ESPRIT /HPCN

PROJECT 29737 - HPGIN
High Performance Gigabit 1,0 Networking Softwar e

Specification of the Softwar e Package D
HPGIN-Linux/ Task D1

University of Helsinki
Department of Computer Science

Date: 15.01.2001
Document-ld: UHEL.15.01.04-DR-D1

ESPRIT / HPCN

PROJECT 29737 - HPGIN
High Performance Gigabit 1,0 Networking Software

Specification of the Softwar e Package D
HPGIN-Linux / Task D1

Written by:

Organization:

Date:

Delivered by:

Organization:

Date:

Document -1d:

Auvo Hakkinen, Juha Sievanen
University of Helsinki, Department of Computer Science
15.01.2001

Frank Hohmann
SysKonnect GmbH
15.01.2001

UHEL.15.01.04-DR-D1

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

TABLE OF CONTENTS
1 INTRODUCTION ... e 1
11 Description of the deliVErable.........eccerece st 1
12 QL= T 1=) 1L T PPN 1
13 The Objectives Of the HPGIN-LINUX ..o sesesssssessssssesessssssssssssssessesssssssssens 3
14 Overview of the dOCUMENT ... 3
15 REFEIBNCES ...ttt s s 4
16 DEfiNItioN OF TEIMS ...t 4
17 CONVENTIONS......cooeeeeeeee ettt s e s 6
2 120 EXECUTION ENVIRONMENT ...oiiiiiiiieesee e 7
21 CommuNICation MOEN ... s 7
22 FIOW Of 1/0 OPEI GLIONS ..ottt bbb 8
3 DESIGNARCHITECTURE DESCRIPTIONocoiiieiieie e 10
31 (1S o LT T g T o] =TT 10
32 BaSIC REQUITEIMENTS......ooiceceeseceieiriresiseses et se st ss s et s e sn st essssssnsnssenssnsees 10
G 0t = o Lo | TP 10
3.2.2 150 SUDSYSLEIM ..ot sesessseesesssses e sesseessesesssssessssessesesssesessessssssesesssnssssesssnsessenssnssssenssnsessenes 11
3.2.3 SNAEA MEIMIONY ...oocerieieeeiteseet ettt e s eb e 11
2.4 SYSLEIM BUS.....ciiiieeeeere ettt ettt 11
B.2.5 AGAIESSSIZE ...ttt bbb bbb bbb 12
G2 G I =Y =Y o] o = OO UTPTTTPTTT 12
4 RESOURCE MANAGEMENT AND DATA STRUCTURES...........ccceeuen. 13
4.1 Configuration StAtUS BIOCKcoueiiiriciercree s 13
4.2 Hardware ResourCe Table (HIT) ... 13
4.3 Logical Configuration Table (LCL) ..ottt sens 14
4.4 SYSEEM TADIE (SYSTAD) wvvvvvvereereereeeeeseessessesssesseeesessssssesseseesesssssssssssssessesesssssssssseseesessessessssssssssesseeees 14
45 ATray Of 150 CONLIOIEES......cucicccesece e e a s s s s s naas 14

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

4.6 [P @ DI o =] O g =11 o TS 16

S5 THELINUX 120 SUBSYSTEMooiiiiiiireeeees e 17

6 PClI MODULE.. ... s 19

6.1 S = U] 10T ok AT OO 19

7 CORE MODULEcoi s 21

7.1 S U] 0] ox o TP 21

7.2 IMESSENQEN SEN VI CES ..vveieceetresisietessessssssssesssssessesssssesssssssssssssssssesessssssesssssssssssssssssesesssnssnsesssssssnsssnssnsass
7.2.1 MESSAGE QUEUES.......ceereeieeestse ettt sttt st st s ettt et
7.2.2 AAArESS TrANSBLION....c.oieeeeerieirieireeeree et s bbb bbbt
7.2.3 Sending 1,0 Messages
7.2.4 RECEIVING |20 MESSAGEScovirircrriaeirieeetieesieessi s sess s es bbb es e 26

7.3 EXECULIVE TUNCLIONS ...ttt sttt ntes 27
7.3.1 Executive class functionsimplemented in HPGIN -ProjeCtcoocveneenineienesrneeneee s 27
7.3.2 Executive class messages not implemented in HPGIN -PrOJECtcccveecenneceeseseeeeseesetenens 29

7.4 ULHEY FUNCLIONS ..ottt st bbbt betees
7.4.1 Utility class functionsimplemented in HPGIN...........ccccooeecvvencnnen,
7.4.2 Utility class messages not implemented in HPGIN-project

75 Debugging and Error Reporting fUNCLIONS........cooeeeevccressecee et ssessesns 34

8 OSSERVICE MODULES ...t 36

8.1 LAN O SM ittt ettt ess e es s s b et se £ ae AR bbbttt
8.1.1 Layer Structure for the NEIWOIKc.ceieeecce et
8.1.2 Linux Network Device Interface
8.1.3 SELUP FUNCLIONS......cieeeeeecceesecc sttt bt s st s s n s s e e s st s e s
8.1.4 FUNCtionsto SENd LAN ClaSS FEQUESES.......c.cvvrerieireriseeesereste st ssesssssssssssssssssssssssesssssssssssssssssessens 40
8.1.5 Functionsto handl@ repli€s........ccvvrerrenresrese s esesesseeens
8.1.6 Other LAN OSM functions.
8.1.7 Sending PacketS o the NEIWOIK ..ot
8.1.8 Preparing to receive packets from the network
8.1.9 Receiving packets from the NEIWOIK ..o
8.1.10 Setting LAN CONtrol PalraMELErS.........coniueeirreeerieeresernessssessesssesesseses s ssssssssesssssssenns

8.2 (@11 01 @ Y ST
8.2.1 Block Device Interface
8.2.2 Character Device Interface

9 CONFIGURATION INTERFACE ... e 52
9.1 Configur ation DIAIOGUE.........c.cuiuemireeirreerrierrees et ses s 52
9.2 1250 CONFIGUIALION AP ...ttt st b s bbb s s ae b s s nas 53

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

9.2.1 DEtermMiniNg ACHIVE TOPS ..ottt as bbbt s b s e s 54
9.2.2 Getting Hardware RESOUICE TahIE......cuouccueieecicrsece ettt n 54
9.2.3 Getting Logical Configuration Tl ..ot sesen 54

9.2.4 Getting Parameters
9.2.5 Setting Parameters
9.2.6 Configuration DialOg HTMLPAGES ...c.cuvrerereririeiriresieisssesssssssesssssssssssssssssessssssssssssssssssssssssssssssssesssnes 56
9.2.7 Software Management
O.2.8 EVENLS.....o ettt et

9.3.3 Configure
9.3.4 Download
LSRG TS T o] o o SRR
LS TR T = 0110 YTV
9.3.7 Vdidate....................

9.3.8 Common parts

10 INTERFACE TO THE PROC FILE SYSTEM ...cooooiiie e 66
10.1 The /proc/i20 fille NIErar ChY ... s 66
10.2 Interface to the LiNUX KEIMEL ...t ssesees 67

10.2.1 Functionstoread from @proC fil€ ... nrenas 67

10.2.2 FUNCtionsto Writ€ iNtO @ProC fil@ ...ttt nsnseens 67
10.3 Generating /proc/i20 dif €CLONY tr €€ ...ttt s s nsn s 68
104 Reading parameter group iNfOrMation ... ssesesssses 70
105 Setting LAN OSM and DDM Par GmMELErS.........cceeeeieemiiresinesessesessese s sessesessessssessssssssssessssesns 72
11 ERROR HANDLING ...ttt s 73
12 TESTING ...t sba e e sba e e s be e e sraeeans 74

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

LIST OF FIGURESAND TABLES

Figure 1.1 Split driver MOGEL.ooeiiiieeiee e 2
Figure 2.1. 120 eXeCution ENVIFONMENE.ceouereereeiereeseeeesee e eessreesseeeesseessesessseees 7
Figure 2.2 FIOW Of 1/O OPEIELIONS.coveieiiieriesiesieeeee et sre e 9
Figure4.1i 20_control lers[] table. ...ccoceeieiieeceee e 15
Figure 4.2 50 DEVICE ChaiN.......ccveeeiieiieiesieeie ettt ae e te e sneesse e 15
Figure 5.1. 120 SUBSYSIEM.oviiiiieeeeee e 17
Figure 7.1.i 20_handl ers[] table.ccovrieiieececeee e 26
Figure 8.1 The layer structure of the NEWOIK.coooveiiiiriree e 37
Figure 8.2. Data structures used by the LAN OSM........ccccoiiiiininenieeeeeseesenee 39
Figure 9.1. Configuration dialOQUE.ccceereeierieiieiesie et 53
Figure 10.1. 1,0 subtree in the proc file SyStem. ... 66
Table 7.1. Executive class messages not implemented in HPGIN-project. 30
Table 7.2. Utility class messages not implemented in HPGIN-project.c........... 33
Table 10.1 GENENIC IOP ENLIES.c.coiiireeiieesieeie ettt s e s sre e e 69
Table 10.2 GENENiC deVICE BNLIES.cocueieeieeee ettt 69
Table 10.3 GENEiC LAN ENLIES.coiuiiiiieieieeie ettt e 70
Table 10.4 LAN subtype SPeCifiC StaliStiCS.couvviieeiie e 70
Table 10.5 Settingsfor LAN OSM and DDM........cccocoeiieieceseece e 72

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

1 INTRODUCTION

1.1 Description of the deliverable

This document is the updated version (version 4) of the Specification of the Software
Package D. The previous ones were dated 09.03.1999, 01.10.1999 and 30.3.2000. The
document contains the description of those parts of the Linux 1,0 environment that was
implemented by the University of Helsinki in the HPGIN-project. The Block Class
OSM, SCSl Class OSM, event handling and the dynamic LCT update were out of the
scope of the HPGIN-project, but have been implemented by other developers. They are
not described in this document.

This document has been submitted in draft to all contractors and has been approved. The
contents of this document are applicable to the partners of the consortium of the
ESPRIT/HPCN project 29737, HPGIN. The report is addressed to the EC Project
Officer.

1.2 Intdligent I/O

Intelligent 1/0O (1,0) is an industrial standard for high-performance I/O subsystems. It is
defined and maintained by the 1,0 Specia Interest Group.

The 1,0 Specification [2] defines architecture for 1/0O that is independent of both the
specific device being controlled, and the host operating system. The specification makes
it easier to implement cross-platform 1/0, thus broadening availability and applicability
of reliable intelligent 1/0 devices.

1,0 defines an approach to 1/0 where low-level interrupts are offloaded from the CPU to
I/O processors specifically designed to handle 1/0. With support for message-passing
between multiple independent processors, the 1,0 architecture relieves the host of
interrupt-intensive 1/0 tasks. This improves greatly 1/0 performance in high-bandwidth
applications such as networked video, groupware, and client/server processing.

The 1,0 Specification [2] defines a split driver model (see Figure 1.1) for creating
drivers that are portable across multiple operating systems and host platforms.

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

The split 1,0 drivers are composed of two parts. the Operating System Service Module
(OSM), which resides on and interfaces to the host OS, and the Device Driver Module
(DDM), which resides on and interfaces with the adapter to be managed by the driver.

O5M
TTast latform

Messaging layer
rayuest N

reply Llaalware Lo

Messaging luyer

I O Plattorm
DDM

Hurdwure
Device(s)

Figure 1.1 Split driver model.
These modules interface with each other through a message-passing system based on
shared memory areas. The OS 1/O requests are converted in OSMs into specific bO
messages and are passed through the Messaging layers to the DDM. Requests are
dispatched to DDMs that process them. DDMs generate replies to be delivered back to
the originators of the requests.

Split driver model decreases significantly the number of drivers required. OS vendors
write a single 1,O-ready driver for each class of device — such as LAN adapter - and
device manufacturers write a single 1,O-ready driver for each device, which will work
for any OS that supports I,0.

The 1,0 modd can be applied in single-processor, multiprocessor and clustered-
processor systems, as well as desktop, communications, and rea-time system
environments.

1,0 is the basis for driver standardization, system performance enhancement, resource
sharing, clustering, and distributed heterogeneous systems. It will be supported by the
Standard Network Operating Systems as well as by specific Real Time Operating

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

Systems. It is expected that 1,0 will change the design of 1/0O subsystems dramatically
within the coming years.

1.3 TheObjectives of the HPGIN-Linux

The HPGIN project is amed to develop O communication layer software for high
performance network devices, supporting version 1.5 of the 1,0 Specification [2].
Results to be achieved within the scope of the HPGIN -project include

implementation of 1,0 communication layers for gigabit LAN /O subsystems,

implementation of appropriate OS specific 1O communication layers for a Standard
Network Operating System (Linux) and

implementation of appropriate OS specific bO communication layers for a high
performance Real Time Operating System (Virtuoso).

The objective of the HPGIN-Linux inside this project is to implement the common parts
of the 1,0 execution environment into Linux operating system. This includes the
implementation of the 1,0 message passing layer and 1,0 resource management, which
establish the base for the adapter class dependent OSMs.

The implementation of an OS Service Module for the LAN adapter class is also within
the scope of the project. The functionality of the implemented LO support can be
verified by combining an bO supporting Linux system with an bO aware network
interface (e.g. a hardware platform running the embedded software package developed
within the project).

Both the HPGIN-project and its objectives are described in detail in the HPGIN Project
Programme[1].

1.4 Overview of the document

Section 2 describes briefly the O communication model and illustrates flow of the I/0
operations in the 1,0 execution environment. The basic requirements for Intelligent [/O
are listed in section 3. Section 4 deals with resource management and its basic data
structures. The design of the Linux 1,0 subsystem is introduced in section 5, and the 1,0
modules (Pci, Core, OSMs) are explained in sections 6, 7 and 7.4.2. Configuration
interface, which implements a controlled mechanism for a human operator is described
in section 9. Its counterpart, configuration information via proc file system, is described
in section 10. Error handling is discussed in section 11. The previous version of this
document contained aso a section explaining testing. It has now been moved into a
Separate document titled Test Specification Plan.

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

Since the shell interface (the host OS / IOP API) is described precisely in the 1,0
Soecification [2], alot of references back to it is used. Y ou should have the specification
on hands when you are reading this document.

1.5 References

This specification refers to the following documents

[1] EP 29737 — ESPRIT/HPGIN Cost Reimbursement Contract, Annex | — Project
Programme, September 1998.

[2] 1,0 Specid Interest Group: Intelligent 1/0 (1,0) Architecture Specification Version
1.5, March 1997.

[3] Beck, Bohme, Dziadzka, Kunitz, Magnus, Verworner: Linux Kernel Internals.
2" ed., AddisonWesley, 1998.

[4] 1,0 Specid Interest Group: Intelligent 1/0 (1,0) Shell Up (OSM) Compliance Test
Secification Version 1.5, August 1998.

[5] PCI Specid Interest Group. PCl Local Bus Specification, Rev. 2.1, June 1995.

[6] University of Helsinki, EP 29737 — ESPRIT/HPGIN, Task E1. HPGIN-TEST
HPGIN-Linux Test Specification. September 1999.

1.6 Definition of Terms

This specification uses the following terms

Glossary entry Entry definition

DDM - device driver module DDMs are the lowest level in the LO architecture, and are
directly responsible for control and data transfer of the
hardware device, such as a network connection and storage
device

Hrt — hardware resource table A list of adapters and their configuration information,
including the identity of the controlling DDM. HRT tells the
Host of any adapters the IOP controls, and thus that the Host
should not touch, as well as adapters the |OP can control.

Host Host is composed of one or more application processors and
their associated resources. Host execute a single
homogenous OS and is dedicated to process applications.
The Host is responsible for configuring and initializing the
|OP into the system.

