
PIANOS implementation document

Group Linja

Helsinki 7th September 2005

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science



Course
581260 Software Engineering Project (6 cr)

Project Group
Joonas Kukkonen
Marja Hassinen
Eemil Lagerspetz

Client
Marko Salmenkivi

Project Masters
Juha Taina
Vesa Vainio (Instructor)

Homepage
http://www.cs.helsinki.fi/group/linja



i

Contents

1 Introduction 1

1.1 Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Version history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Glossary 2

3 Overview of the software 4

4 The generated program 5

4.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 Module proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.2 Module input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.3 Module output . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.4 Program main . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 The generator program 13

5.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 package PIANOS.datastructures . . . . . . . . . . . . . . . . . . . . . . 15

5.2.1 Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.2 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.3 ComputationalModel . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.4 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.5 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.6 DistributionSkeleton . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.7 DistributionFactory . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.8 Fields of DistributionFactory . . . . . . . . . . . . . . . . . . . . 27

5.2.9 UserDefinedDistribution . . . . . . . . . . . . . . . . . . . . . . 28

5.3 package PIANOS.io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 ComputationalModelParser . . . . . . . . . . . . . . . . . . . . 29

5.3.2 FortranWriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 package PIANOS.generator . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.1 FortranMain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



ii

5.4.2 Acceptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.5 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Correspondence to requirements 39

6.1 Model requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Data requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Simulation requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4 Output requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 General error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.6 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . 41

6.7 General requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Future development 42

7.1 Random update strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 More distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Making the generating quicker . . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Defining properties for single parameters . . . . . . . . . . . . . . . . . . 42

7.5 The Gibbs algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.6 Parameters of proposal distribution . . . . . . . . . . . . . . . . . . . . . 43

7.7 Parameter blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.8 Soft stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.9 Graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.10 Reporting semantic errors . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.11 Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 References 45



1

1 Introduction

This is the implementation document of the PIANOS project.

This document describes the software after the implementation. The designed features
that were changed during the implementation are also described. Suggestions for features
of future development are also overviewed in this document.

1.1 Chapters

1. Introduction Describes this document’s purpose.

2. Glossary Explains the glossary used in this document.

3. Overview of the software Describes the software and the division into a generator and
a generated program.

4. The generated program Describes the generated program and its modules.

5. Generator Describes the generator, its packages and classes.

6. Correspondence to requirements Describes which requirements are implemented.

7. Future development Overviews future development ideas and features.

1.2 Version history

Version Date Modifications
0.2 29.07.2005 Document template
1.0 30.08.2005 First full-featured draft
1.1 31.08.2005 Reviewed and corrected final



2

2 Glossary

Fortran: Refers to the fortran programming language, version 90/95 specifically. fortran
refers to the whole Fortran family, and FORTRAN refers to FORTRAN/77 specifically.

Proposal: A new value candidate obtained from the proposal distribution.

Proposal distribution:

1. The distribution from which the next proposed value for a parameter is chosen
(when using the “Fixed proposal distribution” proposal strategy).

2. The distribution that is used in generating proposed values for a parameter by
adding a value taken from the distribution to the parameter’s current value (when
using the “Random walk” proposal strategy).

Frequency function is used to refer to a frequency function or a density function that
gauges the ‘goodness’ of variable values.

Variable is used to refer to a data variable or an updated parameter. and the Variable class
that represents these in the Generator.

Equation: refers to equation of functional variables. The equation is represented by an
Equation object.

Generator: Used to refer to the modules of the software that write out the specific exe-
cutable Program that carries out the simulation for a given simulation model.

Program: The program that is run to simulate the problem model. Synonym: generated
program.

Entity: A data structure of the Generator representing a repetitive structure (indexing
structure) of variables. For example alphai, xi both are part of the Entity indexed with i.

Variable group: All variables of a group, that is alphai for all i.

Parser: The ComputationalModelParser class used for reading the input files for the
Generator.

Prior distribution: The prior distribution of the parameters describes their assumed joint
probability distribution before inferences based on the data are made.

Posterior distribution: The posterior distribution of the parameters describes their joint
probability distribution after inferences based on the data are made.

Adjacency matrix: The adjacency matrix of a simple graph is a matrix with rows and
columns labeled by graph vertices, with a 1 or 0 in position ij according to whether i and
j are adjacent or not.

Real number: The data type for floating point numbers is called ‘real’ in Fortran.

Floating point number: A computer representation of a real number with finite precision.

