it is removed from
the IOP’s store, and the obsolote tag on the original version is cleared. If the IOP boots a
second time and the user neither accepts nor rejects the suspect module, the inaction
constitutes an implicit rejection. The suspect version is removed and the old version
reinstalled.

9.2.7.1 Downloading Software

Synopsis
ioctl(fd, I2OSWDL, struct i2o_sw_xfer *sw);
 struct i2o_sw_xfer {

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 58

 u32 iop; /* IOP unit number */
 u8 flags; /* DownLoadFlags field */
 u8 sw_type; /* Software type */
 u32 sw_id; /* Software ID */
 void *buf; /* Pointer to software buffer */
 u32 *swlen; /* Length of software data */
 u32 *maxfrag; /* Number of fragments */
 u32 *curfrag; /* Current fragment number */
 };

This function downloads new software pointed by sw->buf into the permanent store or
into the memory of the iop identified by sw->iop. The DownloadFlags, SwID, SwType
and SwSize fields of the ExecSwDownload message are filled in with the values of
sw->flags, sw->sw_id, sw->sw_type and sw->swlen. Once the ioctl() is called and
software transfer begins, the user can read the value *(sw->maxfrag) and
*(sw->curfrag) to determine the status of the software transfer. As the IOP is very
slow when it comes to SW transfers, this can be used by a separate thread to report
status to the user. The user should not write to this memory location until the ioctl() has
returned.

Returns 0 (succeed) or –1. If an error occurs, errno is set appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7.2 Uploading Software

Synopsis
ioctl(fd, I2OSWUL, struct i2o_sw_xfer *sw);
 struct i2o_sw_xfer {
 u32 iop; /* IOP unit number */
 u8 flags; /* Unused */
 u8 sw_type; /* Software type */
 u32 sw_id; /* Software ID */
 void *buf; /* Pointer to software buffer */
 u32 *swlen; /* Length in bytes of software */
 u32 *maxfrag; /* Number of fragments */
 u32 *curfrag; /* Current fragment number */
 };

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 59

This function uploads software from the IOP identified by sw->iop and places it in the
buffer pointed to by sw->buf. The UploadFlags, SwID, SwType and SwSize fields of
the ExecSwUpload message are filled in with the values of sw->flags, sw->sw_id,
sw->sw_type and sw->sw_size If the the software size is unknown, use 0 instead. IOP
uses this value to verify the correct identification of the module to upload.

Once the ioctl() is called and software transfer begins, the user can read the value
*(sw->maxfrag) and *(sw->curfrag) to determine the status of the software transfer.
As the IOP is very slow when it comes to SW transfers, this can be used by a separate
thread to report status to the user. The user should not write to this memory location
until the ioctl() has returned.

Returns 0 (succeed) or –1. If an error occurs, errno is set appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7.3 Removing Software

Synopsis
ioctl(fd, I2OSWDEL, struct i2o_sw_xfer *sw);
 struct i2o_sw_xfer {
 u32 iop; /* IOP unit number */
 u8 flags; /* Unused */
 u8 sw_type; /* Software type */
 u32 sw_id; /* Software ID */
 void *buf; /* Unused */
 u32 *swlen; /* Length in bytes of software data */
 u32 *maxfrag; /* Unused */
 u32 *curfrag; /* Unused */
 };

This function deletes software from the permanent store of the IOP identified by
sw->iop. The software continues to operate if it is loaded, but does not load the next
time IOP is reset.The RemoveFlags, SwID, SwType and SwSize fields of the
ExecSwRemove message are filled in with the values of sw->flags, sw->sw_id, sw-
>sw_type and sw->swlen. If the the software size is unknown, use 0 instead. IOP uses
uses this value to verify the correct identification of the module to remove. Returns 0
(succeed) or –1. If an error occurs, errno is set appropriately:

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 60

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7.4 Validating Configuration

Synopsis
ioctl(fd, I2OVALIDATE, int *iop);
 u32 iop;

This function posts an ExecConfigValidate message to the IOP specified by *(iop).
This message indicates that the host accepts the current configuration as valid. The IOP
changes the status of suspect drivers to current and may delete old drivers from its store.
Returns 0 (succeed) or –1. If an error occurs, errno is set appropriately:

ENXIO Invalid IOP number
ETIMEDOUT Timeout waiting for reply message

9.2.8 Events

User interface to event reporting is not yet implemented (Event handling is out of
the scope of the HPGIN-project). Current idea is to use the select() interface to
allow user applications to periodically poll the /dev/i2octl device for events.
When select() notifies the user that an event is available, the user would call
read() to retrieve a list of all the events that are pending for the specific device.