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

1,0 —intelligent input/output device
driver model

An open, standards-based split driver 1/0O model which
provides device driver portability across multiple OSs,
processor and bus technology independence, and support for
intelligent, message passing 1/0 subsystems.

Inbound queue

A message queue of a particular 1/O platform that receives
messages from Host or from another 10P.

IOP - 1/O platform

A platform consisting of a processor, memory, 1/O, adapters
and 1/O devices. They are managed independently from
other processors within the system.

IRTOS- 1,0 Real-Time OS

A specia purpose real-time OS for the IOP to support high-
speed, low-overhead |/O operations.

Lct—logical configuration table

A list of logical devices whose service is abstracted by the
IOP (through a DDM). The Host and other IOPs query this
table about available resources.

MFA — message frame address

The address of an 1,0 message buffer residing on Inbound
queue or in Outbound queue.

Message layer

The message layer provides the communication and queuing
model between service modules. The messages passed are in
OS-neutral format.

M essenger

The messaging layer running on a particular platform,
initializing, configuring, and operating its client modules.
Each processor or SMP group has a single Messenger. Each
IOP has a Messenger.

OSM - operating system service
module

A driver module that provides the interface between the Host
OS and the 1,0 Message Layer. It represents the portion of
the driver that forwards Host OS requests to a DDM for
processing.

Outbound queue

A message queue for a specific IOP for posting messages to
thelocal host, in lieu of the Host's Inbound queue.

PCI - peripheral component
interconnect

An industry standard for a high-performance expansion bus.
PCI supports bus concurrency, auto-configuration and
multiple bus masters.

PDB - packet description block

LAN DDM describes each bucket it consumes, the bucket's
order, and the location and length of each packet in the
bucket, by building a PDB. Is part of a LanReceivePost

reply.

SGL - scatter-gather list

A structured list of memory addresses that specifies data
buffers and their respective lengths.

SMP — symmetric multi processing

A multiprocessor environment where all processors share the
same main memory and the same /O subsystem.

SysTab - system configuration table

A table build by the Host that informs the /O platform of the
existence and addresses of other |OPs.

TID —targetid

Logical address of a service registered with the message
layer. The target ID is the address the message layer uses to
deliver requests to a service module.

TRL —transaction reply list

A structured list of replies to 1,0 messages containing
transaction contexts and transaction details.

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

1.7 Conventions

The conventions used in this document are presented below.

Text Description Example

italics Reference to document 1,0 Soecification

Bold Italics 1,0 message names ExecStatusGet

Couri er Function names, field of a i2o_lan_receive_post(),
message I nitiatorContext

The basic principle of naming the functions is presented below. In some cases one or
more parts may be omitted.

result i2o_{class}_{verb} {noun}(Paraneters)

class is the 1,0 base class of the object

verb is the function to perform on that object

noun is the abbreviation for the name of the object
Example:

int i20_lan_register_device(struct i2o_device *i20_dev)

I an identifies the base class of the message
register describes the operation
devi ce identifies the target of the operation

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

2 1,0 EXECUTION ENVIRONMENT

This section gives an introduction to the basics of the LO execution environment and
describes the flow of the I/O operations. This description focuses only to the host OS's
view of the system. For a more detailed description refer to the 1,O Specification [2].

2.1 Communication model

The system execution environment is outlined in Figure 2.1.

Application
TTost 05
TTI_}}I T]I’iVL‘.I' TI'I|,E'I'|-<'|LZt,'.
~
0 [
Object
) G _
Repusilory L 05 Serviee Modole |
guralion - f_
< | Manage- < Messigre services ‘
el V
Trunspor! servicies

Mcﬁﬁt'i{cﬁ\ L
Hardware Bus Tepulogy A

Triwriporl services

Kemel Message services j[

Services 0

—m -

-

Device Driver Module

0
s
;;_
LI:

Figure 2.1. 1,0 execution environment.

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

The host OS provides a number of OSMs and the communication service (so called
Messenger). In addition to the message transport function, the OS provides

Executive functions that initialize and maintain the 1,0 system.
System resource management that configures and maintains 1,0 system.

Configuration functions that provide the user interface, file system access, and
configuration dialogue with an IOP and its DDMs. These functions enable installing
and configuring 10Ps and their DDMs.

The communication model used by the I,O architecture is a message-passing protocol.
The communication service provides message transport service br OSMs and DDMs.
Each message contains a header and a payload. Message header format is constant for all
messages and provides the return address to the originator. The format for the payload
varies between messages and is established by the function type value in the header.

Each device is avirtual interface for a particular class of 1/0 messages. A TID (target id)
identifies a device and, thus, an instance of a device class specific interface. The IOP
administers TIDs when a device is first created, ard the TID acts as the local address of
the device. Responses are addressed to the initiator of the request.

In addition, the OS provides ability to install OSMs produced by third-party vendors.
The OSM interface provides the ability to query the Messenger for the list of 10Ps and
their registered devices (i.e., logica configuration table information) and the ability to
send request and receive replies.

2.2 Flow of 1/0O operations

Figure 2.2 illustrates the flow of the I/O operatiors in 1,0 execution environment. The
following text describes the events (the numbers corresponds to the stepsin

Figure 2.2).

1. Thehost OSissues an I/O request.

2. The OSM accepts the request, reads a message frame address (MFA) from the IOP
inbound queue and trandates the request into an 1,0 message addressed to a DDM.
The I nitiatorContext field is set to indicate the message handler for the reply.
The OSM has the option to place a pointer to the OS I/O request in the message's
Transact i onCont ext field.

3. The host's Messenger queues the message by writing the MFA to 1OP's inbound
queue.

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

Linux
R
[irux
Specific
Driver
Masseneer | | | | VO Reply | |
r—f B
(==
— ;—_j :
Messengar | | [0 Request | | |—| T O Reply |—|
’) ’_T f
— =
Mpecitic
Driver 4 e

Figure 2.2 Flow of 1/O operations.

4. The IOP's Messenger reads the MFA from the inbound queue, and posts the message
to the DDM's event queue.

5. The DDM processes the request.

6. The DDM builds a reply, copies the I ni ti at or Cont ext and Tr ansact i onCont ext
fields from the request to the reply, addresses the reply to the Initiator, and finally
invokes the IOP's Messenger.

7. The 10Ps Messenger queues the reply by copying it into an outbound queue
message frame residing at the host's Messenger.

8. The IOP alerts the host's Messenger via an interrupt. The control is moved to
interrupt handler. The host's Messenger reads the reply from the 10OP's outbound
queue, copiesit into alocal buffer, and frees the message frame by writing the MFA
to the IOP's outbound queue.

9. The host's Messenger inspects message's | niti at or Cont ext field and invokes the
OSM's message handler with the reply.

10. The OSM retrieves the pointer to the OS's 1I/O request from the message's
Transact i onCont ext field to establish the original request context and completes
the 1/0 request.

11. The Driver returns the request to the OS.

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

3 DESIGN ARCHITECTURE DESCRIPTION

This section describes the design principles of the Linux 1,0 environment, and the basic
requirements for the host/I OP message passing.

3.1 Design Principles

The main target architecture in this project is Intel x86. It is the most common
environment for Linux, and the Linux environment of the Department of Computer
Science at University of Helsinki is composed solely of Intel x86 based Linux machines.
The portability issues will be considered, although we are not able to test on all Linux
platforms (like Alpha, MIPS, Sparc, M68000, and PowerPC). A lot of the portability
issues are aready handled in Linux kernel at the source level. Internal data structures
can be tallored at the source level to match the hardware requirements as closely as
necessary. The compiler is aso free to optimize away operations not needed on a
specific architecture.

The implementation is started on Linux version 2.2. The later modifications to the Linux
kernel will be tracked during the project.

The SMP (Symmetric Multi Processing) needs also to be considered. This means that
the critical data structures must be locked when they are processed.

Linux is based on monaolithic kernel, and the base of the implementation may be
compiled straight into the kernel. The 1,0 adapter class dependant modules (OSMs) will
be programmed as separate dynamically loadable modules. Therefore only those OSMs
needed in a specific environment need to be loaded to memory.

3.2 Basic Requirements

The following subsections list the basic requirements for the host platform and for the
I/O platform. Most of the cases listed (e.g. booting, shared memory and cache) are
implemented completely on the hardware level (or firmware level) and don't need any
attention from the OS level. Some of the cases have to be considered on the software
level, e.q. address size and byte order, locations and usage of the message queues.

3.2.1 Boot

In asystem with [,0 compliant OS, the BIOS (or its extensions) does not need to be 1,0
aware unless it boots the OS from an 1,0 device. However, BIOS that is LO aware

10

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

allows an OS that is not 1,0 aware to access an 1,0 device. In this instance the BIOS (or
its extensions) must abstract the 1,0 subsystem to the OS and provide 1,0 functionality
viaits norma BIOS function cals.

3.2.2 1,0 Subsystem

A hardware, or a system vendor supplying an 1,O adapter (e.g. an intelligent adapter
card providing both the IOP and embedded controllers), without supporting third party
DDMs, must adhere to the requirements for the shell interface (chapter 4) and the
message requirements in chapters 3 and 6 of the 1,0 Specification [2]. Although the
device need not implement the core interface (chapter 5) it must function externally as if
it does. When responding to an installation or load request for a DDM, the IOP can
reject the request, reporting function not supported.

A vendor supplying an 1,0 subsystem (e.g. an IOP on the motherboard) that can support
third party DDMs must aso adhere to the core interface (chapter 5 of the 1,0
Soecification [2]). Features that differentiate between designs include the amount of
nonvolatile memory for storing third party DDMs, as well as the physical expansion
bus capability.

3.2.3 Shared Memory

1,0 message passing is based on shared memory. 1OPs must have access to shared
system memory for the hardware level queuing model. Each |OP must provide its own
units for recelving messages from the host and other 10Ps and for queuing messages to
the host. At a minimum, a region of memory accessible via system bus contains the
inbound message frames where the host and the |OPs deposit their messages.

Memory alocated as shared system memory must be cache coherent. That is, it should
not be cached unless the processor and memory controller support cache-coherent
protocols. Efficiet memory coherency support is required if shared memory writes
involve a write-to-cache, versus a writethrough or copy-back. If so, an efficient
mechanism to flush modified cache lines must be provided.

3.2.4 System Bus

Because PCI is the predominant bus in new server designs, the version 1.5 of the 1,0
Soecification [2] focuses on current PCl bus specification, and describes functional
interfaces based only on the current PCI bus specification (refer to PCI Specification [5]
for details). This does not preclude other bus types, but defining extensions for other bus
types is left out until support comes necessary. The possible new coming bus types will
be prepared in the design of the Linux 1,0 implementation.

11

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

The host identifies and locates an 10P by its PCl dass code. The class code has three
fields: base class, subclass, and programming interface. Locations of the inbound and the
outbound queue are specified by the programming interface. The data passed through
the queues are either free message frames or psted messages. Queues are accessed
through two port locations in the PCI address space. The inbound queue port is at
memory offset 0x40, and the outbound queue is at memory offset 0x44 in the PCI
address space.

3.25 Addresssize

Three domains affect address size: the OS, the 1/0 subsystem, and the IOP. The version
1.5 of the 1,0 Specification [2] specifies operation for 32-bit IOP physical addressing,
32-bit 1/O subsystem operation, and both 32-bit and 64-bit OS operation. The OS
address size relates to the size of the MessageCont ext fields. The MessageVersi on
field in the message header supports future capabilities, such as 64-bit physical
addressing. Critical messages for initializing the |OP are address-size generic, alowing
the OS to appropriately instate the |OP into the system.

3.2.6 Byteorder

The verson 1.5 of the 1,0 Specification [2] discusses operation for little endian
addressing only. The MessageVersi on field supports future capabilities, such as big
endian messages.

12

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

4 RESOURCE MANAGEMENT AND DATA STRUCTURES

The 1,0 resource management is distributed among distinct IOPs. Each 1OP has its own
Configuration Status Block, Hardware Resource Table (Hrt) and Logical Configuration
Table (Lct). During the initialization the host reads the configuration status block and
the Hrt from each 0P, and builds a global System Table (SysTab). The SysTab is posted
to each 10P, so they get information about other IOPs and their devices in the system.
Based on the information given in the SysTab, each 0P creates its local Lct.

Any Messenger can query from any 10P its Lct to find out which services are available
and how to use them. To each service is assigned a Target Id (TID), which are unique
inside one IOP. All communication is performed using a TID, which is carried in each
message as an initiator or atarget.

This section lists the basic ideas of these tables, refer to 1,0 Specification [2] for more
detailed information, e.g. for the detailed structure of the table entries.

4.1 Configuration Status Block

The host gets IOP s configuration status by sending the ExecStatusGet message. There
is no reply to this message, but the IOP writes its status block directly to the buffer
specified by the host. Thus, it is possible to send this message before the |OP s outbound
queue is initiadized or the IOP's state is known. The status block describes the
capabilities and the parameters of the IOP. These include among others the identity of
the 10P, locations of the private memory, the size and the number of the inbound
message frames, as well as the number of outbound message frames.

The Configuration Status Block is defined in figure 4-38 in the 1,0 Specification [2].

4.2 Hardware Resource Table (Hrt)

The hardware resource table (Hrt) is a list of devices and their configuration
information, including the identity of the controlling DDM. Each IOP builds its own Hrt
during the boot (based on the permanent configuration). The host or another |OP obtains
acopy of the IOP s Hrt by sending the ExecHrtGet message. Hrt tells the host and other
IOPs of any devices controlled by the IOP. In genera, the Hrt lists all devices and
locations that the |OP controls or can control.

13

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

Hrt and its entries are defined in figures 4-19 and 4-20 in the 1,0 Specification [2].

4.3 Logical Configuration Table (Lct)

The logica configuration table (Lct) is a list of logica devices whose service is
abstracted through a DDM by the IOP. The host and other 1OPs query this table about
available resources by sending the ExecLCTNotify request. DDMs may send this
message to the local |OP to determine when configuration is compl ete.

When the DDM registers a device, it provides the configuration information for the Lct
entry. Each entry in the IOP's Lct contains Cl assl d and SubCl assl nfo. Cl assl d isthe
1,0 message class of the registered device. The structure of SubCl assl nf o IS defined
by each class and identifies the major capabilities of the device. The OSM uses this
information when it determines which devices to query.

Lct and its entries are defined in figures 4-27 and 3-36 in the 1,0 Specification [2].

4.4 System Table (SysT ab)

The System Table (SysTab) describes the system as a set of IOPs and their message
attributes. SysTab informs an IOP of the existence and addresses of other I0Ps. Once
the host finishes initializing IOPs (i.e. has read the configuration status and Hrt from
each 1OP), it builds the SysTab and sends it to each IOP in an ExecSysTabSet request.
This message gives each OP the identity (location) of the other 10Ps in the system, as
well as declarations of memory and 1/O for private space. The private memory and 1/0O
space declarations lets the IOP hide devices from the system and bring devices ontline
after the system is configured.

SysTab and its entries are defined in figures 4-46 and 4-47 in the 1,0 Specification [2].

4.5 Array of 1,0 Controllers

In Linux IOPs configuration information is saved into the i 2o_control | ers[] table
(see Figure 4.1). Each entry in thistable is apointer tostruct i2o0_controller, which
describes one |OP and collects the previous tables (status block, Hrt, Lct). Devices
controlled by one I0OP are linked in a separate list pointed by the devi ces field in the
|OP sentry.