Iteration: A single round of the algorithm when all the parameters have been updated
once.



3

Burn-in-iterations: The iterations that are run before any output is produced.

Thinning factor: The thinning factor t means that every tth iteration value is used in the
output and the rest are discarded.

Update: Proposing a value to a parameter and then accepting it (the value changes) or
discarding it (the value remains the same).

Proposal strategy: The proposal strategy defines how the next proposed value is gener-
ated. Possible choises are

1. Fixed proposal strategy: The next proposed values for a parameter is taken from its
proposal distribution.

2. Random walk: The next proposed value for a parameter is created by adding a value
taken from the proposal distribution to the current value of the parameter.

Update strategy: The update strategy describes how and in which way variables are
updated. Only one update strategy, ‘sequential update’, has been implemented. Random
update strategy was designed but now implemented.

Semi-Bayesian model: A Bayesian model which allows cycles when dealing with spatial
dependencies.



4

3 Overview of the software

The software product analyzes spatial data by using a semi-Bayesian model and prior
distributions to calculate points from the posterior distributions for a set of variables.
This kind of computation is heavy and time consuming on large sets of data. In order to
avoid creating one static program, which can run simulations with all possible models, the
program consists of two parts: the generator and the generated program. The generator
reads the input files and creates a customized Fortran program for the given problem.

The input files define the problem and how the program should run the simulation with
the given model. The main input file is the model file, which describes a semi-Bayesian
model. The model could describe, for example, a bird species’ distribution in Finland.
The main topic of interest is the question about the most accurate model to describe a
given real life phenomenon. The only way to compare the models is to compare the re-
sults. The program will not analyze how accurate the given model is, it will only calculate
points from the posterior distribution for variables and print them as output.

The program is limited to small set of possible simulation problems. There are limitations
to the models and distributions that can be used. The key feature is the possibility to use
spatial relations in the calculations.

The generator can be executed on any computer with the Java runtime environment ver-
sion 1.5 (or greater) installed. The generated program however needs a Fortran 90 com-
piler. It also uses NAG libraries, so a computer with a valid NAG license is required. The
program was designed with NAG Mark 19.

Use of random update strategy was designed and specified in the design document, but it
was not implemented due to schedule pressure. Some other features were dropped earlier
in the project. These include, for example, variable blocks and the use of the Gibbs
algorithm. Data structures and the generator changed only a little from the specification
in the design document. The generator’s classes and changes are specified in chapter 5.
See chapter 7 for further development ideas.



5

4 The generated program

This section introduces the Program. It explains about the data structures of the Program,
outlines its structure in modules and summarizes the operations of each module. The
section provides deeper understanding of the simulation implementation, and serves as a
reference for building the Generator.

4.1 Data structures

Figure 1: A diagram of the generated data structures.

Figure 1 shows the data structures used in the generated program. The variable_int and
variable_real can represent both data variables and parameters. Each instance corre-
sponds for example to one alpha32 or x31,4. A variables instance represents a repetitive
structure of the model, for example alpha and x. The one_dim and two_dim are used for
one-dimensional and two-dimensional variable structures, respectively.

In the case that a variable comes from data that has missing values in it, the one_dim_missing
or two_dim_missing-index array contains the indices of the missing data, which are then



6

treated as parameters.

The fields update_count and updates_wanted are included only if the user has chosen the
random update strategy. (It is partially implemented, see chapter 7)

If the model has a spatial structure, it is represented with the help of the spatial array;
this array has as many rows as the spatial structure has elements, and as many columns
as is the greatest number of neighbours in the structure plus one. One row represents one
spatial element. The first column of each row contains the number of neighbours that
particular element has; the rest contain the indices of the neighbours.



7

4.2 Modules

Figure 2: A diagram of the generated modules and their subroutines.

Figure 2 illustrates the division of the generated program into modules. Each module is
placed in its own source file, which are indicated in the upper right corners.

For each subroutine and function the following information is included:

• Subroutine/function name: The name of the subroutine or the function in the pro-
gram.

• Description: What the subroutine or the function is meant to do.

• Parameters: The names, types and intents (IN, OUT, INOUT) of the parameters.



8

This information should suffice for the implementation of the Generator and allow for
quicker understanding of the prototype code and the final generated program structure.

4.2.1 Module proposal

Subroutine name: generate_int

Description: Generates a buffer of new proposals for a given variable by
its name.