9.3 Configuration Utility

The Configuration Utility is a set of programs using the configuration API. The
functionality is in the CGI programs I2O, IOPDetails, Configure, Download, Remove,
Upload and Validate. The common CGI and HTML handling functions are in separate C
source files, which are linked to the programs.

The following structure defines the format for IOP’s software module header. It is used
by the IOP software management programs Download, Remove and Upload.

struct I2O_MODULE_DESC_HDR {
 unsigned int headerSize; /* size of this header and tables */
 unsigned short orgId; /* I2O organization ID */
 unsigned short moduleId; /* assigned to vendor of module */
 unsigned short day; /* ascii 4 digit day DDM produced */

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 61

 unsigned short month; /* ascii 4 digit month DDM produced */
 unsigned int year; /* ascii 4 digit year DDM produced */
 unsigned char i2oVersion; /* I2O version info */
 unsigned char majorCapabilities; /* capbilities bits */
 unsigned short reserved; /* reserved */
 unsigned int codeSize; /* text/data/bss */
 unsigned int tableOffset; /* offset to numTables */
 unsigned int memoryReq; /* memory requiremets */
 unsigned int memoryPreferred; /* additional desired */
 char moduleVersion[4]; /* 4 ascii characters */
 unsigned char processorType; /* IOP processor type */
 unsigned char processVersion; /* IOP processor type */
 unsigned char objCodeFormat; /* DDM object module format */
 unsigned char reserved1; /* reserved */
 unsigned int numTables; /* # of descriptor tables */
 char moduleInfo[24]; /* ascii string name */
}

Module type numbers are mapped to user readable names via the following
moduleinfo[] table

struct mod_info {
 char *moduletype;
 unsigned char value;
 char *moduledesc;
}
struct mod_info moduleinfo[NUM_MODULE_TYPES];

9.3.1 I2O

The I2O program generates the first page, and the page simply displays a list of IOPs.
The user may choose the IOP he wishes to configure by selecting it from the list and by
activating the "Configure" button. This starts the IOPDetails program and gives the IOP
identification as CGI query parameter. If there is only one IOP in the system the
IOPDetails program is started immediately.

9.3.2 IOPDetails

The IOPDetails program displays a page that has five buttons (Configure, Download,
Upload, Remove and Validate). When the button is pressed, the corresponding program
is run and user parameters are passed to it.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 62

9.3.3 Configure

The Configure program lets the user to browse the pages the IOP provides. Only one
parameter is passed to this program: the path to the first html-page. It is sent in the URL
part of the query and must be composed of three numerical parts separated by '/' (slash)
signs. The parts are in order the IOP, the TID and the page number. The program
constructs a button that will load the Executive DDMs (TID 0) page number 0. The
pages sent by the IOP will conform to this scheme.

9.3.4 Download

The Download program downloads the specified software module to the IOPs memory.
It understands the following parameters:

TargetIOP integer The software is downloaded to this IOPs memory

ModuleType string The module type. Legal values are in i2o_util.c
Source string Path to the downloaded file
LoadType string Specifies whether the software should be saved

into permanent memory

OverrideMode string If set to Override, the old version of the
software (if any) is overwritten

9.3.5 Upload

The Upload program uploads the specified software module from the IOPs memory. The
following parameters must be specified:

ModuleType string The type of the module as specified in i2o_util.c

IOP integer The software is uploaded from this IOPs memory
SWID integer This is the software module identifier
SWVersion string Currently a no-op (only in v2.0 of I2O spec)

9.3.6 Remove

The Remove program removes the specified software module from the IOPs memory.
The following parameters must be specified (same as in Upload):

ModuleType string The type of the module as specified in i2o_util.c
IOP integer The software is uploaded from this IOPs memory

SWID integer This is the software module identifier

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 63

SWVersion string Currently a no-op (only in v2.0 of I2O spec)

9.3.7 Validate

The Validate program validates all suspect software modules on an IOP. There is only
one parameter, which must be specified:

iopdestvalidate integer Specified the IOP whose modules are validated

For the ease of use, the IOPDetails program sets meaningful default values for all the
parameters. The user is allowed to change the values within acceptable limits.