14

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

Sths block
1L Ly
lepsla
/ -ZnVaesion
Privit:Mem
2o controdler Fremon 7
status]
hrt -
let g\’ HriHcader HrikEnlry Hri.EnLy
devices HrtVersion Adupte Ty
post_port Fnreyl.cngth Cancrolling 11}
reply port Numherknerizs AcaplerSlale .
- - TusNwmbe:
Bus I'ype
Physiee Locahnn
1.elHeader Lct Entry I ¢t Entry
| ctVer Lucal TTT
Boath evice TablshntrySize
Tableyize Cluzs]D 000
i2o0_controllers[] TenT e, SubtTussTlo
o LaetTID
i20 deviee chain
Figure4.1i 2o_control l ers[] table.
i2n conroler m\im_device
5 controller i20_handler
/ let_data *reply
devices g tid name
vluss_id context
faien class
owner w1 *j20_handler i20 handler

managers p———p

+—» | next

Figure 4.2 1,0 Device Chain.

u|||—-|

15

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

4.6 1,0 Device Chain

The devices controlled by each IOP are linked in a list pointed by the devi ces field in
the IOP’'s struct i2o_controller (See Figure 4.2). Each i 20_devi ce has aso alink
back to the controlling IOP and to Logical Table Entry associated to this device.

Users claiming the device are registered into struct i 20_devi ce. The device has only
one primary user wner), but it may have multiple management users (rmnagers).
Generally management agents do not claim devices unless they desire to change
parameters (for details refer to section 6.1.3.2 in the 1,0 Specification [2]).

The struct 2o _device is adso linked to the conventional Linux Driver API. For
network devices this is done via a pointer on the private area in the network driver API
(dev->pri v->i 20_dev). For block devices this is done through an auxiliary table by
indexing with the respective unit number (2ob_dev[uni t]->i 20_dev). For character
devices this can be done respectively.

16

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

5 THE LINUX 1,0 SUBSYSTEM

The Linux 1,0 subsystem consists of several modules, which are described in detail in
next sections. By module we mean here loadable Linux kernel module, although the 1,0
modules can be also completely compiled into the kernel. L oadable modules that belong
to the Linux 1,0 host environment are illustrated in Figure 5.1.

> Application level
2
l.inux kernel [Cheomiipuration
APl
Drevice driver Proe filesystem
incerface interface
K v ‘
| — '_ —
08 Serviee Conliy Pruc
Madule | Modul Maoadnle
A A
I"¢i
Muwluli:

\ s

\ x
} Thility Lxeculive =
Seom fartio —— E
. . nntinns . N =
fymetiuns functions =
\ 4 Y <
- 5
MCHH 4] gCl’ ZSCTVICCH .

AN 08 Plutlorm

Underlyig systent bus

Messenger services

17C Platlomm

Figure5.1. 1,0 subsystem.

Pci module (i 20_pci) contains the PCI bus specific part of the initialization.

Core module (i 20_cor e) implements the common parts of the host 1O environment. It
includes functions to initialize and set up the system, Messenger services to serd and

17

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

receive 1,0 messages, and Executive and Utility class functions to maintain
configuration and resource management information.

OS Service Modules implement device class specific parts of the 1,0 split driver model.
In this project, only LAN class OSM (i 20_I an) is implemented. Block Storage OSM,
Tape Storage OSM, SCSI OSM, and Bus Adapter OSM are out of the scope of this
project.

Configuration module (2o_confi g) implements the configuration APl to install and
configure 10Ps and their DDMs. The Configuration Utility is the user level application
to usethisAPI.

Proc module (i 20_pr oc) implements the Linux proc file system interface to list and to
st 1,0 configuration information.

All these modules use Messenger services to send LO messages. Each module has to
implement at least one handler for the replies and register that for the Messenger. The
registering returns a unigue context number, which is used in the 1 ni ti at or Cont ext
field in messages. When the reply arrives, the Messenger dispatches the reply to the
right handler according to the contents of the I ni ti at or Cont ext field. Currently only
the lowest 7 bits are used for the context, the highest bits can be used for module
specific purposes e.g. LAN OSM puts aso device unit number into | ni ti at or Cont ext .

The current device driver interface to Linux OS is preserved. The names and arguments
to device methods are kept unchanged, so that all existing nort1,0 drivers will work as
well.

Following sections describe the Linux 1,0 subsystem in more details.

18

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

6 PCI MODULE

Pci module (20_pci) contains bus specific functions to find LO capable controllers
(IOPs) on the PCI bus. Linux creates at boot time a global pci _devi ces list from the
adapters on the bus. 1,0 class devices (IOPs) are picked from thislist and anew st ruct
control ler entry is added to the i 20_control l ers[] table (see section 4.5) for each
1,0 capable controller. Rests of the functions needed during the setup, i.e. functions that
are not dependent of the underlying bus, are located in the Core module.

PCI bus is currently the only bus supported by the 1,0 Specification [2]. Later, if the
specification supports aso other buses, this module should be updated or a new module
should be implemented.

6.1 Setup functions

int init_nodul e(void) / void cleanup_nodul e(void)
These dummy functions are called by module initialization and by module cleanup.
void __init i2o_pci_init(void)

This function calls i 20_pci _scan() during the initidization if the code is
compiled into the kernel (instead of using as a module). Otherwise not used.

int __init i2o0_pci_scan(void)

This function scans kernels global struct pci_dev list to find 1,0 class
controllers from the PCI bus and to install them into Linux environment.

int i20_pci_core_attach(struct i2o_core_func_table *table)

If i20 pci module is used as a loadable module, this function cals
i 20_pci _init(), and attaches i20 pci module to i20 core module, so that
i20_core module is dependent of i20_pci module, not the other way round.

void i20_pci_core_detach(void)

This function detaches the i20_pci module from i20_core module.

19

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

static int i2o0_pci_bind(struct i2o_controller *iop
struct i2o_device i20_dev)

This function is currently just a placeholder (dummy) for the bus specific handling
on 1,0 initialization.

static int i2o_pci_unbind(struct i2o_controller *iop
struct i2o_device *i20_dev)

This function is currently just a placeholder (dummy) for bus specific handling on
1,0 shutdown.

static void i20_pci_enabl e(struct i2o_controller *iop)

This function enables PCI bus by clearing the PCI IRQ mask register and enables
PCI bus.

static void i20_pci_disable(struct i2o0_controller *iop)

This function disables PCI bus by setting PCI IRQ mask register to OxFFFFFFFF.

static i2o_pci_dispose(struct i2o_controller *iop)

This function frees the IRQ and unmaps the shared memory from the system
memory.

int __init i2o0_pci_install(struct pci_dev *dev)

This function creates and fills an i 2o0_control | er entry for the I0OP, maps
shared memory area into system memory and request an IRQ for the IOP. This
function calls i 20_instal | _controller() (in i20_core module) to install i20
class devices.

static void i20_pci_interrupt(int irqg, void *dev_id, struct pt_regs *r)

Thisis the interrupt handler routine called by the Linux kernel. The identity of the
interrupting device is passed in (struct i2o_controller *)dev_id. Other

parameters are unused. This function calls Messengers dispatcher function
i 20_run_queue().

20

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

7 CORE MODULE

Core module (i 20_cor e) contains functions needed to setup, initialize and shutdown the
[,O environment, functions for message passing (Messenger), Executive and Utility
class functions and functions for debugging.

The host has to adhere to the requirements specified in chapters 4 (1,0 Shdl Interface
Specification) and chapter 3 (Basic Requirements) of the 1,0 Specification [2]. This
means support for the complete set of Executive class messages (chapter 4.4) and Utility
class messages (chapter 6.1).

7.1 Setup functions

Setup functions are used to bring the I,0 system into operational state, and to shut down
the system. These includes functions to

add / remove [,0 controller tothei 2o0_control | ers[] table,

add / remove 1,0 device to 1,0 device chain pointed from st ruct i 2o0_control | er
and

initialize all |OPs found.

The 1,0 initialization sequence isillustrated in chapter 4.5.1 in the 1,0 Specification [2].
The initialization consists of two phases. first, the Status Block and the Hardware
Resource table (Hrt) of each IOP are read, and the outbound queues of each IOP are
initialized. In the second phase, the host creates a global System Table (SysTab) from all
the status blocks and Hrts, and sends it to each 1OP. Then the host reads the Logical
Configuration Table (Lct) from each 10P and finishes the initialization. After that all
|OPs arein OPERATIONAL state.

The 1,0 messages used by the following functions are described in chapter 7.3
Executive functions.

int init_nodul e(void)

This function is called if i20_core is compiled as a loadable module. This function
registers a handler for the replies processed in 120_core module, attaches i20_pci
module to i20 core module and dstarts the system initidization by calling
i20_sys init(). ReturnsO.

21

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

int __init i20_init(void)

This function is called if i20_core is compiled to kernel. This function registers a
handler for the replies to be processed in 120 _core module, starts the system
initialization by calling i20_sys init() and calls initialization routines in other ,O
modules. Returns 0.

static void __init i20_sys_init(void)

This function runs the initialization sequence described in figure 456 in the 1,0
Soecification [2]. All 10Ps outbound queues are initialized, their Hardware
resource tables are read, System Table is created and posted to al 10Ps, Logical
configuration tables are read and all |OPs are enabled. When this function finishes,
IOPs arein OPERATIONAL state.

voi d cl eanup_nodul e(voi d)

This function is called if i20_core is compiled as aloadable module. This function
calls i20 _sys shutdown() to shut the bO subsystem, detaches i20 pci module
from i20_core module and removes the reply handler.

static void i20_sys_shutdown(voi d)

This function deletes IOPs from the i20_controller chain. That will reset al 10P's
into RESET state.

int i2o0_install_device(struct i2o0_controller *iop
struct i2o_device *i20_dev)

Thisfunction adds adevice *i 20_dev into thei op- >devi ces chain. ReturnsO.
int i20_delete_device(struct i2o_device *i20_dev)

This function removes device *i 2o0_dev from the i op- >devi ces list. Returns 0
(succeed), -EBUSY (the device is on use) or —&I NVAL (device not found in the list).

22

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

nt i2o_install _controller(struct i2o_controller *iop)

This function adds a new i20_controller structure *i op t0 i 20_control |l ers[]
table. The global counter i 20_num control | er s isincreased. Returns O (succeed)
or —EBUSY (no space left in the table).

int i20_delete_controller(struct i2o_controller *iop)

This function deletes all devices from the i op- >devi ces list, resets the *i op and

removes the entry from the i 20_control | ers[] table. The globa counter
i 20_num control | ers is decreased. Returns O (succeed), -EBUSY (the *i op ison

use, the device is on use) or —ENCENT (*i op not found).

struct i2o_controller *i2o0_find_controller(int n)

This function gets an iop number n and returns a pointer to the corresponding
i20_controller structure. Thei op- >user s counter in the i20_controller structure is
increased. Returns NULL, if there is no corresponding entry.

void i20_unlock _controller(struct i2o0_controller *iop)

This function decrements the i op- >user s counter in thei2o_controller structure.

int i20_activate_controller(struct i2o_controller *iop)

This function brings IOP into HOLD state, i.e. reads the status, initializes the
outbound queue and reads the Hardware resource table. Returns O (succeed) or —1.

int i20_online_controller(struct i2o_controller *iop)

This function brings IOP from HOLD state to OPERATIONAL state, i.e. sends
System table to all 10Ps, enables them and reads their Logical configuration
tables. Returns O (succeed) or —1.

23

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

7.2 Messenger services

Messenger implements the functionality needed for message passing. Messenger deals
with message queues, 10Ps interrupts and address trandlations. The basic task is to
dispatch messages from the IOPs” outbound queue to the registered message handlers.

7.2.1 Message Queues

The 1,0 messaging layer delivers 1/0O transaction messages (request and replies) from
one software module to another, anywhere in the O domain. The physical portion of
the interface specifies a single queuing model for shared memory architectures. This
gueuing technique for transferring messages uses

One inbound queue for each IOP. The inbound queue of a platform receives
messages from all other platforms, including the host.

One outbound queue for each 10P. The outbound queue of all 1OPs collectively
functions as the inbound queue for the host. This allows each 10P to provide
hardware support for efficiently passing messages without requiring additional host
hardware.

Each Messenger is running on a single platform: there is one instance per processor or
Symmetric Multi Processor group. Each Messenger communicates by placing 1,0
messages in the target’s inbound queue. The data passed through the queues are either
free messages or posted messages.

Queues are accessed through two port locations in the PCI address space (the current 1,0
Specification focuses only on PCI bus). The inbound queue port is at memory offset
0x40, and the outbound queue port is at memory offset 0x44 in the PCl address space of
each 10P. Both queues consist of two FIFOs: Free List FIFO and Post_List FIFO.
When the host reads from the I0P's inbound queue port, it gets a free message frame to
fill, and when it writes to the IOP’ s inbound queue port, it gets the frame delivered to the
IOP. Similarly, when the host reads from the IOP's outbound port, it gets a message
(reply) from the IOP. The message frame is released when the host writes the message
frame address (MFA) to the IOP's outbound queue. If the queue is empty, address
OxFFFFFFFF is returned.

IOP initiaizes its inbound queue during the boot. The host initializes I0OP's outbound
gueue by allocating free message frames and writing their addresses into the IOP's
outbound queue.

24

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

7.2.2 Address Translation

The implementation of the message queues is based on physically shared memory. I0OP
and its DDMs use system addresses to refer to a shared memory location when
communicating with the host or other 10Ps. A trandation mechanism is needed to
convert host’s local memory address references (virtual addresses) to a system address
references (physical addresses), and vice versa. The difference between the systemand
the local address is a constant for all shared memory, so the trandation is easy.

In Linux address trandations are done by functions

inline unsigned long virt_to _bus(volatile void * address)
inline void * bus_to_virt(unsigned | ong address)

7.2.3 Sending 1,0 M essages

To send a message (120 request), the host reads a free message frame from the target
IOP's inbound queue, fills the O message header and the message payload with lL,O
gpecific data, and finally writes the address of the frame (MFA) to the trget IOP's
inbound queue. Messenger functions for these purposes are i 2o_post _nessage(),
i 20_post _this() and i 20 _post_wait().

inline void i20_post_nessage(struct i2o_controller *iop, u32 addr)

This function writes the message frame address addr into the i op’s inbound
queue.

int *i20_post_this(struct i2o0_controller *iop, u32 *data, int |en)

This function reserves an inbound gqueue message frame from the *i op, copies
the message pointed by *dat a into it and posts the message. Returns O (succeed)
or -ETI MEDOUT (inbound free queue empty)

int *i20_post_wait(struct i2o0_controller *iop, u32 *nmsg, int |len
int timeout)

This function calls i 20_post _t hi s() to send an |0 request *nmsg to *i op. The
sending process is put into wait queue maximum for t i neout secondsto wait for a
reply. Returns 120 POST_WAIT_OK (success), -ETIMEDOUT (timeout) or
-DetailedStatus (RegStatus! =SUCCESS) .

25

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

static void i 20 _post_wait_conpl ete(u32 context, int status)

When the reply for the request posted in i20_post wait() arrives, this function
copies the reply st at us into the wait queue structure and wakes up the waiting
Pprocess.

7.2.4 Receiving 1,0 M essages

Before modules start to send L,O requests, they have to register at least one call back
function as a handler for the incoming replies. The data structure for a handler contains a
pointer to the function to be called when an LO interrupt is generated (see Figure 7.1).
Registered handlers are collected into i 20_handl ers[] table. The dispatching via this
table is based on the unique cont ext number (i.e. the array index), which is delivered to
IOP in the LO requests’ InitiatorContext field (last 16 bits). The IOP copies the
I nitiatorContext field unchanged into the reply, where from the interrupt handler is
ableto find it.

context -~
\ i20_handler
*reply()
name
i20_handlerd[] context
class

Figure7.1.i 20_handl ers[] table.