Parameters: CHARACTER(LEN=*), INTENT(IN) :: name
INTEGER, DIMENSION(:), INTENT(OUT) :: buffer

1. name:
On entry: The name of the variable to generate pro-
posals for, e. g. alpha

2. buffer:
On exit: The buffer filled with new proposals from
the variable’s proposal distribution.

Subroutine name: generate_real

Description: Generates a buffer of new proposals for a given variable by
its name.

Parameters: CHARACTER(LEN=*), INTENT(IN) :: name
REAL, DIMENSION(:), INTENT(OUT) :: buffer

1. name:
On entry: The name of the variable to generate pro-
posals for, e. g. alpha

2. buffer:
On exit: The buffer filled with new proposals from
the variable’s proposal distribution.



9

4.2.2 Module input

Subroutine name: read_data

Description: Reads the data from data files into the data structure defined
in figure 1.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the is_data and value fields
are set.

Subroutine name: set_initial_values

Description: This subroutine reads the initial values from a data file into
the data structure defined in figure 1.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the value fields are set cor-
responding the initial values.



10

Subroutine name: set_spatial

Description: This subroutine reads the adjacency matrix from a file and
initializes the corresponding data structure.

Parameters: The structure defining spatial relationships, for example:
INTEGER, DIMENSION(300, 5), INTENT(IN) :: spatial
Note that the parameters depend on the model in use.

1. INTEGER, DIMENSION(...) :: spatial:
On entry: The data structure describing the spatial
relationships
On exit: The data structure correctly initialized. That
is, spatial(i, 1) defines how many neighbours unit i
(for example square i) has and spatial(i, 2) ... define
the indices of the neighbours.

4.2.3 Module output

Subroutine name: write_output

Description: This subroutine writes the output of one iteration into the
output file. The file is opened and closed in the main pro-
gram.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(IN) :: alpha
TYPE(variables_int), INTENT(IN) :: beta
TYPE(variables_int), INTENT(IN) :: x
TYPE(variables_int), INTENT(IN) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model



11

Subroutine name: write_summary

Description: This subroutine writes the summary of the simulation into a
summary output file. The summary includes the number of
updates and successful changes for each parameter.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(IN) :: alpha
TYPE(variables_int), INTENT(IN) :: beta
TYPE(variables_int), INTENT(IN) :: x
TYPE(variables_int), INTENT(IN) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model

4.2.4 Program main

Program name: main

Description: This is the main program which performs the simulation by
using the subroutines described below.

Subroutine name: random_init

Description: This subroutine initializes the NAG random number gener-
ator.

Generating: This subroutine is completely static so no information is
needed.



12

Subroutine name: update_all

Description: This subroutine updates each parameter once. It occurs in
the generated program if and only if the user has chosen the
sequential update strategy.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the value fields are updated
as the next iteration is performed.

Subroutine name: set_functional

Description: This subroutine sets the values of functional variables be-
fore the simulation.

Parameters: The variables found in the model, for example:
TYPE(variables_real), INTENT(INOUT) :: alpha
TYPE(variables_int), INTENT(INOUT) :: beta
TYPE(variables_int), INTENT(INOUT) :: x
TYPE(variables_int), INTENT(INOUT) :: obs
Note that the parameters depend on the model in use.

1. Each TYPE(variables_...):
On entry: The data structure describing the corre-
sponding variable in the model
On exit: The same except the value fields of func-
tional variables are updated.



13

5 The generator program

The software consists of the following packages and classes:

PIANOS.datastructures

• BetaDistribution

• BinomialDistribution

• ComputationalModel

• ContinuousUniformDistribution

• DiscreteUniformDistribution

• Distribution

• DistributionFactory

• DistributionSkeleton

• Entity

• Equation

• PoissonDistribution

• UserDefinedDistribution

• Variable

PIANOS.exceptions

• EntityNotFoundException

• IllegalParametersException

• InvalidModelException

• InvalidProposalException

• MissingDistributionException

• MissingFunctionException

• SyntaxException

PIANOS.generator



14

• Acceptation

• Definitions

• FortranMain

• Input

• Output

• Proposal

PIANOS.io

• ComputationalModelParser

• FortranWriter

PIANOS

• Generator

5.1 Generator

The Generator class includes the main() and writeProgram() methods. writeProgram() can
be used for example a graphical user interface. It has the same functionality as main().
The Generator uses the Parser to read the input files. After it the Generator uses the classes
in the package generator. Those classes generate the different Fortran modules. The
main() method of the class Generator expects the user to give the input files as command
line parameters. The order of these files must be:

1. User defined distribution file

2. Model file

3. Initial value file

4. Simulation parameter file

5. Proposal distribution file

6. Update strategy file

7. The file defining which variables are output

8. The file to save the last values to

Input file names can also be given in a single file that is given to the Generator, See the
PIANOS manual for details.