9.3.8 Common parts

The parts that are common to all programs are put in separate files. The HTML page
creation and sending code is in html.c. The CGI FORM handling routines are in de-
cgi.c, and I2O helper functions and tables are in i2o_util.c (not to be confused with I2O
Utility Class!)

The file html.c contains functions to create html-page. The page structure is defined as
follows

struct page {
 FILE *output;
 char *str;
 char type[40];
 int binary;
 int offset;
 int outputfd;
}

The flag binary defines whether end_page() function uses the *output pointer or
outputfd file descriptor for writing the data. The page data is pointed to by *str. The
type string is written in the HTTP headers. The offset parameter is used by hprintf()
function.

void start_page(struct page *p)

This function starts a new page. If p is NULL, a page structure is allocated. If
allocation fails, an error page is constructed and sent to the browser. If p points to

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 64

a non-empty page, the function bails out. When the page is set up correctly,
p->outputfd is set to 1, otherwise to -1.

void error_page(const char *format, ...)

This function prints out the format string and exits.

void change_type(struct page *p, char *type)

This function changes the MIME type of the page *p. Only first 40 characters of
type argument are considered. No checking is made based on the type.

int hprintf(struct page *p, const char *format, ...)

This function writes to the page *p. The format parameter is as it would be for
printf. Returns the number of characters written.

void write_page(struct page *p, char *data, unsigned int len)

This function puts the contents of *data buffer on the page *p. The length of the
buffer is given in len. Any text written earlier is lost.

void empty_page(struct page *p)

This function makes the page *p empty. Any text written earlier is lost.

void end_page(struct page *p)

This function constructs the HTTP headers and adds them to the page *p and the
page to the browser.

The de-cgi.c file defines the following functions.

void html_error(const char *error)

Prints out an error message *error and exits gracefully. This is used if a system
call fails in early set up.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 65

char *extract(const char *qstr, const char *var)

This function extracts a "variable=value" type assignment from a CGI string
*gstr. The string may contain several such assignments and they are separated
with '&' (ampersand) signs. The name of the queried variable given in *var.
Returns the "value" part of the string, or NULL if the "variable=" part is not found
or length of "value" string is 0.

char *decode(const char *cgistr)

This function replaces all the occurrences of the string '%XX', where XX is a
hexadecimal number written in ASCII, with the corresponding byte value. For
example, '%41' would be replaced with 'A', which is the character number 0x41.

char *getquery(void)

This function returns the query string, or NULL, if no string can be read. It
assumes a CGI-style set up. The query type is given in environment variable
REQUEST_METHOD and depending on type, the string is either in environment
variable QUERY_STRING or can be read from stdin.

In file i2o_util.c are the helper functions.

unsigned char modulevalue(const char *moduletype)

This function searches the string *modulevalue from the moduleinfo[] table.
Returns the corresponding numerical value or 0xff, if the string can not be found.

struct i2o_driver *getdst(int fd, int iop)

This function gets the Driver Store Table. The IOP number is given in iop and fd
is a file descriptor of the opened /dev/i2octl character special file. Returns a
pointer to i2o_driver structure (succeed) or NULL.

char *modinfo(struct I2O_MODULE_DESC_HDR *hdr)

This function adds the software module header's information to a string. Returns
the modified string, or NULL (kerne l memory allocation error).