Functions to register and remove reply handlers are i 20_i nstal | _handl er () and
i 20_renove_handl er (). Functions that process replies written to 10P's outbound
gqueue arei 2o_run_queue() andi 2o_fl ush_repl y().

int i2o0_install_handler(struct i2o_handler *h)

This function adds a handler structure *h into the i 2o0_handl ers[] table. The
struct handl er contains the address of the callback function to be run when
thereply arrives, and a context number h- >cont ext (Same as the index of the new
entry) to be used as an identification part of the I niti at or Cont ext field in the
1,0 requests (last 16 bits). Returns h- >cont ext (succeed) or —ENOSPC (no space
left in the table).

26

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

int i20_renmove_handl er(struct i2o0_handler *h)

This function sets h- >cont ext to —1, and removes handler structure *h from the
i 20_handl er s[] table. Returns 0.

static void i20_run_queue(struct i2o_controller *iop)

This interrupt service routine reads replies from the IOP' s outbound gqueue and
runs the correct OSM’ s handler, until the outbound queue is empty. The identity of
the interrupting 10P is passed in i20_controller structure pointed by *i op. The
function usesreply’ s ni ti at or Cont ext field to identify the handler.

while ((m= *iop->read_port) != OXFFFFFFFF) {
msg = (struct i2o0_nessage *)bus_to_virt(m;
context = msg.InitiatorContext & OXFFFF
handl er = i20_handl ers[context];
handl er - >repl y(handl er, iop, nsg);
i20_flush_reply(iop, m;

}

The handler checks the message status and does module specific tasks, e.g. copies
bytes to device specific buffers. When the control later returns back from the
handler, the message frame is freed by calling i 2o_f 1 ush_repl y() .

inline void i20o_flush_reply(struct i2o_controller *iop, u32 m

This function frees the message frame used for the reply by writing its physical
address m into outbound queue of the pointed *i op. This is implemnetd as an
inline code to be done efficiently.

7.3 Executive functions

Executive class messages are defined in Chapter 4 of 1,0 Specification [2]. The
messages are targeted to the IOP and its Executive DDM. The functions in this class

manage | OPs system initialization, configuration and peer-to-peer connections.

7.3.1 Executive classfunctionsimplemented in HPGIN-pr oj ect

Currently only a subset of the Executive class messages are used and implemented. They
include functions needed during the initialization and functions needed by Software
management and by Configuration management. The function names and short
descriptions are given below. Section numbers after the bO message name refer to
corresponding chapter in the 1,0 Specification [2], where the details of the requests and
the replies are described.

27

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

int i20_hrt_get(struct i2o0_controller *iop)

This function posts ExecHrtGet request (4.4.3.15) to get the IOP's hardware
resource table. The function reserves memory for the table and sets *i op- >hrt to
point to it. Returns O (success), -ETI MEDOUT (timeout) or -DetailedStatus

(RegStatus! =SUCCESS).
int i2o_clear_controller(struct i2o0_controller *iop)

This function posts Execl opClear request (4.4.3.16) to the *i op to abort pending
requests. The 10P rebuilds its inbound message queues and deletes al entries in
external connection table. Since in the beginning of the initialization normal LO
replies can’t be delivered (the IOP's outbound queue is not initialized), there is no
norma reply to this request and memory polling is used instead. Returns O
(success), -ETI MEDOUT (timeout) or -DetailedStatus (RegStatus! =SUCCESS).

int i20_reset_controller(struct i2o0_controller *iop)

This function posts Execl opReset request (4.4.3.18) to the *i op to abort pending
requests The IOP rebuilds its environment — reloads IRTOS and resident DDMs.
Since in the beginning of the initialization normal O replies can't be delivered
(the 10P's outbound queue is not initialized), there is no normal reply and memory
polling is used instead. Returns O (state=RESET), —ETI MEDOUT (timeout) or -
ENOVEM (kernel memory allocation error).

int i20_|lct_get(struct i2o0_controller *iop)

This function posts ExecL ctNotify request (4.4.3.19) to the *iop to get IOP's
logical configuration table after next configuration change. The function reserves
memory for the table and sets *i op->I ct to point to it. When the target 10P
modifies its Lct, it replies to this message, sending Lct (i.e. broadcasting) to
everyone who made this request. Returns O (success), -ENOVEM (kernel memory
allocation error), -ETI MEDOUT (timeout) or -Detail edStatus (RegStatus! =SUCCESS).

int i20_parse_lct(struct i2o_controller *iop)

This function parses the Lct, prints debugging information to log and installs
i20_device structures for 1,0 devices by calling i 20_i nst al | _devi ce() . Returns
0 (succeed) or - ENOVEM (kernel memory allocation error).

28

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

int i2o0_init_outbound q(struct i2o_controller *iop)

This function posts ExecOutboundl nit request (4.4.3.20) to the *i op to clear IOPs
outbound message queue to its initial (empty) state. Returns 0 (success), -ENOVEM
(kernel memory allocation error), -ETI MEDOUT (timeout) or - ElI NVAL (initialize
rejected).

int i20_status_get(struct i2o0_controller *iop)

This function posts ExecStatusGet request (4.4.3.26) to the *i op to get the IOP
status: state, size of message frames, and size of inbound and outbound queues,
etc. Returns O (succeed), -ENOVEM (kernel memory allocation error) or -ETI MEDOUT
(timeout).

int i20_enable_controller(struct i2o_controller *iop)

This function posts ExecSysEnable request (4.4.3.30) to the *iop to release
ExecSysQuiesce state and resume normal operation. Returns O (success),
-ETI MEDOUT (timeout) or -DetailedStatus (RegStatus! =SUCCESS).

int i20_quiesce_controller(struct i2o0_controller *iop)

This function posts ExecSysQuiesce request (4.4.3.32) to the *i op to stop IOP
sending messages and ignore all except system messages. Returns 0 (success),
-ETI MEDOUT (timeout) or -DetailedStatus (RegqStatus! =SUCCESS).

int i20_systab_send(struct i2o_controller *iop)

This function posts ExecSysTabSet request (4.4.3.33) to the *i op to provide
system configuration table (SysTab) and to enable peer operation. Returns O
(success), -ETI MEDOUT (timeout) or -DetailedStatus (ReqStatus! =SUCCESS).

7.3.2 Executive class messages not implemented in HPGIN-pr oj ect

The following table (Table 7.1) lists Executive class messages that are out of the scope
of the HPGIN-project and are not implemented.

29

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

ExecAdapterAssign | 4.4.3.1 | Assignan adapter to the specified HDM.

ExecAdapter Read 4432 Request that the IOP read the registers of a hidden
adapter.

ExecAdapterRelease | 4.4.3.3 Revoke the adapter assignment.

ExecBiosl nfoSet 4434 Indicate a device accessible via BIOS function call —

setsfield inlogical configuration table.

ExecBootDeviceSet 4435 Indicate device used to boot the OS — set field in logical
configuration table.

ExecConnSetup 4437 Establish aliases for sending messages between 1,0
deviceson different IOPs.
ExecDdmDestroy 4438 Terminate local DDM operation — release al signed

adapters and LO devices; destroy all devices created
(registered) by the specified module.

ExecDdmEnable 4439 Release ExecDdmQuiesce state and resume normal
operation with specified DDM.
ExecDdmQuiesce 4.4.3.10 Stop sending messages to specified remote DDM (on

another |OP) and ignore messages from that DDM. Used
when shutting down the other DDM.

ExecDdmReset 44311 Clear al connections with the specified DDM. Sent
when reloading the DDM.

ExechmSuspend 4.4.3.12 Suspend local DDM operation — quiesce devices created
(i.e., registered) by the specified module

ExecDeviceAssign 4.4.3.13 | Assign a device to the specified ISM (i.e, invite a

connection between the ISM and the device)
ExecDeviceRelease 4.4.3.14 | Releaseadevice— break connection.

Execl opConnect 44317 Establish aliases for sending messages between |OP
executives.

ExecPathEnable 4.4.3.21 | Release PathQuiesce state and resume normal operation
with specified |OP.

ExecPathQuiesce 4.4.3.22 Stop sending messages to specified IOP and ignore

messages from that IOP. Used when shutting down the
other |OP. Sent before resetting the other |OP.

ExecPathReset 4.4.3.23 Clear al connections with specified 10P. Sent when
resetting the other 10P.

ExecStaticMfCreate | 4.4.3.24 | Create and stuff a static message frame.
ExecStaticMfRelease | 4.4.3.25 | Releaseastatic message frame.

Execs/sModify 4.4.3.31 | Stop sending messages and ignore al but system
messages. Also, suspend all activity to adapters on the

system bus, in preparation for a physical system
configuration change. Especially useful when the host is
about to change PCI configuration (e.g. physical address
of one or more I0Ps).

Table 7.1. Executive class messages not implemented in HPGIN-project.

30

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

7.4 Utility functions

Utility class messages are defined in section 6.1.3 in the 1,0 Specification [2]. Utility
class messages are common to all driver classes.

7.4.1 Utility class functionsimplemented in HPGIN

Currently only a subset of the Utility class messages are used and implemented. They
include functions to claim and release devices, to handle events and to get and set
parameters. The names of the functions and short descriptions are given below. Section
numbers after the 1,0 message names refer to corresponding chapters in the 1,0
Soecification [2], where the details of the requests and the replies are described.

int i2o0_claimdevice(struct i2o0_device *i20_dev, struct i2o_handler *h)

This function posts UtilClaim (6.1.3.2) message to request use of the i2o0 device
*i 20_dev.i 20_dev->owner iSSet to *h. Returns O (succeed), -EBUSY (has aready
aprimary user or too many managers) or —ETI MEDOUT (timeoult).

int i20_rel ease_device(struct i2o0_device *i20_dev,
struct i2o_handler *h)

This function posts UtilClaimRelease (6.1.3.3) request to release the claimed
device *i 20_dev owned by *h. Returns O (success), -ENCENT (not owner) or

-ETI MEDOUT (timeout).
int i20_event_ack(struct i2o_controller *iop, u32 *nsg)

This function posts UtilEventAck (6.1.3.7) request to *i op acknowledge an event.
*meg IS the origina UtilEventRegister reply. Returns O (success), -ETI MEDOUT
(timeout) or -DetailedStatus (RegStatus!=SUCCESS).

int i20_event_register(struct i2o_controller *iop, int tid,
int init_context, u32 tr_context, u32 evt_mask)

This function posts UtilEventRegister (6.1.3.8) to turn on/off event notification.
Theinit _context isthe vaue for the InitiatorContext field (i.e. unit number and
handler_context), tr _cont ext is the value for the TransactionContext field and
evt _mask contains new vaue for the event mask. To turn off the event
notification, use zero value for the evt _mask. The target device is identified by
*jop and tid. Returns O (success), -ETI MEDOUT (timeout) or -DetailedStatus
(ReqStatus!=SUCCESS).

31

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

int i2o0_query_scalar(struct i2o0_controller *iop, int tid,
int group, int field, void *buf, int buflen)

This function posts UtilParamsGet (6.1.3.12) request to read selected fi el d from
a device scalar parameter group or a whole parameter group if fiel d==-1. The
result value or the list of result valuesis returned in memory area *buf . The target
deviceisidentified by *i op andti d. See chapter 3.4.7 in the 1,0 Specification for
the operation result details. Returns number of bytes written into *buf, -ETI MEDOUT
(timeout) or -DetailedStatus (RegStatus!=SUCCESS).

int i20_query_table(int oper,
struct i2o_controller *iop, int tid,
i nt group,
int fieldcount, void *ibuf, int ibuflen,
void *resbl k, int reslen)

This function posts UtilParamsGet (6.1.3.12) request to read fields from a device
table parameter gr oup. The device isidentified by *i op andti d. The result block
is given in a memory buffer *resbl k. The length of the buffer (in bytes) is given
inresl en. Returns number of bytes written into *resblk, -ETI MEDOUT (timeout) or
-DetailedStatus (ReqStatus!=SUCCESS).

1) If oper ==1 20_PARAMS_TABLE_GET, returns from all rows

al fidddswhen fi el dcount ==-1. In this case *i buf and i bufl en are
unused.

specified fields when fi el dcount >0. Field indexes are given in the
memory buffer *i buf, and fi el dcount is the number of indexes. The

length of the buffer (in bytes) isgivenini buf | en.
2) If oper ==1 20_PARAMS_LI ST_GET, returns from specified rows

al fieldswhen fi el dcount ==- 1. The memory buffer pointed by *i buf
contains the row count and key values for queried rows.

specified fieldswhen f i el dcount >0. Field indexes, number of following
row keys (key count) and key values are given in the memory buffer
*ibuf. feldcount is the number of field indexes n the buffer. The
length of the buffer (in bytes) isgivenini buf | en.

See chapter 3.4.7 in the bO Specification for the operation list details and for
operation results details.

32

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

int i20_set_scalar(struct i2o0_controller *iop, int tid,
int group, int field, void *buf, int buflen)

This function posts UtilParamsSet (6.1.3.13) request to set a selected fiel d ina
device scalar parameter group or to set al fields in the group if fiel d==-1.
Memory area *buf contains the operation list. The target device is identified by
*iop and tid See chapter 3.4.7 in the bO Specification for the operation list
details. Returns number of bytes used in *buf, -ETI MEDOUT (timeout) or
-DetailedStatus (ReqStatus! =SUCCESS).

int i2o0_clear_table(struct i2o_controller *iop, int tid, int group)

This function posts UtilParamsSet (6.1.3.13) request to clear a table parameter
group i.e. to delete all rows. The target device is identified by *iop and ti d.
Returns 0 (success), -ETIMEDOUT (timeout) or -DetailedStatus
(RegStatus!=SUCCESS).

int i20_row add_table(struct i2o0_controller *iop, int tid,
int group, int fieldcount, void *buf, int buflen)

This function posts UtilParamsSet (6.1.3.13) request to add rows to a table
parameter group group. The target device is identified by *i op and ti d. Field
indexes, number of following row keys (key count) and key values are given in the
memory buffer *buf . fi el dcount isthe number of field indexes in the buffer. The
length of the buffer (in bytes) isgiven inbuf | en. Returns O (success), -ETI MEDOUT
(timeout) or -DetailedStatus (RegStatus!=SUCCESS).

7.4.2 Utility class messages not implemented in HPGIN-proj ect

The following Utility class messages are out of the scope of the HPGIN project and are
not yet implemented.

UtilAbort 6.1.3.1 Abort previous transaction(s).

UtilDeviceRelease 6.1.3.5 Release ownership of device.

UtilDeviceReserve 6.1.3.6 Acquire ownership of device.

UtilLock 6.1.39 Request temporary exclusive control of device.
UtilLockRelease 6.1.3.10 | Releaselock.

UtilReplyFaultNotify 6.1.3.14 IF;yelzlry message can't be delivered by the transport

Table 7.2. Utility class messages not implemented in HPGIN-project.

33

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

7.5 Debugging and Error Reporting functions

Functions whose name start by i20_report and function i20_dump_message are for
debugging and error reporting.

voi d i20_dunp_nessage(u32 *nsQ)
This function prints to log the contents of the message frame * s g.

void i20_report_status(const char *severity, const char *str, u32 *nsg)

This function prints the string * st r , the command name, the request status and the
detailed status of the reply *nsg.

void i20_report_failure(const char *severity,
const struct i2o_controller *iop, const char *str, u32 *msg)

This function prints the string * st r , the request status and the detailed status of the
reply *msg, and dumps out the contents of the message.

void i20_report_transaction_error(const char *severity,
const char *str, u32 *nsQ)

This function prints the string * st r , the request status and the detailed status of the
reply *msg, when the request is rejected for a general cause.

static void i20_report_exec_cnd(u8 cnd)

This function prints the Executive class command name corresponding to number
cnd.

static void i20_report_util_cnd(u8 cnd)

This function prints the Utility class command name corresponding to number
cnd.

static void i20_report_lan_cnd(u8 cnd)
This function prints the LAN class command name corresponding to number cnd.

static void i20_report_common_status(u8 req_status)

This function prints the request status string corresponding to r eq_st at us code.
The common request status codes are used by all 1,0 class replies.