15

5.2 package PIANOS.datastructures

This package contains the data structures of the software.

5.2.1 Variable

A number of variables are defined in the model file. These variables are represented by
Variable objects. One Variable object describes one variable defined in the file. Equations
and distributions in the model file define dependencies which are used to link the objects.
Some of the fields are filled in after the reading of simulation parameter files, for example
the proposal distribution. Distributions are saved in the Variable objects as Distribution
objects. Equations are saved in the Variable objects as Equation objects. A Variable object
can have either a distribution (stochastic) or an equation (functional).



16

5.2.1.1 Fields of Variable

Field name Type Description
name String The name of the variable.
belongsTo Entity The Entity the variable is associated with, or

null if it isn’t associated with any entity.
affects LinkedList

<Variable>
Pointers to each Variable that this Variable
affects.

depends LinkedList
<Variable>

Pointers to each Variable that this Variable
depends on.

data boolean true if the variable is data, otherwise false.
column int The column the variable is found in if the

variable is data.
functional boolean true if the variable is functional, false if it’s

stochastic.
equation Equation The equation for the variable if the variable

is functional, otherwise null.
distribution Distribution The Distribution for the variable if the vari-

able is stochastic, otherwise null.
proposal Distribution The proposal distribution of the variable.
missingValues int The number of missing values if the variable

is data.
algorithm String The algorithm that is used for updating the

variable. The program will use only one al-
gorithm, so this field is needed only if some-
one expands the program to use other algo-
rithms.

proposalStrategy String The proposal strategy used for the variable.
typeInteger boolean true if the variable is an integer, false if it’s a

double.
updates int The number of minimum updates for the

variable. This field is not used since the ran-
dom update strategy is not implemented.

printed boolean true if the variable is printed during the sim-
ulation, false otherwise.

spatial boolean true if the variable is a functional variable
with a spatial expression (SUM or COUNT),
false otherwise.



17

5.2.1.2 Operations of Variable

Operation Return type Description
Variable() - Constructor for a Variable object.
getAffectsList() LinkedList

<Variable>
Returns a list of all Variables that this Vari-
able affects.

addAffected(Variable variable) void Adds a Variable to affects.
getDependsList() LinkedList

<Variable>
Returns a list of all Variables that depend on
this Variable.

addDependence(Variable vari-
able)

void Adds a Variable to depends.

getAlgorithm() String Returns the algorithm used to update this
Variable.

setAlgorithm(String algorithm) void Sets the algorithm used to update this Vari-
able.

getColumn() int Returns the column of a data file in which
this Variable is found.

setColumn(int column) void Sets the column of a data file in which this
Variable is found.

isData() boolean Returns true if this Variable comes from
data, false otherwise.

setData(boolean data) void Sets whether the Variable comes from data.
getEquation() Equation Returns the Variable’s Equation if the Vari-

able is functional, null is returned otherwise.
setEquation(Equation equation) void Set the Equation for the Variable.
getDistribution() Distribution Returns a Distribution object if the Variable

is stochastic, null is returned otherwise.
setDistribution(Distribution dis-
tribution)

void Sets the Distribution for the Variable.

isFunctional() boolean Returns true if the Variable is functional,
false otherwise.

setFunctional(boolean funct) void Sets whether the Variable is functional.
isSpatial() boolean Returns true if the Variable is spatial, false

otherwise.
setSpatial(boolean spatial) void Sets whether the Variable is spatial (func-

tional and has a SUM(&x) -style equation).
getName() String Returns the name of the variable.
setName(String) void Sets the name of the variable.
getProposal() Distribution Returns the variable’s proposal distribution.
setProposal(Distribution pro-
posal)

void Sets the proposal distribution to the Variable.



18

getStrategy() String Returns the variable’s proposal strategy.
setStrategy(String strategy) void Sets the proposal strategy.
getUpdates() int Returns the number of updates.
setUpdates(int updates) void Sets the number of updates.
getMissingValueCount() int Returns the count of missing values in data.
incrementMissingValues() void Increases missing values by one.
isInteger() boolean Returns true if the Variable is an integer,

false otherwise.
setType(boolean typeInteger) void Sets the type of the variable.
getEntity() Entity Returns the Entity the Variable belongs to or

null if the variable is global.
setEntity(Entity entity) void Sets the Entity that the Variable belongs to.
setPrinted() void Sets the Variable to be printed during simu-

lation.
isPrinted() boolean Returns true if the variable is printed during

the simulation, false otherwise.
isOk() boolean Checks that all necessary fields are set and

that dependencies are sane.