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 66

10 INTERFACE TO THE PROC FILE SYSTEM

Linux uses proc file system f.g. to give information about the state of processes, kernel
and hardware. It can also be used to set system parameters during the runtime. The proc
file system is pure virtual file system - the directory and file entries are generated on the
fly from the kernel data sctructures and process information. Detailed information about
proc file system of can be found in chapter 6.3 of Linux Kernel Internals [3].

10.1 The /proc/i2o file hierarchy

For the I2O subsystem, /proc/i2o directory tree (Figure 10.1) is added to the proc file
system. It can be used to read and set IOP and DDM parameters instead of using the
Configuration Utility. This allows setting I2O device parameters, for example during
boot up, simply by writing desired value to the specific proc file.

Each IOP has its own directory entry (iop0...iopN) that contains file entries for
Executive parameter groups and directory entries (0x000...0x00N) for devices
controlled by that IOP. Each device directory has file entries for Generic Parameter
Groups and Device Parameter Groups.

Executive parameter groups are defined in section 4.4.4, Generic parameter groups in
section 3.4.7.6 and the device class dependent Device parameter groups in section 6 of
the I2O Specification [2].

Figure 10.1. I2O subtree in the proc file system.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 67

10.2 Interface to the Linux kernel

The i2o_proc module contains functions to create the /proc/i2o directory tree on the
fly, and functions to read from and write into these files. The struct i2o_proc_entry
contains name of the file entry, its security permission mode, and pointers to functions to
read from and write to that file.

struct i2o_proc_entry {
 char *name;

mode_t mode;
 read_proc_t *read_proc;
 read_proc_t *read_proc;
};

10.2.1 Functions to read from a proc file

There are many functions to read file entries on the fly. The read functions are called
whenever a user reads a file in proc file system. The functions gather IOP and DDM
information by using functions i2o_query_scalar() and i2o_query_table() from
i2o_core module. There is also a function to read LAN OSM parameters from its
private structure (struct i2o_lan_local).

Functions to read from a file in proc file system have the form

int (read_proc_t)(char *page, char **start, off_t off, int count,

 int *eof, void *data);

Read functions’ parameters are

• A pointer to the memory page containing the virtual file (page),

• a pointer to the pointer of start of the file (start),

• an offset from the start (off),

• the number of data read from the file (count),

• an indicator if we are already at the end of file (eof), and

• a pointer to the i2o_device or i2o_controller structure (data).

10.2.2 Functions to write into a proc file

There are also a few functions to set device parameters according to the data written into
a file in proc file system. The write functions uses function i2o_set_scalar()(from
i2o_core module) to set the IOP or DDM parameter. For example, setting MAC
address of an I2O LAN device with TID 8 on the first IOP is done by writing new MAC

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 68

address value to file /proc/i2o/iop0/0x008/lan_mac_addr. The given value is then
sent to IOP.

Functions to write to a file in proc file system have the form

int (write_proc_t)(struct file *file, const char *buf,

unsigned long count, void *data);

Write functions' parameters are

• a pointer to the file we are writing to (file),

• a pointer to the buffer where our data to be written is (buf),

• the number of data written to the file (count), and

• a pointer to the i2o_device or i2o_controller structure (data).

10.3 Generating /proc/i2o directory tree

The proc file system is initialized by calling function i2o_proc_init(). It calls
function create_i2o_procfs(), which calls proc file system interface function
proc_mkdir() to create directory /proc/i2o. Then all IOPs are added to directory
/proc/i2o using function i2o_proc_add_controller(). That function adds generic
IOP information files (Table 10.1) using function i2o_proc_create_entries(), and a
directory for all devices controlled by that IOP. The directories for devices are named
after the Target ID of the device, 0x000 being the Executive DDM. For all devices
generic_dev_entries (Table 10.2) are added. There are also generic entries for LAN
class devices (Table 10.3), and entries for FDDI, Token Ring, and Ethernet statistics
(Table 10.4).

The function i2o_proc_create_entries() goes through a list of struct
i2o_proc_entry and adds new entries to that directory using proc file system interface
function create_proc_entry().