34

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

static void i20_report_common_dsc(ul6 detail ed_status)

This function prints the detailed status string corresponding to det ai | ed_st at us
code. The common detailed status codes are used by all 1,0 class replies.

static void i20 report_lan_dsc(ul6 detail ed_status)

This function prints the LAN detailed status string corresponding to
detai | ed_st at us code

static void i20_report_fail_status(u8 reqg_status)

This function prints request status string corresponding to r eq_st at us code, when
a message failure has occurred.

static void i20_report_controller_unit(struct i2o_controller *iop
int unit)

This function queries and prints vendor and device information of the *i op whose
unit number uni t .

35

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

8 OSSERVICE MODULES

The OSM must adhere to the message requirements specified in chapter 3 (Basic
Requirements) and chapter 6 (Class Specifications) of the 1,0 Specification [2]. This
means support for all drivers Base class messages (chapters from 6.4 to 6.12), and
optional support for private messages.

The OSM must send only messages specified for the class for which the target is
registered. The OSM must be capable of processing replies from the message layer as
well as replies from its intended target. The OSM must be able to correlate replies with
the appropriate request, based on the context of the Tr ansact i onCont ext field. OSMs
only send requests and receive replies. They neither send replies nor receive requests.
OSMs do not need to establish connections, but they do need to claim devices they
intend to consume.

There are three basic types of device in Linux: block-oriented devices, character-
oriented devices and network devices. Block devices are those to which there is random
access, which means that any block can be read or written to at will. Character devices
are devices, which can usually be processed sequentially. Network devices are used to
connect to other computers.

8.1 LAN OSM

The LAN OSM module (20_I an) implements the interface to the local area network
devices. This section describes the layer structure for the network, the Linux network
interface and the functionality of the 1O LAN class messages.

8.1.1 Layer structurefor the network

When a user process communicates via the network, it uses functions provided by the
BSD socket layer (Figure 8.1). This administers a general data structure for sockets.
Below BSD socket layer is the INET socket layer, which manages the communication
end points for 1P-based protocols TCP and UDP. The layer that underlies the INET
socket layer is determined by the type of socket, and may be the UDP or TCP layer o
the IP layer directly. The UDP layer implements the User Datagram Protocol on the
basis of IP, and the TCP layer implements the Transmission Control Protocol for reliable
communication links. The IP layer contains the code for the Internet Protocol.

36

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

BSD sockets
INET sockets
TCP UDpP
IP
non LO drivers LAN OSM
; Duta Zr 1O messages
Druatia Vv
LAN DM
V y
neilwoerk devices neiwork deviees

Figure 8.1 The layer structure of the network.

Below the IP layer are the network device drivers, to which the IP passes the final
packets. These take care of physical transport of the information. For 1,0 aware devices,
only the LAN class OSM is needed. For conventional devices, there is one driver for
each type of network device.

The data sent by a user process is passed downwards through the protocol stack. Each
layer takes care of administrative functions and adds its own header. A feature of Linux
is that al headers are written to memory in a linear sequence. If the length of the data
exceeds the maximum segment size, it is divided into number of packets. It is aso
possible for short data blocks to be collected together in one segment.

Each packet handled by the kernel is contained in a socket buffer structure (struct
sk_buff *skb, see include/linux/skbuff.h). Each network packet belongs to a socket in
the higher network layers, and the input/output buffers of any socket are lists of st ruct
sk_buff structures. The same sk _buff structure is used to host network data
throughout all the Linux network subsystems, but a socket buffer is just a packet as far
as the interface is concerned.

Finaly the IP layer cals the network driver method hard_start_xmt(struct
sk_buff *, struct net_device *), which passes the packet to the driver and to the
network.

37

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

The various layers are also connected together in the opposite direction. When packets
are received from he network, the hardware triggers an interrupt. The interrupt is
handled on the interrupt handler registered by the driver. In the 1,0 implementation this
is done by the host Messenger’'s i 2o0_run_queue() function. The incoming 1,0
message is then dispatched to the LAN OSM, that forwards sk_buf f structures to
higher layers of the network implementation by calling Linux Driver API method
netif_rx().

8.1.2 Linux Network Device Interface

The Linux interface to network device is as follows (Refer e.g. to Linux Kernel Internals
[3] for details, see aso include/linux/netdevice.h):

struct net_device

{ c.
/* Pointer to the devices private nenory area. */
void *priv;
/* Pointers to the fundanental device nmethods. */
int (*open)(struct net_device *dev);
int (*stop)(struct net_device *dev);
int (*hard_start_xmt) (struct sk _buff *skb

struct net_device *dev);

struct net_device_stats* (*get_stats)(struct net_device *dev);
void (*set_nulticats_|ist)(struct net_device *dev);
/* Pointers to the optional device nethods */

}

The network device interface can be conceptually divided into two parts: “visible” and
“invisible’. The visible part of the structure is composed of the fields that are explicitly
assigned in the struct net_devi ce. The remaining fields are used internally. Some of
them are accessed by drivers, eg. during the initialization, while some shouldn’t be
touched in drivers. Some of the fields convey information about the interface, while
some exists only for the benefit of the driver.

There are also other fields in struct net_devi ce, most notably the device methods
that are part of the kerne-driver interface. Device methods can be divided into
fundamental and optional methods. Fundamental methods include those that are needed
to be able to use the interface; optional methods implement more advanced functions
that are not strictly required. The device methods in LAN OSM convert network issues
into 1O messages and post them to the 10P, which dispatches them to the destination
LAN DDM.

The device is linked into the global network device chain by caling function
regi ster_netdev(struct net_device *).

38

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

i20_device
controller
unit —
net_device)
i20_lan_local
pri\/ «——» 20 dev
i20_landevy]] unit i20_controller

status /
b1
Ict

Linux Driver API

Figure 8.2. Data structures used by the LAN OSM.

The new 1,0 device dependent data is registered separately in the st ruct i20_devi ce.
It is linked to the st ruct net _devi ce through the private data area (pri v- >i 20_dev,

see Figure 8.2). The private data area and the appropriate device nethods are set
during the initialization.

The 1,0 reply handler gains access to the struct net_devi ce by indexing the table
i 20_l andevs[] with the unit number. The unit number is passed to the DDM in the
request’s I ni ti at or Cont ext field together with the OSM specific handl er cont ext
number. The ni ti at or Cont ext field is copied unchanged into the reply.

8.1.3 Setup functions

Section numbers after the following 1,0 message names refer to corresponding chapters
in the 1,0 Specification [2]. Refer to these chapters for the details of the requests and
replies.

int __init i20_lan_init(void) / init_nodul e(void)

This is the module initialization function. The function installs reply handlers for
LanPacketSend (6.10.8.1), LanSduSend (6.10.8.2) and LanReceivePost
(6.10.8.3) requests and registers to kernel LAN class devices found in global
i 20_control lers[] table.

voi d cl eanup_nodul e(voi d)

This is the module cleanup function. The function unregisters al LAN class
devices and removes reply handlers.

39

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

static struct net_device *i20_| an_register_device(
struct i2o_device *i20_dev)

This function registers the network device into the kernel. The function reserves
memory for the net_device structure and for the private area @ev->priv) and
initializes it with module parameters, with values queried from the DDM and with
callback function addresses. Returns a pointer to the created net_device structure.

static int i2o0_lan_open(struct net_device dev)

This function opens the network device for the transfering. The function claimsthe
device, registers an event mask, resets the device, sets it into batch mode, posts
free buckets to the controlling DDM and starts the Linux network queue. Return O
(succeed), -EAGAI N (unable to claim) or —ENOVEM (kernel memory allocation error).

static int i2o_lan_close(struct net_device *dev)

This function ends the transfering. The function stops the Linux network queue,
suspends the device and releases the device. Return O (success) or —EBUSY (unable
to release).

static void i 20 | an_set_ddm paraneters(struct net_device *dev)

This function sets default values for LAN Class parameters in DDM. The into
batch mode.

8.1.4 Functionsto send LAN classrequests

The DDM registers a LAN class device for each port it provides, and identifies devices
by a unique Target ID. The OSM claims the device and performs LAN operations by
sending requests to target LAN devices, and by listening for replies from all LAN class
devices. Both sending and receiving can be in batch mode, i.e. requests and replies may
contain multiple buckets of packets.

LAN class messages are defined in chapter 6.10 of the 1,0 Specification [2]. Functions
to create and send LAN class requests to the target IOP's inbound queue are
i 20_I| an_packet _send(), i 20_l an_sdu_send(), i 20_| an_bat ch_send(),

i 20_l an_receive_post(),i20_lan_reset() andi 2o_| an_suspend() . Each function
gets a pointer *dev to device to which the request will be send. Functions
i 20_l an_packet _send() andi 2o_| an_sdu_send() get also apointer *skb to a socket
buffer containing the outgoing packet.

40

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

static int i2o_lan_packet_send(struct sk _buff *skb
struct net_devi ce *dev)

This function creates a message containing a batch of packets to be sent to the
DDM. This function is registered to the Linux network APl as callback function
hard_start_xnit (). The batch is filled on subsequent calls. Each time a packet
to be added is passed in a socket buffer pointed by *skb. The address *skb is
copied to message Transacti onContext field, and is copied to the reply. The
function increments dev- >pri v- >t x_out counter. Returns O (success) or 1 (out of
free message frames).

static int i2o0_lan_sdu_send(struct sk_buff *skb
struct net_device *dev)

This function is similar to i 20_I an_packet _send() except, that the MAC header
is excluded and is generated by the DDM.

static void i2o0_|an_batch_send(struct net_device *dev)

This function posts the batch LanPacketSend request or LanPacketSend request
pointed by dev->priv->m The function sets dev->priv->tx_count to O and
dev->priv->send _active toO.

static void i20_lan_tx_tinmeout(struct net_device *dev)

This is the timeout function to be called by the Linux network interface when a
timeout occurs during the above packet send. The function restarts the network
queue if it is stopped.

static int i2o0_lan_receive_post(struct net_device *dev)

This function reserves socket buffers for buckets to receive incoming packets and
posts them in a LanReceivePost request. The function increments dev- >pri v-
>bucket s_out counter. Returns O (success), -ENOVEM (kernel memory allocation

error) or —ET1 MEDOUT (out of free message frames)
static int i2o0_lan_reset(struct net_device *dev)

This function posts LanReset request (6.10.8.5) to the target DDM and causes a
hardware reset to be issued. Returns O (success) or —ETI MEDOUT (timeout or
request failed).

41

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

static int i2o_lan_suspend(struct net_device *_dev)

This function posts LanSuspend request (6.10.8.6) to put the adapter in an idle
(suspended) state. Returns O (success) or —ETI MEDOUT (timeout or request failed).

8.1.5 Functionsto handlereplies

The above mentioned functions fill request’s I niti at or Context field with a unit
number and a handl er context number. The I ni ti at or Cont ext is copied unchanged
into reply by the DDM. The unit number is an index to i 2o_I andevs[] entry, which
pointsdirectly tostruct net _devi ce structure identifying the requestor.

unit = nsg.lnitiatorContext >> 16;
dev = (struct net_device *)i 20_| andevs[unit];

The handl er context IS an index to the i 2o0_handl er s[] entry, which points to an
i20_handler structure. The structure contains the address of the handler routine, which is
called from the interrupt handler in i 20_cor e module when the reply arrives.

The handlers for the incoming repliesin LAN OSM are i 20_| an_send_post _repl y(),
i 20_l an_recei ve_post _reply() andi 2o_l an_repl y(). They are registered when the
LAN OSM is loaded. The corresponding handl er context numbers are stored into
| an_post _context, | an_receive context and |an_context. Also the functions
called by the handlers are presented below.

static void i20_|an_send_post_reply(struct i2o_handl er *h,
struct i2o_controller *iop, struct i2o0_nessage *m

This is the handler for LanPacketSend and LanSduSend replies. The function
inspects the reply status, calls error handling functions if necessary, and frees
socket buffers listed in the reply’ sTransaction List. The function decrements
dev->priv->tx_out counter.

static void i20_|an_receive_post_reply(struct i2o0_handler *h,
struct i2o0_controller *iop, struct i20_nessage *m

This is the handler for LanReceivePost replies. The function inspects the reply
status, calls error handling functions if necessary, and calls neti f _rx() function
for all packets (i.e. socket buffers) listed in the Packet Description Block. If the
DDM is just returning unused buckets (i.e. socket buffers), they are freed. The
function decrements dev- >pri v- >bucket s_out counter. If the DDM has already
used dev->priv->treshhol d buckets, the function posts new buckets to the
DDM.

42

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

static void i20_|an_rel ease_bucket s(struct net_device *dev, u32 *nsg)

This function is used to release unused buckets returned by the DDM.

static void i20_lan_reply(struct i2o0_handler *h,
struct i2o_controller *iop, struct i20_nessage *m

This is the handler for other incoming replies. The function inspects the reply

status, cals eror handling functions if necessary, and calls
i 20_l an_handl e_event () for event notifications.

static void i20_| an_handl e_event (struct net_device *dev, u32 *nsQ)
This function handles the incoming UtilEventRegister or Util EventAck replies.
static void i20_lan_handl e_failure(struct net_device *dev, u32 *nsQ)

This function is called if the reply’'s MSG_FAIL bit is set. The function prints
error information into log, frees returned socket buffers and releases the preserved

message.

static void i20_| an_handl e_status(struct net_device *dev, u32 *nsg)

This function inspects reply’s request status and detailed status fields and calls
i20_lan_handle failure() or i20_lan_handle_transaction_error() functions.

static void i20_|an_handl e_transaction_error(struct net_device *dev,
u32 *nsq)

This function is called if the reply’s detailed status indicates that a transaction
error has occured. The function prints error information into log and frees returned
socket buffer.

8.1.6 Other LAN OSM functions

static struct net_device_stats *i20_|an_get_stat s(
struct net_device *dev)

This function queries device statistics from the DDM and fills dev- >pri v- >stat s
with the replied values. Returns a pointer to the dev- >pri v- >st at s.

43

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

static void i20 _lan_set_nct_filter(struct net_device *dev)

This function inspect dev->flags and sets the corresponding value to the
FilterMask in LAN_MAC ADDRESS parameter group. By setting the mask the
network device is enabled to receive packets not send to the protocol address.

static void i20_|lan_set_nt_tabl e(struct net_device *dev)

This function inspect dev->flags and sets the corresponding value to the
FilterMask in LAN_MAC ADDRESS parameter group. By setting the mask the
network device is enabled to receive packets not send to the protocol address.

static void i20_lan_set_multicast_list(struct net_devive *dev)

This function ssimply queues atask to call lateri 20_I an_set _nc_list().

static int i2o_lan_change ntu(struct net_device *dev, int new ntu)

This function changes the dev->ntu value to new nt u. Returns O (succeed) or
-EFAULT (new_nt u out of range).

The following subsections describe in details the flow of operations when the host sends
packets to the network, prepares to receive packets and receives packets from network.

8.1.7 Sending packetsto the network

The LAN OSM sends packets using LanPacketSend or LanSduSend request. For the
LanPacketSend, the user supplies the complete packet. For LanSduSend the LAN
device supplies the MAC header and the user supplies the rest of the packet.