19

5.2.2 Entity

A number of structures are defined in the model file. A structure can link a number of vari-
ables, defining the indexing and the data file(s) used. An Entity object is constructed for
each structure. Entity objects are used when correct indexing for variables is computed.
The data file names are also saved in the objects.

5.2.2.1 Fields of Entity

Field name Type Description
dataFile String The name of the file where the data related

to the entity is found. null if the the entity is
not related to data.

isMatrix boolean true if the data is in matrix format, otherwise
false.

name String The name of the Entity.
size int The number of entities of this type.
spatialMatrixFile String The name of the file where the adjacency ma-

trix is found. null if the entity is not spatial.
variableList LinkedList

<Variable>
The list of Variables related to the Entity.

xCoordinate Entity The Entity that the horizontal dimension in
the data matrix represents. null if the entity
is not an intersection of two entities.

yCoordinate Entity The Entity that the vertical dimension in the
data matrix represents. null if the Entity is
not an intersection of two entities.



20

5.2.2.2 Operations of Entity

Operation Return type Description
Entity() - Constructor for an Entity object.
addVariable(Variable variable) void Adds a Variable object to the variable list.
getVariableList() LinkedList

<Variable>
Returns the variable list.

setName(String name) void Sets the name of the entity.
getName() String Returns the name of the entity.
setSize(int size) void Sets the size of this Entity. This is the num-

ber of lines in the data file.
getSize() int Returns the size of the object.
setLineLength(int lineLength) void Sets the line length.
getLineLength() int Returns the line length.
getDataFile() String Returns the name of the data file.
setDataFile(String dataFile) void Sets the name of the data file.
isMatrix() boolean Returns true if the Entity combines two other

Entities, and thus is a matrix.
setMatrix(boolean isMatrix) void Sets the isMatrix attribute of the entity.
getSpatialMatrixFile() String Returns the file name of the adjacency ma-

trix. null is returned if there is no matrix.
setSpatialMatrixFile(String spa-
tialMatrixFile)

void Sets the name of the adjacency matrix file.

getXCoordinate() Entity Returns the horizontal dimension Entity.
null is returned if the Entity is not a matrix.

setXCoordinate(Entity XCoor-
dinate)

void Sets the horizontal dimension Entity.

getYCoordinate() Entity Returns the vertical dimension Entity. null is
returned if the Entity is not a matrix.

setYCoordinate(Entity YCoor-
dinate)

void Sets the vertical dimension Entity.

isSpatial() boolean Returns true if the entity is spatial.



21

5.2.3 ComputationalModel

The Parser returns a ComputationalModel object to the generator. The object has all the
needed information to construct a working Fortran program which computes the given
problem.

5.2.3.1 Fields of ComputationalModel

Field name Type Description
iterations int The number of total iterations. This attribute

is valid only if the update strategy is sequen-
tial.

burnIn int The number of iterations the program does
before the printing of variables starts.

thinning int The number of iterations between the print-
ing of variables.

updateStrategy String The update strategy used: ‘sequential’ or
‘random’. The random update strategy is not
implemented

maxSpatialNeighbours int The maximum number of spatial neighbours
in the simulation.

modelFile String The file name of the model description file.
initialValueFile String The file name of the initial value file.
outputFile String The file name of the output file.
summaryFile String The file name of the summary file.
lastValuesFileName String The file name of the last values file.
variableList LinkedList

<Variable>
A linked list of all global Variable objects.

entityList LinkedList
<Entity>

A linked list of all Entity objects.

entityMapper HashMap
<String,
Entity>

A collection which combines Entity objects
and their names.

variableMapper HashMap
<String,
Variable>

A collection which combines all Variables
and their names.

topologicalVariableList ArrayList
<Variable>

A collection of all variables in topological
order.