The /proc/i2o directory is removed from proc file system calling exit function of the
module, cleanup_module(). It calls function destroy_i2o_procfs(), which in turn
calls for each IOP i2o_proc_remove_controller() and finally proc file system
interface function remove_proc_entry() to remove directory /proc/i2o. For each IOP
all generic device entries and class dependant entries are removed (in function
i2o_proc_remove_entries()), and then the directory itself is removed using proc
interface function remove_proc_entry(). After that generic IOP entries and finally the

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 69

IOP directory is removed and the proc entry is marked as NULL in struct
i2o_controller.

File Parameter group
hrt 0100h – Hardware Resource Table
lct 0102h – Local Configuration Table
status N/A – Status Block
hw 0000h – IOP hardware
ddm_table 0003h – Executing DDM List
driver_store 0004h – Driver Store
drivers_stored 0005h – Driver Store Table

Table 10.1 Generic IOP entries.

File Parameter group
groups F000h – Params descriptor
phys_dev F001h – Physical Device
claimed F002h – Claimed Table
users F003h – User Table
priv_msgs F005h – Private Message Extensions
authorized_users F006h – Authorized User Table
dev_identity F100h – Device Identity
ddm_identity F101h – DDM Identity
user_info F102h – User Information
sgl_limits F103h – SGL Operating Limits
sensors F200h – Sensors

Table 10.2 Generic device entries.

File Parameter group
lan_dev_info 0000h – Device Info
lan_mac_addr 0001h – MAC Address Table
lan_mcast_addr 0002h – Multicast MAC Address Table
lan_batch_control 0003h – Batch Control
lan_operation 0004h – LAN Operation
lan_media_operation 0005h – Media Operation
lan_alt_addr 0006h – Alternate Address

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 70

lan_tx_info 0007h – Transmit Info
lan_rx_info 0008h – Receive Info
lan_hist_stats 0100h – LAN Historical Statistics

0180h – Supported Optional Historical Statistics
0182h – Optional Non Media Specific Transmit Historical
Statistics
0183h – Optional Non Media Specific Receive Historical
Statistics

settings N/A – Settings for the LAN OSM and DDM (see Table
10.5)

Table 10.3 Generic LAN entries.

File Parameter group
lan_eth_stats 0200h - Required Ethernet Statistics

0280h - Supported Ethernet Historical Statistics
0281h - Optional Ethernet Historical Statistics

lan_tr_stats 0300h - Required Token Ring Statistics
lan_fddi_stats 0400h - Required FDDI Statistics

Table 10.4 LAN subtype specific statistics.

10.4 Reading parameter group information

Functions to get information about IOP and DDMs are named as
i2o_proc_read_<entry>. For example function i2o_proc_read_lan_batch_ctrl()
(see below) is used to query LAN parameter group 0x0003 (Lan Batch Control) and
generate file lan_batch_ctrl. The function calls i2o_query_scalar() to retrieve
information about parameter group 0x0003 and prints information found from result
buffer to the buffer buf. Querying the parameter group is locked using a spin lock to
prevent other processes to modify the information at the same time.

i2o_proc_read_lan_batch_ctrl(char *buf, char **start, off_t offset, int len,

 int *eof, void *data)
{

struct i2o_device *d = (struct i2o_device*)data;
struct i2o_lan_batch_control_scalar result;
int token;

spin_lock(&i2o_proc_lock);
len = 0;

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 71

token = i2o_query_scalar(d->controller, // IOP

 d->lct_data->tid, // TID
 0x0003, // Parameter group #
 -1, // Query all values
 &result, // Results are here
 9*4); // Size of result buffer

if (token < 0) {
 len += i2o_report_query_status(buf+len, token,

 "0x0003 LAN Batch Control");
 spin_unlock(&i2o_proc_lock);
 return len;
}

len += sprintf(buf, "Batch mode ");
if (result.batch_flags&0x00000001)
 len += sprintf(buf+len, "disabled");
else if (result.batch_flags&0x00000004)
 len += sprintf(buf+len, "enabled");
else {
 len += sprintf(buf+len, "automatic");
 if (result.batch_flags&0x00000002)
 len += sprintf(buf+len, " (on)");
 else
 len += sprintf(buf+len, " (off)");
}
len += sprintf(buf+len, "\n");

len += sprintf(buf+len, "Max Rx batch count : %d\n",

 result.max_rx_batch_count);
len += sprintf(buf+len, "Max Rx batch delay : %d\n",

 result.max_rx_batch_delay);
len += sprintf(buf+len, "Max Tx batch delay : %d\n",

 result.max_tx_batch_delay);
len += sprintf(buf+len, "Max Tx batch count : %d\n",

 result.max_tx_batch_count);

spin_unlock(&i2o_proc_lock);
return len;