1. The OS issues an 1/O request by calling the network driver API function registered
by the OSM:

i 20_l an_packet _send(struct sk_buff *skb, struct net_device *dev)

Linux’s socket/protocol layers write all headers and data to memory in linear
sequence, so * skb points to a single packet.

2. The OSM creates an 1,0 message addressed to target device

i 20_dev = dev->priv->i 20_dev;

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

iop = i20_dev->controller;

nsg = i 20_wait_nessage(iop);

nsg- >Tar get Address = i 20_dev->lct_data->tid;

nsg- >Functi on = | 20 _LAN_PACKET_SEND;

meg->lnitiatorContext = priv->unit << 16 | |an_send_context;

nsg- >SGL[0] - >Physi cal Address = virt_to_bus(skb->data);
nmsg- >SGL[0] - >Fl ags = 0xD5000000 | skb->len;
nsg- >SGL[0] - >Transacti onCont ext = skb;

Transact i onCont ext IS used to identify this packet in the reply so that it can be
freed later. I niti at or Cont ext is set to indicate this device (uni t) and the message
handler for the reply (I an_send_cont ext).

The OSM calls i 20_post _this(iop, i20 _dev->id, msg, sizeof(msg)) and
the host's Messenger queues the message into the |OP's inbound queue port.

The 0P and target DDM process the message, and send LanPacketSend reply.

The I0P aerts the host's Messenger via an interrupt. Control is moved to the
interrupt handler i 2o0_i nt er rupt (), which reads the reply from the I0OP's outbound
gueue and calls the handler for the reply

context = nsg.lnitiatorContext & OxFFFF; /I use last 16 bytes
i 20_handl ers[context]->reply(context, iop, msg);

In this case we get reply to LanSend and the registered handler is

i 20_| an_send_post _reply(struct i2o_handler *h,
struct i2o_controller *iop, struct nessage *m

Reply’s I ni ti at or Cont ext contains aso the unit number. It is an index to the
i 20_I andevs[] entry, which points directly to the struct net_devi ce structure,
which is the basic Linux interface to network device.

unit = neg->lnitiatorContext >> 16;
dev = i20_l andevs[unit];

. The OSM handler inspects the transmission status and message failures and
transaction errors are handled if necessary.

45

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

A single reply may acknowledge multiple packet transmissions of multiple requests.
The Transaction Reply List (TRL) is processed, and socket buffers used by the sent
packets are freed. The TRL contains pointers to the original packets (which were
passed to DDM in requests Transact i onCont ext fields). The detailed TRL format
isexplained in 1,0 Specification [2] on section 3.4.3.

trl _count = nsg->trl_count;
while (trl _count) {
skb = msg->TRL[trl| _count];
dev_kfree_skb_irq(skb);
trl _count —;

8. Findly the control returns back to the interrupt handler i 20_interrupt (). The
interrupt handler frees the message frame back to outbound free queue by calling
i 20_flush_reply(iop, m.

8.1.8 Preparing to receive packets from the network

All received packets are transferred from the DDM by using buckets reserved in
forehand by the OSM. The Initiator (LAN OSM) allocates memory buffers, and
describes them in LanReceivePost messages using SGLs. Each buffer marked by the
end_of _buf f er entry inthe SGL corresponds to one bucket. Buckets do not have to be
physically contiguous, and they can be of varying sizes.

The DDM writes incoming packets into these buckets. The DDM describesin reply in a
Packet Descriptor Block (PDB) each bucket it consumes, the bucket's order, and the
location and length of each packet in the bucket.

The SGL element of each bucket contains a Buf f er Cont ext field, analogous to the
Transact i onCont ext in messages. The host tracks buckets by Buf f er Cont ext , which
is passed to the DDM in the SGL and reported back in the PDB.

When buckets are posted to the DDM, the DDM owns them. When a packet is received,
the DDM (or its hardware) copies the packet into one or more buckets, depending on its
size and the space remaining in the particular bucket. The DDM can use buckets in
arbitrary order. When the DDM reports a packet buffer back in the PDB, the ownership
of the bucket returns to the host. The DDM does not touch that bucket again unless it is
reposted by the Initiator. The detailed bucket format is explained in 1,0 Specification [2]
on page 6-103.

46

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

. The OSM calls function

i 20_l an_recei ve_post (struct net_device *dev).

Host OSM reads a free MFA from the |OP inbound queue.

i 20_dev = dev->priv->i 20_dev;

iop = i20_dev->controller;

m = i 20_wai t _nessage(i op);

nmsg = bus_to_virt(iop->memofset + m;

OSM dlocates memory for buffers of size = MTU (maximum transfer unit), and
describes this memory by using a SGL. Each buffer marked in the SGL corresponds
to abucket. Buf f er Cont ext is set to identify the allocated buffer in the reply so that
it can be later freed. In addition, the total number of buckets is passed to the DDM.
I nitiatorContext iSSettoindicate the reply handler.

nsg- >Functi on = | 20_LAN_RECEI VE_POST;

nsg- >Tar get Address = i 20_dev.id;
neg->InitiatorContext = priv->unit << 16 | lan_receive_context;
do

skb = dev_al |l oc_skb(dev->mtu + dev->hard_header _|en);
msg- >SGL[i] - >Physi cal Address = virt_to_bus(skb->data);
msg- >SCGL[i]->Fl ags = 0x51000000 | skb->len
msg- >SGL[i] - >Buf f er Cont ext = skb;

while (i++ <= N_BUFS);

nsg- >Bucket Count = N_BUFS;

. The OSM cals Host Messenger's function i 2o0_post _nessage() to write the
reguest into the IOP s inbound queue port.

|OP and DDM process the message. There is no immediate reply to LanReceivePost
request. LanReceivePost replies are send later, when there are incoming packets to
be delivered. The reply is handled as described in the following section.

8.1.9 Receiving packets from the network

In immediate mode and under a low load in batch mode, the DDM indicates a receiving
packet immediately. Under a heavy load, the DDM collects receiving packets until a
threshold is exceeded or a timer expires. In both cases, the DDM indicates the received
packets in PDB in the LanReceivePost reply. The Bucket sRemai ni ng field is the
running count of buckets that DDM has left to consume. The host judges how badly the

47

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

DDM needs more buckets by thisfield. If DDM runs out of buckets, it posts an Overrun
codein Det ai | edSt at usCode.

1. DDM writesincoming packets into buckets allocated earlier by the OSM. The DDM
describes each bucket it consumes, the bucket's order, and the location and length of
each packet in the bucket, by building a PDB into the LanReceivePost reply.

2. DDM copies the InitiatorContext and Bucket Context fields from the earlier
request to the reply, addresses the reply to the Initiator, and finally invokes the IOP's
Messenger. Messenger queues the message into the |OP’ s outbound queue.

3. The Host is interrupted and the host’s Messenger dispatches the reply to the handler
(see chapter 8.1.7 numbered item 5). In this case the handler is

i 20_l an_recei ve_post _reply(struct i2o0_handl er *h,
struct i2o_controller *iop, struct nessage *m

4. The OSM handler inspects the transmission status, and message failures and
transaction errors are handled if necessary.

5. PDB isalist of packet buffers that contain the received packets in the order DDM
received them. The Bucket Cont ext field identifies the previously posted buckets.
The handler goes through the list of buckets and passes the packets to upper protocol
layersby calingnetif_rx(struct sk_buff *).

i 20_dev = dev->priv->i 20_dev;

do
skb = msg->PDB[i]. Bucket Cont ext
netif _rx(skb);
i ++;

while (i < msg->trl_count);

Note, that in the current Linux solution one bucket may not contain several packets,
or one packet may not be split into two or more buckets (Packet Or phanLi i t IS Set
to maximum packet size, see LAN_OPERATION parameter group in 1,0
Soecification [2]).

6. The OSM keeps account of outstanding buckets. If the DDM has already used as
many buckets as a chosen threshold, the host allocates and sends new buckets to the
DDM cdling againi 2o_I an_r ecei ve_post () .

if (priv->buckets out <= priv->max_buckets out — priv->buckettresh)

120_lan_receive_post(dev);

48

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

8.1.10 Setting LAN Control Parameters

The user can query and adjust various control parameters of the LAN device both for the
OSM and for the DDM.

OSM parameters are read and set via the / proc file system (see chapter 10). The user
configurable parameters for each port in the OSM are

MaxBucket sQut - maximum number of buckets send to DDM

Bucket Thr esh - send more buckets to DDM when this many used
TxBat chMbde

0: use immediate mode for transmissions, aways send one packet per bucket
and post immediately

1: use batch mode for transmissions

2: switch automatically between immediate and batch mode

rx_copybreak - copy receiving packet into a new socket buffer and reuse the old
socket buffer if the packet lenght < rx_copybreak

event _mask — set the UtilEventRegister mask to get replies when the specified
events occur. Use 0xFFC00002 to get al generic and LAN events, 0x00000000 for
none. See 1,0 Soecification [2] for event codes.

LAN parameter groups includes various set of parameters for LAN devices (i.e. for
DDMs), e.g. batch control, error control, timeouts and timeout policy, number of retries,
recovery etc. Refer to for a complete list of LAN DDM parameters and parameter
groups. These DDM specific parameters are read via Configuration API (see chapter 9)
or viathe / proc file system (see chapter 10). Currently DDM parameter values can be
set only via Configuration API. The /proc interface will be implemented later.

Batch control specifies how to batch up packets into buffers, and when to notify the user
of their arrival. Under a light load the only few packets are put into each bucket and are
returned quickly, to minimize latency. Under a heavy load, multiple packets are filled
into buckets and multiple buckets are reported with a single reply. Batch control
specifies the load conditions when the DDM switches between batch and light modes,
and how much to batch in batch mode. See 1,0 Specification [2] section 6.10.7 LAN
Configuration and Operating Parameters.

Error control specifies which transaction errors to report in the transaction status. Since
the protocol stack above the LAN OSM (and the user itself) uses various timeouts on
packets, it may be pointless to report most errors. Therefore, the DDM supports turning
off reporting of individual transmission errors. If a packet encounters a transmission
error when errors are disabled, the transaction is reported successful. Other errors, such
asin the format of the packets or their batch list, are aways reported.

49

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

8.2 Other OSMs

Although the implementation of other 1,0 class OSMs than LAN OSM are out of the
scope of HPGIN project, we present here a short description of block device and
character device interface. Currently there exist prototypes aso for Block OSM
(i 20_bl ock) and for SCSI OSM (i 20_scsi) made by third parties.

The common parts of the Linux 1,0 implementation are designed to be general enough
to fulfil the needs for other OSMs too. Adding new OSM should be straightforward.

8.2.1 Block Device Interface

The host OS interface for block storage devices is as follows (see fd/devices.c,
include/linux/fs.h). Each block device has an #node associated through the directory
entry / dev/ name. The name of the device and its methods are registered in device tables
indexed by the major device numbers.

static struct device_struct bl kdevs[MAX_BLKDEV] ;

struct device_struct {
const char * nane;
struct file_operations * fops;

}s

struct file_operations {
loff_t (*lIlseek)(struct file *, loff_t, int);
ssize_t (*read)(struct file *, char *, size_t, loff_t *);
ssize_t (*write)(struct file *, const char *, size_t,loff_t *);

int (*ioctl)(struct inode *, struct file *, unsigned int,
unsi gned | ong);

int (*lock) (struct file *, int, struct file_lock *);

The entriesin the bl kdevs[] andthechrdevs[] tables areinitialized by functions

regi ster_bl kdev(unsi gned int major, const char *nane,
struct file_operations *fops)

and

regi ster_chrdev(unsigned int major, const char *nane,
struct file_operations *fops)

Pointers to the LO device methods corresponding to file operations are set during the
initialization. The device methods convert requests to 1,0 messages and deliver them to
|OP. |IOP' s Messenger dispatches them to the destination DDM.

50

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

To reach the 1,0 dependent data, a new table is created during the initialization:

struct i2ob_device * i20ob_dev[];

struct i2ob_device {
struct i2o_controller *iop;
struct i2o_device *i2odev;
int tid;
int flags;
int refcnt;
struct request *head, *tail;
i nt done_flag;

The entry contains pointer to struct i2o_controller and to struct i2o_device

identifying the target 10OP and target device. Also this table is indexed by the major
device number.

8.2.2 Character Devicelnterface

The character device interface is similar to block device interface and the 120
implementation can be done respectively.

51

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

9 CONFIGURATION INTERFACE

The following sections describe the basic idea of the configuration dialogue and how the
user level programs can use it.

9.1 Configuration Dialogue

The purpose of the configuration dialogue mechanism is to have a DDM-defined and
controlled communication mechanism with a human operator. The facility is self-
contained in a downloaded DDM and is available in any 1,0-enabled system.

Static operating parameters, which can be modified only before a session starts, are read-
only and must be changed by the configuration dialogue. Several messages sypport
installing and loading DDMs. Ingtallation primarily stores the modul€’ s executable code
in the IOP s permanent store so that it can be loaded next time the IOP initializes.

DDM’s configuration mechanism is invoked when the host sends a UtilConfigDialog
request. The reply to a configuration dialogue request is a set of instructions for
displaying configuration information on the console, prompting the user for input,
accessing disk drive, and terminating the session. This dialogue modifies the IOP's
profile, establishing user-configurable parameters, such as the number of inbound
message frames.

The host can initiate the configuration dialogue at any time. The IOP indicates its need
for a configuration dialogue by setting a flag bit in its logical configuration table (Lct).
The configuration dialogue also applies to each module loaded on the IOP, but the
didogue is invoked independently for each device, using a UtilConfigDialog request
addressed to it. Again, aflag bit for the device in Lct entry indicates that a configuration
dialogue is requested. Setting the flag causes a response to the ExecL ctNotify request, if
one was posted. Resetting the flag does not.

The hogt-to-10OP dialogue protocol is based on HTML (Figure 9.1). Every device
supplies a page number 0, the device' s home page. Other pages are typically accessed by
HTML links. The 1,0 request message to |OP s specific DDM contains a number of the
dialogue page, any form data being returned and a buffer where the device places the
reply. The form data is typicaly generated from an HTML form submitted with the
HTTP POST method. The text is in the form fi el di=val uel&fi el d2=val ue2, and
usually represents new values for selected fields in selected parameter groups. The reply
contains HTML text that the host presents to the human operator via an HTML viewer,
such as aWeb browser.

52

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

WebDBrowssr

A
LOET ~server~/i2o< inp>/<tid >/ pame > l mnrTre

Server

(TFT <iop>/<sid>/<pepe> i L0

Cuonliguration
Ltility

inetl() Application level

Y
L0 conliguraiion APL

Kernel

Coonfiguration
Maoilule

T | O reply
<inp> + | 10} Plattorm

Ol <puye> T.0) request

1213\

<lic]>

Figure 9.1. Configuration dialogue.

To make possible centralized configuration of 1,0 systems safely, the HTTP
request/response chain is secured by using a SSL (Secure Sockets Layer) wrapper,
which encrypts connections from outside to the server.

9.2 1,0 Configuration API

Access to the LO subsystem is provided through the device file named / dev/i 2oct | .
This file is a character file with mgjor number 10 and minor number 166. The device
interface provides a set of ioctl() commands that can be utilized by user space
applications to communicate with IOPs and devices on individual 10Ps. These ioctl()
commands post respective bO messages to the specified 10OP (<i op>) and its target
device (<t i d>), and copies data from 1,0 replies to the user space buffer.

The following interface was originaly specified by Depax Saxena. It includes basic
functions to determine active 10Ps, to read Hardware resource table (Hrt) and Logical
configuration table (Lct), to get and set parameters in parameter groups, to use HTHL-

53

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

based configuration interface and to manage 0P s software. The event handling is rot
yet specified.

9.2.1 Determining active | OPs

Synopsis
ioctl(fd, 120CETIOPS, int *count);
u8 count [MAX | 20 CONTROLLERS] ;

This function fills the system's active IOP table. *count should point to a buffer
containing MAX_| 20_CONTROLLERS entries. Upon returning, each entry will contain a
non-zero value if the given IOP unit is active, and O if it is inactive or non-existent.
Returns O (succeed) or —1. If an error occurs, er r no is set appropriately:

EFAULT Invalid user space pointer was passed

9.2.2 Getting Hardwar e Resour ce Table

Synopsis
ioctl (fd, 120HRTGET, struct i2o_cnd_hrt *hrt);
struct i20_cmd_hrtlct {
u32 iop; /* 1OP unit number */
void *resbuf; /* Buffer for result */
u32 *reslen; [/* Buffer length in bytes */

This function fetches the Hardware Resource Table of the IOP specified by hrt - >i op
into the buffer pointed to by hrt->resbuf. The actual size of the data is written into
*(hrt->reslen). Returns O (succeed) or —1. If an error occurs, errno is set
appropriately:

EFAULT Invalid user space pointer was passed

ENXIO Invalid 1OP number

ENOBUFS Buffer not large enough. If this occurs, the required buffer
length iswritten into * (hrt - >r esl en)

9.2.3 Getting Logical Configuration Table

Synopsis
ioctl(fd, I20LCTGET, struct i20_cnmd Ict *lct);
struct i2o0_cnd_hrtlct {
u32 iop; /* 1OP unit nunber */

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

void *resbuf; /* Buffer for result */
u32 *reslen; /* Buffer length in bytes */

This function returns the Logical Configuration Table of the |OP specified by | ct - >i op
in the buffer pointed to by I ct->resbuf. The actual size of the data is written into
*(lct->reslen). Returns O (succeed) or —1. If an error occurs, errno is set

appropriately:

EFAULT Invalid user space pointer was passed

ENXIO Invalid IOP number

ENOBUFS Buffer not large enough. If this occurs, the required buffer
length is written into * (1 ct - >r esl en)

9.2.4 Getting Parameters

Synopsis
ioctl (fd, |120PARMGET, struct i2o0_parmsetget *ops);
struct i2o0_parmsetget {

u32 iop; /* 1OP unit nunber */
u3d2 tid; /* Target device TID */
void *opbuf; [/* Operation List buffer */
u32 oplen; /* Operation List buffer length in bytes */
voi d *resbuf; /* Result List buffer */
u32 *reslen; /* Result List buffer length in bytes */

This function posts a UtilParamsGet message to the device identified by ops->i op and
ops->tid. The operation list for the message is sent through the ops- >opbuf buffer,
and the result list is written into the buffer pointed to by ops- >resbuf. The actua size
of data written is placed into * (ops- >r esl en) . Returns O (succeed) or —1. If an error

OCCUr's, er r no isset appropriately:

EFAULT Invalid user space pointer was passed

ENXIO Invalid IOP number

ENOBUFS Buffer not large enough. If this occurs, the required buffer
length is written into * (ops- >r esl en)

ETIMEDOUT Timeout waiting for reply message

ENOMEM Kernel memory allocation error

55

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

A return value of 0 does not mean that the value was actually properly retrieved. The
user should check the result list to determine the specific status of the transaction.

9.2.5 Setting Parameters

Synopsis
ioctl (fd, |20PARMSET, struct i2o_parmsetget *ops);
struct i2o_cnd_psetget {

u32 iop; /* 1OP unit nunber */
u32 tid; /* Target device TID */
void *opbuf; [/* Operation List buffer */
u32 oplen; /* Operation List buffer length in bytes */
voi d *resbuf; /* Result List buffer */
u32 *reslen; /* Result List buffer length in bytes */

This function posts a UtilParamsSet message to the device identified by ops- >i op and
ops->tid. The operation list for the message is sent through the ops- >opbuf buffer,
and the result list is written into the buffer pointed to by ops- >r esbuf. The number of
bytes written is placed into *(ops->resl en). Returns the size in bytes of the data
written into ops->resbuf. If an error occurs, -1 isreturned and errno is set appropriatly:

EFAULT Invalid user space pointer was passed

ENXIO Invalid IOP number

ENOBUFS Buffer not large enough. If this occurs, the required buffer
length is written into * (ops- >r esl en)

ETIMEDOUT Timeout waiting for reply message

ENOMEM Kernel memory allocation error

A return value of 0 does not mean that the value was actually changed properly on the
IOP. The user should check the result list to determine the specific status of the
transaction.

9.2.6 Configuration Dialog HTML-pages

Synopsis
ioctl(fd, 120HTM., struct i20_htm *htquery);
struct i2o0_htm {

u32 i op; [* 1OP unit nunber */
u32 tid,; /* Target device ID */
u32 page; /* HTML page */

56

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

void *resbuf; /* Buffer for reply HTM. page */

u32 *reslen; /[* and its length in bytes */
void *qgbuf; /* Pointer to HTTP query string */
u32 gl en; /* and ist length in bytes */

This function posts an UtilConfigDialog message to the device identified by
ht query->i op andht query->tid (See Figure 9.1). The requested HTML page number
is provided by the ht query- >page field, and the resultant HTML text is stored in the
buffer pointed by nht query->resbuf. If thereisan HTTP query string that is to be sent
to the device, it should be sent in the buffer pointed to by ht query->qgbuf . If thereisno
guery string, this field should be set to NULL. The actual size of the reply received is
written into *(ht query->resl en). Returns O (succeed) or —1. If an error occurs,

errno is set appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid 1OP number
ENOBUFS Buffer not large enough. If this occurs, the required

buffer length is written into * (ht quer y- >r esl en)
ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7 Software Management

Any time a new or replacement driver isinstalled on an 10P, it is tagged experimental.
The old driver is tagged obsolote and retained until the new driver is validated by the
user. The next time the IOP is booted, it loads the experimental version of the driver,
changes its status to suspect, and waits for the host to send a configuration validation
message (see section 9.2.7.4). If the IOP does not receive confirmation within a
reasonable period, it may invoke a configuration dialogue aking the user to accept,
reject, or defer the suspect driver. If the user accepts the new (suspect) version, the old
(obsolete) version is removed from the IOP's store and the suspect status of the new
driver is changed to validated. If the user rejects the suspect version, it is removed from
the IOP' s store, and the obsolote tag on the original version is cleared. If the IOP boots a
second time and the user neither accepts nor rejects the suspect module, the inaction
congtitutes an implicit rglection. The suspect version is removed and the old version
reinstalled.

9.2.7.1 Downloading Software

Synopsis
ioctl(fd, 120SWDL, struct i20_sw xfer *sw);
struct i2o0_sw xfer {

57

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

u32 i op; /* 1OP unit nunber */
us fl ags; /* DownLoadFl ags field */
usg sw_type; /* Software type */
u32 sw_i d; /* Software ID */
void *buf; /[* Pointer to software buffer */
u32 *sw en; /* Length of software data */
u32 *maxfrag; /* Nunber of fragnments */
u32 *curfrag; /* Current fragment nunber */

This function downloads new software pointed by sw- >buf into the permanent store or
into the memory of the iop identified by sw- >i op. The Downl oadFl ags, Swi D, SwType
and swsi ze fields of the ExecSwDownload message are filled in with the values of

sw->fl ags, sw->sw_id, sw>sw_type and sw>sw en. Once the ioctl() is called and
software transfer begins, the user can read the vaue *(sw->maxfrag) and
*(sw>curfrag) to determine the status of the software transfer. As the 10P is very
dow when it comes to SW transfers, this can be used by a separate thread to report
status to the user. The user should not write to this memory location until the ioctl() has
returned.

Returns O (succeed) or —1. If an error occurs, er r no iS Set appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number

ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7.2 Uploading Software

Synopsis
ioctl (fd, 120SWJL, struct i20_sw xfer *sw);
struct i2o0_sw xfer {

u32 i op; [* 1OP unit nunber */
usg fl ags; /* Unused */
us sw type; [/* Software type */
u32 sw_i d; /* Software ID */
void *bhuf; [* Pointer to software buffer */
u32 *sw en; /* Length in bytes of software */
u32 *maxfrag; /* Nunmber of fragnents */
u32 *curfrag; /* Current fragment nunber */

58

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

This function uploads software from the 10OP identified by sw->i op and places it in the
buffer pointed to by sw->buf. The Upl oadFl ags, Sw D, SwType and Swsi ze fieldsof
the ExecSwUpload message are filled in with the values of sw- >f1 ags, sw>sw_i d,
sw>sw_t ype and sw->sw_size If the the software size is unknown, use O instead. |OP
uses this value to verify the correct identification of the module to upload.

Once the ioctl() is called and software transfer begins, the user can read the vaue
*(sw>maxfrag) and *(sw >curfrag) to determine the status of the software transfer.
As the IOP is very dow when it comes to SW transfers, this can be used by a separate
thread © report status to the user. The user should not write to this memory location
until the ioctl() has returned.

Returns O (succeed) or —1. If an error occurs, er r no iS Set appropriately:

EFAULT Invalid user space pointer was passed
ENXIO Invalid |OP number

ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7.3 Removing Software

Synopsis
ioctl(fd, 120SWDEL, struct i20_sw xfer *sw);
struct i2o0_sw xfer {

u32 i op; /* 10OP unit nunber */
us fl ags; /* Unused */
usg sw type; [/* Software type */
u32 sw_i d; /* Software |ID */
void *buf; /* Unused */
u32 *sw en; /* Length in bytes of software data */
u32 *maxfrag; /* Unused */
u32 *curfrag; /* Unused */

This function deletes software from the permanent store of the IOP identified by
sw->i op. The software continues to operate if it is loaded, but does not load the next
time IOP is reset.The RenpveFl ags, Swi D, swrype and sSwsize fields of the
ExecSwRemove message are filled in with the values of sw >fl ags, sw>sw_ i d, sw
>sw_type and sw->sw en. If the the software size is unknown, use O instead. |OP uses
uses this value to verify the correct identification of the module to remove. Returns O

(succeed) or —1. If an error occurs, er r no is set appropriately:

59

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

EFAULT Invalid user space pointer was passed
ENXIO Invalid IOP number

ETIMEDOUT Timeout waiting for reply message
ENOMEM Kernel memory allocation error

9.2.7.4 Validating Configuration

Synopsis
ioctl(fd, 120VALIDATE, int *iop);
u32 iop;

This function posts an ExecConfigValidate message to the IOP specified by *(i op) .
This message indicates that the host accepts the current configuration as valid. The IOP
changes the status of suspect drivers to current and may delete old drivers from its store.
Returns O (succeed) or —1. If an error occurs, er r no is set appropriately:

ENXIO Invalid IOP number
ETIMEDOUT Timeout waiting for reply message

9.2.8 Events

User interface to event reporting is not yet implemented (Event handling is out of
the scope of the HPGIN-project). Current idea is to use the sel ect () interface to
allow user applications to periodicaly poll the /dev/i2oct! device for events.
When sel ect () notifies the user that an event is available, the user would call
read() toretrievealist of al the events that are pending for the specific device.

9.3 Configuration Utility

The Configuration Utility is a set of programs using the configuration API. The
functionality is in the CGI programs 120, 10PDetails, Configure, Download, Remove,
Upload and Vaidate. The common CGI and HTML handling functions are in separate C
source files, which are linked to the programs.

The following structure defines the format for IOP's software module header. It is used
by the 10OP software management programs Download, Remove and Upload.

struct 120 MODULE _DESC HDR {
unsi gned i nt header Si ze; [/* size of this header and tables */

unsi gned short orgld; /* 120 organi zation |ID */
unsi gned short nodul el d; /* assigned to vendor of nodul e */
unsi gned short day; [* ascii 4 digit day DDM produced */

60

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

unsi gned short nont h; /* ascii 4 digit nonth DDM produced */
unsi gned i nt year; [* ascii 4 digit year DDM produced */
unsi gned char i2oVersion; /* 120 version info */

unsi gned char nmajorCapabilities; [/* capbilities bits */

unsi gned short reserved; /* reserved */

unsi gned i nt codeSi ze; /* text/datalbss */

unsi gned int tabl eOf f set; [* offset to nunfTables */

unsi gned i nt menor yReq; /* menory requiremets */

unsi gned int menor yPr ef erred; /* additional desired */

char nmodul eVer si on[4] ; /* 4 ascii characters */

unsi gned char processorType; /[* 1 OP processor type */

unsi gned char processVersion; /* 10OP processor type */

unsi gned char obj CodeFor mat ; /* DDM object nodule format */
unsi gned char reservedl; /* reserved */

unsi gned i nt nunrabl es; [* # of descriptor tables */
char nmodul el nf o[24] ; [* ascii string name */

Module type numbers are mapped to user readable names via the following
nmodul ei nfo[] table

struct nod_info {
char *nodul et ype
unsi gned char val ue;
char *nodul edesc;

}
struct mnod_i nfo nodul ei nf o[NUM_MODULE_TYPES] ;

931 120

The 120 program generates the first page, and the page ssimply displays a list of IOPs.
The user may choose the |OP he wishes to configure by selecting it from the list and by
activating the "Configure" button. This starts the IOPDetails program and gives the IOP
identification as CGI query parameter. If there is only one IOP in the system the
|OPDetails program is started immediately.

9.3.2 IOPDetails

The 10PDetails program displays a page that has five buttons (Configure, Download,
Upload, Remove and Validate). When the button is pressed, the corresponding program
isrun and user parameters are passed to it.

61

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

9.3.3 Configure

The Configure program lets the user to browse the pages the 1OP provides. Only one
parameter is passed to this program: the path to the first html-page. It is sent in the URL
part of the query and must be composed of three numerical parts separated by /' (slash)
signs. The parts are in order the 10P, the TID and the page number. The program
constructs a button that will load the Executive DDMs (TID 0) page number 0. The
pages sent by the IOP will conform to this scheme.

9.3.4 Download

The Download program downloads the specified software module to the IOPs memory.
It understands the following parameters:

Tar get | OP integer The software is downloaded to this |OPs memory

Modul eType string The module type. Legal values are in i2o_util.c

Sour ce string Path to the downloaded file

LoadType string Specifies whether the software should be saved
into permanent memory

OverrideMbde string If set to Override, the old version of the

software (if any) is overwritten

9.3.5 Upload

The Upload program uploads the specified software module from the IOPs memory. The
following parameters must be specified:

Modul eType string The type of the module as specified ini20_util.c

| OP integer The software is uploaded from this |OPs memory
SW D integer This is the software module identifier

SWer si on string Currently ano-op (only in v2.0 of 120 spec)

9.3.6 Remove

The Remove program removes the specified software module from the IOPs memory.
The following parameters must be specified (same as in Upload):

Modul eType string The type of the module as specified ini20_util.c
| OP integer The software is uploaded from this IOPs memory
SWD integer This is the software module identifier

62

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

SWer si on string Currently a no-op (only in v2.0 of 120 spec)

90.3.7 Validate

The Validate program validates all suspect software modules on an I0P. There is only
one parameter, which must be specified:

i opdestval i date integer Specified the IOP whose modules are validated

For the ease of use, the IOPDetails program sets meaningful default values for al the
parameters. The user is allowed to change the values within acceptable limits.

9.3.8 Common parts

The parts that are common to all programs are put in separate files. The HTML page
creation and sending code is in html.c. The CGI FORM handling routines are in de-
cgi.c, and 120 helper functions and tables are in i20_util.c (not to be confused with 120
Utility Class!)