}

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 72

10.5 Setting LAN OSM and DDM parameters

Some LAN OSM and DDM parameters can be read and set using the proc file system
(see also chapter 8.1.10.). The parameters that can be set using the proc file are located
in file entry /proc/i2o/<iop>/<tid>/settings (see Table 10.5).

Setting Definition Values
max_buckets_out Maximum number of buckets sent to DDM 1 –
bucket_thresh Send more buckets to DDM when this many

used
1 –

rx_copybreak Maximum size of received packet that is
copied to new socket buffer

1 – MTU

err_reporting Whether errors are sent to OSM or handled by
DDM

0 – DDM
1 – OSM

tx_batch_mode OSM batching 0 – off
1 – on
2 – automatic

rx_batch_mode HDM batching 0 – off
1 – on
2 – automatic

event_mask Event mask for receiving events from DDM 0x00000000 –
0xFFC00002

tx_timeout Timeout for softnet watchdog timer

Table 10.5 Settings for LAN OSM and DDM.

Reading the entry settings lists all parameter names, their current value, minimum and
maximum values, and the read/write mode. The OSM parameter values are located in
LAN device's private structure struct i2o_lan_local. DDM parameters are located
on the I/O platform, and they are read by querying the corresponding entry in the
parameter group.

New values to the above mentioned parameters are set by echoing the name and the
value to the file. For example setting the batch mode for sending packets on for the LAN
device with TID 0x008 is done as follows.

gin$ echo "tx_batch_mode:1" > /proc/i2o/iop0/0x008/settings

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 73

11 ERROR HANDLING

The IOP and its DDMs report from errors via the message replies. Each reply has a
status code (ReqStatus) and a detailed status code (DetailedStatusCode). The status
code may imply that the request was completed normally, the request was aborted (e.g.
because of timeout), there was an error in execution, or that the reply is just a progress
report.

Message replies and possible errors are handled by module reply handlers, and they may
decide how to handle the error. Handlers may
• simply discard the reply e.g. in case the requestor is not interested of the reply or

because there is already sufficient error control in upper levels (as e.g. in
networking),

• process the situation, e.g. by using Executive or Utility class messages, or

• pass the problem to the requesting function, which will handle the situation or report
upwards if needed.

If status code implies an error, the detailed status code may be inspected to get a more
exact descrip tion. There are detailed status codes among others for malformed messages,
invalid values, missing parameters, overflows etc. Values for DetailedStatusCode are
defined by the particular message class and message function. Reply status codes and
detailed status codes for Executive class, DDM class, Utility class, and TransactionError
replies are specified in Table 3-2 in the I2O Specification [2]. Detailed status codes for
the other OSMs are specified in the respective chapters in the I2O Specification [2].

If the request message was a multiple transaction request, the error reply is repeated for
each transaction that the target rejects.

When a request cannot be at all delivered to the target, a FaultNotification reply (see
Figure 3-7 in the I2O Specification [2]) is returned to the initiator of the failed request.
The reply details why the message could not be delivered, and contains also the original
request. When the Messenger can’t deliver reply to the initiator, there is no mechanism
to reply to it, so the failing module creates and sends an UtilReplyFaultNotify request
message (see Figure 6-18 in the I2O Specification [2]).

The Configuration Utility or the /proc file system can be used to query and adjust
various error and control parameters in device parameter groups, e.g. timeouts and
timeout policy, number of retries, recovery etc. Groups of generic parameters are
defined for all device class and each message class defines additional parameter groups.

UHEL.15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

 74

12 TESTING

The test specification is now available as a separate document titled HPGIN-TEST
HPGIN-Linux Test Specification.