The file html.c contains functions to create html-page. The page structure is defined as
follows

struct page {
FI LE *out put;
char *str;
char type[40];
i nt binary;
int offset;
i nt outputfd;

The flag bi nary defines whether end page() function uses the *out put pointer or
out put f d file descriptor for writing the data. The page data is pointed to by *str. The
type string is written in the HTTP headers. The of f set parameter is used by hprintf()
function.

voi d start_page(struct page *p)

This function starts a new page. If p is NULL, a page structure is allocated. If
allocation fails, an error page is constructed and sent to the browser. If p points to

63

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

a nonempty page, the function bails out. When the page is set up correctly,
p- >out put f d IS Set to 1, otherwise to -1.

voi d error_page(const char *format, ...)
This function prints out the format string and exits.
voi d change_type(struct page *p, char *type)

This function changes the MIME type of the page *p. Only first 40 characters of
type argument are considered. No checking is made based on the type.

int hprintf(struct page *p, const char *format, ...)

This function writes to the page *p. The f or mat parameter is as it would be for
printf. Returns the number of characters written.

void wite_page(struct page *p, char *data, unsigned int |en)

This function puts the contents of *dat a buffer on the page *p. The length of the
buffer is given in| en. Any text written earlier islost.

voi d enpty_page(struct page *p)
This function makes the page *p empty. Any text written earlier is lost.
voi d end_page(struct page *p)

This function constructs the HTTP headers and adds them to the page *p and the
page to the browser.

The de-cqgi.c file defines the following functions.
void htm _error(const char *error)

Prints out an error message *err or and exits gracefully. This is used if a system
cal failsin early set up.

64

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

char *extract(const char *qgstr, const char *var)

This function extracts a "variable=value" type assignment from a CGI string
*gstr. The string may contain severa such assignments and they are separated
with '&" (ampersand) signs. The name of the queried variable given in *var.
Returns the "value" part of the string, or NULL if the "variable=" part is not found
or length of "value" string is 0.

char *decode(const char *cgistr)

This function replaces all the occurrences of the string '%XX', where XX is a
hexadecimal number written in ASCII, with the corresponding byte value. For
example, '%41" would be replaced with 'A’, which is the character number Ox41.

char *getquery(void)

This function returns the query string, or NULL, if no string can be read. It
assumes a CGl-style set up. The query type is given in environment variable
REQUEST_METHOD and depending on type, the string is either in environment
variable QUERY _STRING or can be read from stdin.

In filei20 _util.c are the helper functions.
unsi gned char nodul eval ue(const char *nodul etype)

This function searches the string *nodul eval ue from the nodul ei nfo[] table.
Returns the corresponding numerical value or Oxff, if the string can not be found.

struct i2o_driver *getdst(int fd, int iop)

This function gets the Driver Store Table. The IOP number is given in i op and f d
is a file descriptor of the opened /dev/i2octl character specia file. Returns a
pointer to i20_driver structure (succeed) or NULL.

char *nodi nfo(struct 120 MODULE DESC HDR *hdr)

This function adds the software module header's information to a string. Returns
the modified string, or NULL (kernel memory allocation error).

65

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

10 INTERFACE TO THE PROC FILE SYSTEM

Linux uses proc file system f.g. to give information about the state of processes, kernel
and hardware. It can also be used to set system parameters during the runtime. The proc
file system ispure virtual file system - the directory and file entries are generated on the
fly from the kernel data sctructures and process information. Detailed information about
proc file system of can be found in chapter 6.3 of Linux Kernel Internals[3].

10.1 The/procl/i2o file hierarchy

For the 1,0 subsystem, / proc/ i 20 directory tree (Figure 10.1) is added to the proc file
system. It can be used to read and set IOP and DDM parameters instead of using the
Configuration Utility. This allows setting bO device parameters, for example during
boot up, smply by writing desired value to the specific proc file.

in

Fxpcuhive Parmmeter Groups

Creneric Paranicler Groups

Deviee Parameler Groups

Figure 10.1. 1,0 subtree in the proc file system

Each 10P has its own directory entry (i op0. .. i opN) that contains file entries for
Executive parameter groups and directory entries (0x000...0x00N) for devices
controlled by that IOP. Each device directory has file entries for Generic Parameter
Groups and Device Parameter Groups.

Executive parameter groups are defined in section 4.4.4, Generic parameter groups in
section 3.4.7.6 and the device class dependent Device parameter groups in section 6 of
the 1,0 Specification [2].

66

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

10.2 Interfaceto the Linux kernel

The i 20_proc module contains functions to create the / proc/ i 2o directory tree on the
fly, and functions to read from and write into these files. The struct i20_proc_entry
contains name of the file entry, its security permission mode, and pointers to functions to
read from and write to that file.

struct i2o0_proc_entry {
char *nane;
node_t node;
read_proc_t *read_proc;
read _proc_t *read_proc;

b
10.2.1 Functionstoread from a proc file

There are many functions to read file entries on the fly. The read functions are called
whenever a user reads a file in proc file system. The functions gather IOP and DDM
information by using functions i 2o_query_scal ar() and i 2o_query_t abl e() from
i 20_core module. There is aso a function to read LAN OSM parameters from its
private structure (st ruct i2o_l an_l ocal).

Functions to read from afile in proc file system have the form

int (read_proc_t)(char *page, char **start, off_t off, int count,
int *eof, void *data);

Read functions' parameters are
A pointer to the memory page containing the virtua file (page),
apointer to the pointer of start of thefile (start),
an offset from the start (of f),
the number of data read from the file (count),
an indicator if we are already at the end of file (eof), and
apointer tothei 20_devi ce ori 2o_control | er structure (dat a).

10.2.2 Functionsto writeinto a procfile

There are al'so afew functions to set device parameters according to the data written into
a file in proc file system. The write functions uses function i 2o_set _scal ar () (from
i 20_core module) to set the IOP or DDM parameter. For example, setting MAC
address of an 1,0 LAN device with TID 8 on the first IOP is done by writing new MAC

67

UHEL .15.01.04-DR-D1
ESPRIT / HPCN Project 29737 HPGIN

address value to file / proc/i 20/ i op0/ 0x008/ | an_mac_addr . The given value is then
sent to 10P.

Functions to write to afile in proc file system have the form

int (wite_proc_t)(struct file *file, const char *buf,
unsi gned | ong count, void *data);

Write functions' parameters are
a pointer to the file we are writing to (fi | e),
a pointer to the buffer where our data to be written is (buf),
the number of data written to the file (count), and
apointer tothei 2o_devi ce Ori 20_control | er structure (dat a).

10.3 Generating /proc/i2o directory tree

The proc file system is initiaized by calling function i 20_proc_init(). It cals
function create i 20_procfs(), which cals proc file system interface function
proc_mkdir () to create directory /proc/i2o. Then al IOPs are added to directory
/ proc/i 2o using function i 2o_proc_add_control I er (). That function adds generic
IOP information files (Table 10.1) using function i 2o_proc_create_entries(), and a
directory for al devices controlled by that 10P. The directories for devices are named
after the Target ID of the device, 0x000 being the Executive DDM. For all devices
generic_dev_entries (Table 10.2) are added. There are also generic entries for LAN
class devices (Table 10.3), and entries for FDDI, Token Ring, and Ethernet statistics
(Table 10.4).

The function i2o0_proc_create_entries() goes through a list of struct
i 20_proc_ent ry and adds new entries to that directory using proc file system interface
functioncreate_proc_entry().

The/ proc/i 20 directory is removed from proc file system calling exit function of the
module, cl eanup_nodul e() . It cals function destroy_i 20_procfs(), which in turn
calls for each 10P i20_proc_renove_controller() and finally proc file system
interface function r enove_proc_entry() to remove directory / proc/i 20. For each IOP
all generic device entries and class dependant entries are removed (in function
i 20_proc_renove_entries()), and then the directory itself is removed using proc
interface function r enove_proc_entry() . After that generic IOP entries and finaly the

68

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

IOP directory is removed and the proc entry is marked as NULL in struct
i 20_controller.

File Parameter group

hrt 0100h — Hardware Resource Table
Ict 0102h — Local Configuration Table
st at us N/A — Status Block

hw 0000h — IOP hardware

ddm_tabl e 0003h — Executing DDM List
driver_store 0004h — Driver Store
drivers_stored 0005h — Driver Store Table

Table 10.1 Generic |OP entries.

File Parameter group

groups FOOOh — Params descriptor
phys_dev FOO1h — Physical Device

cl ai med F002h — Claimed Table

users FOO3h — User Table

priv_nsgs FOO5h — Private Message Extensions
aut hori zed_users FO06h — Authorized User Table
dev_identity F100h — Device ldentity
ddm_identity F101h — DDM Identity
user_info F102h — User Information

sgl _limts F103h — SGL Operating Limits
sensors F200h — Sensors

Table 10.2 Generic device entries.

File Parameter group

| an_dev_info 0000h — Device Info

| an_mac_addr 0001h — MAC Address Table
l'an_ntast _addr 0002h — Multicast MAC Address Table
| an_bat ch_control 0003h — Batch Control

| an_oper ation 0004h — LAN Operation

I'an_nedi a_operation (0005h— Media Operation

l'an_al t _addr 0006h — Alternate Address

69

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

lan_tx_info 0007h — Transmit Info
lan_rx_info 0008h — Receive Info
| an_hi st _stats 0100h — LAN Historical Statistics

0180h — Supported Optional Historical Statistics
0182h — Optional Non Media Specific Transmit Historical

Statistics
0183h — Optional Non Media Specific Receive Historical
Statistics

settings N/A — Settings for the LAN OSM and DDM (see Table
10.5)

Table 10.3 Generic LAN entries.

File Parameter group

llan_eth_stats 0200h - Required Ethernet Statistics
0280h - Supported Ethernet Historical Statistics
0281h - Optional Ethernet Historical Statistics
lan_tr_stats 0300h - Required Token Ring Statistics
l'an_f ddi _stats 0400h - Required FDDI Statistics

Table 10.4 LAN subtype specific statistics.

10.4 Reading parameter group infor mation

Functions to get information about IOP and DDMs ae named as
i 20_proc_read_<entry>. For example function i 2o_proc_read_l an_bat ch_ctrl ()
(see below) isused t o query LAN parameter group 0x0003 (Lan Batch Control) and
generate file 1 an_batch_ctrl. The function calls i 20_query_scal ar() to retrieve
information about parameter group 0x0003 and prints information found from result
buffer to the buffer buf. Querying the parameter group is locked using a spin lock to
prevent other processes to modify the information at the same time.

i20_proc_read_l an_batch_ctrl (char *buf, char **start, off_t offset, int len,
int *eof, void *data)
{
struct i2o_device *d = (struct i2o0_device*)data,;
struct i2o0_lan_batch_control scalar result;
int token;

spi n_| ock(& 2o0_proc_| ock);
len = 0;

70

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

token = i2o0_query_scal ar(d->controller, 11 1oP
d->l ct_data->tid, // TID
0x0003, /1 Parameter group #
-1, /1 Query all val ues
&result, /'l Results are here
9*4); /] Size of result buffer

if (token < 0) {
| en += i 20_report_query_status(buf+l en, token
"0x0003 LAN Batch Control");
spi n_unl ock(& 2o_proc_| ock);
return | en

len += sprintf(buf, "Batch node ");
if (result.batch_fl ags&x00000001)
| en += sprintf(buf+len, "disabled");
else if (result.batch_flags&x00000004)
I en += sprintf(buf+l en, "enabled");
el se {
I en += sprintf(buf+len, "automatic");
if (result.batch_flags&x00000002)
len += sprintf(buf+len, " (on)");
el se
len += sprintf(buf+len, " (off)");

len += sprintf(buf+len, "\ n");

len += sprintf(buf+l en, "Max Rx batch count : %\ n"
resul t. max_rx_batch_count);

len += sprintf(buf+len, "Max Rx batch delay : %\ n"
resul t. max_rx_bat ch_del ay) ;

Il en += sprintf(buf+len, "Max Tx batch delay : %\n",
resul t. max_t x_bat ch_del ay) ;

Il en += sprintf(buf+len, "Max Tx batch count : %\ n"
resul t. max_t x_batch_count);

’

spi n_unl ock(& 20_proc_I| ock);
return len

71

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

10.5 Setting LAN OSM and DDM parameters

Some LAN OSM and DDM parameters can be read and set using the proc file system
(see also chapter 8.1.10.). The parameters that can be set using the proc file are located
in file entry /proc/i2o/<iop>/<tid>/set t i ngs (see Table 10.5).

Setting Definition Values

max_bucket s_out Maximum number of buckets sent to DDM 1-

bucket _t hresh Send more buckets to DDM when this many 1-—
used

rx_copybreak Maximum size of received packet that is 1-MTU
copied to new socket buffer

err_reporting Whether errors are sent to OSM or handled by 0-DDM

DDM 1-0SM

tx_batch_node OSM batching 0 — off

1-on

2 —automatic
rx_batch_node HDM batching 0 — off

1-on

2 —automatic
event _mask Event mask for receiving events from DDM 0x00000000 —

OxFFC00002
tx_timeout Timeout for softnet watchdog timer

Table 10.5 Settingsfor LAN OSM and DDM.

Reading the entry set ti ngs lists all parameter names, their current value, minimum and
maximum values, and the read/write mode. The OSM parameter values are located in
LAN device's private structure st ruct i2o_I an_Il ocal . DDM parameters are located
on the 1/O platform, and they are read by querying the corresponding entry in the
parameter group.

New values to the above mentioned parameters are set by echoing the name and the
value to the file. For example setting the batch mode for sending packets on for the LAN
device with TID 0x008 is done as follows.

gin$ echo "tx_batch_npde: 1" > /proc/i20/iop0/0x008/settings

72

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

11 ERROR HANDLING

The IOP and its DDMs report from errors via the message replies. Each reply has a
status code (RegsSt at us) and a detailed status code (Det ai | edSt at usCode). The status
code may imply that the request was completed normally, the request was aborted (e.g.
because of timeout), there was an error in execution, or that the reply is just a progress

report.

Message replies and possible errors are handled by module reply handlers, and they may

decide how to handle the error. Handlers may

- samply discard the reply e.g. in case the requestor is not interested of the reply or
because there is aready sufficient error control in upper levels (as eg. in
networking),

process the situation, e.g. by using Executive or Utility class messages, or

pass the problem to the requesting function, which will handle the situation or report
upwards if needed.

If status code implies an error, the detailed status code may be inspected to get a more
exact description. There are detailed status codes among others for malformed messages,
invalid values, missing parameters, overflows etc. Values for Det ai | edSt at usCode are
defined by the particular message class and message function. Reply status codes and
detailed status codes for Executive class, DDM class, Utility class, and TransactionError
replies are specified in Table 3-2 in the 1,0 Specification [2]. Detailed status codes for
the other OSM's are specified in the respective chaptersin the 1,0 Specification [2].

If the request message was a multiple transaction request, the error reply is repeated for
each transaction that the target rejects.

When a request cannot be at al delivered to the target, a FaultNotification reply (see
Figure 3-7 in the 1,0 Specification [2]) is returned to the initiator of the failed request.
The reply details why the message could not be delivered, and contains also the original
request. When the Messenger can't deliver reply to the initiator, there is no mechanism
to reply to it, 9 the failing module creates and sends an UtilReplyFaultNotify request
message (see Figure 6-18 in the 1,0 Specification [2]).

The Configuration Utility or the / proc file system can be used to query and adjust
various error and control parameters in device parameter groups, e.g. timeouts and
timeout policy, number of retries, recovery etc. Groups of generic parameters are
defined for all device class and each message class defines additional parameter groups.

73

UHEL .15.01.04-DR-D1

ESPRIT / HPCN Project 29737 HPGIN

12 TESTING

The test specification is now available as a separate document titled HPGIN-TEST
HPGIN-Linux Test Specification.

74