22

5.2.3.2 Operations of ComputationalModel

Operation Return
type

Description

ComputationalModel(int it-
erations, int burnIn, int thin-
ning, String updateStrategy,
LinkedList <Variable> vari-
ableList, LinkedList <Entity>
entityList, HashMap <String,
Entity> entityMapper, HashMap
<String, Variable> variableMap-
per, String modelFile)

- Constructor for a ComputationalModel ob-
ject.

getIterations() int Returns the total iterations, if specified. If
the update strategy is random, this definition
is not appropriate and this method returns -1.

getBurnIn() int Returns the length of the burn-in period.
getThinning() int Returns the thinning.
getNeighbourCount() int Returns the maximum number of spatial

neighbours.
getUpdateStrategy() String Returns the update strategy.
getVariableList() LinkedList

<Variable>
Returns the linked list of all global Variable
objects.

getEntityList() LinkedList
<Entity>

Returns the linked list of all Entity objects.

getEntityMapper() HashMap
<String,
Entity>

Returns the HashMap collection which com-
bines all Entity objects and their names.

getVariableMapper() HashMap
<String,
Variable>

Returns the HashMap collection which com-
bines all Variable objects and their names.

getModelFileName() String Returns the name of the model description
file.

getOutputFileName() String Returns the name of the output file.
getInitialFileName() String Returns the name of the initial value file.
getSummaryFileName() String Returns the name of the summary file.
getLastValuesFileName() String Returns the name of the last values file.
getTopologicalVariableList() ArrayList

<Variable>
Returns a topologically ordered collection of
Variable objects.



23

5.2.4 Equation

An Equation is constructed for each functional variable. All variables in the functional
variable’s equation and the equation itself are saved in this Equation object.

5.2.4.1 Fields of Equation

Field name Type Description
parameters Variable[] An array of all variables in a equation. This

field is used to store the variables after the
linking.

equation String[] The equation of the object, broken down so
that every index is either a single variable
name or something else (so that each index
can be matched against variable names and
replaced with the final Fortran expression)

5.2.4.2 Operations of Equation

Operation Return
type

Description

Equation(String[] equation,
Variable[] parameters)

- The constructor for Equation.

getEquation() String[] Returns the equation stored in the Equation.
setParameters(Variable[] param-
eters)

void Sets the parameters (Variables) used in the
equation.

getParameters() Variable[] Returns the array of parameters.
setParameters(Variable parame-
ter)

void Sets Parameters to be {parameter}. This
is useful for Equations with spatial expres-
sions.



24

5.2.5 Distribution

The Distribution is an abstract class that provides a simple interface for accessing dif-
ferent distributions’ proposal generation and frequency functions without knowing their
specifics. Distribution is extended by classes UserDefinedDistribution, DiscreteUnifor-
mDistribution, BinomialDistribution, PoissonDistribution, ContinuousUniformDistribu-
tion and BetaDistribution.

5.2.5.1 Fields of Distribution

The fields of Distribution are outlined here.
Field name Type Description
numberOfParameters int The number of parameters for the mathemat-

ical function of the distribution.
intParameter int [num-

berOfPa-
rameters]

Contains the parameters of this Distribution
that are fixed integers.

realParameter double
[num-
berOfPa-
rameters]

Contains parameters of this Distribution that
are fixed real numbers.

variableParameter Variable
[num-
berOfPa-
rameters]

Stores the parameters that must be refer-
enced from Variable instances.

parameterType int [num-
berOfPa-
rameters]

Contains a map of the parameter types that is
used to index the different type parameter ar-
rays in correct order. Acceptable values are:
0 = integer, 1 = double, 2 = Variable.

parameterString String
[num-
berOfPa-
rameters]

Contains the raw parsed parameter Strings
that are used to build the links to the actual
parameters according to their names.



25

5.2.5.2 Operations of Distribution

This section introduces the operations of Distribution.

Operation Return
type

Description

getNumberOfParameters() int returns the value of numberOfParameters.
isInteger(int index) boolean Returns true if the parameter reference at in-

dex is to be an INTEGER in the Program to
be generated, otherwise returns false.

getParameter(int index) Object Returns the parameter at index.
setParameter(int index, int pa-
rameter)

void sets parameter into index of intParameter,
and updates parameterType accordingly.

setParameter(int index, double
parameter)

void sets parameter into index of realParameter,
and updates parameterType accordingly.

setParameter(int index, Variable
parameter)

void sets parameter into index of variablePa-
rameter, and updates parameterType accord-
ingly.

getParameterString(int index) String Returns the parsed parameter String at index
of parameterString

setParameterString(int index,
String parameter)

void Sets the parsed parameter String at index of
parameterString

abstract getIntroduction() ArrayList<String>Returns the introduction lines (EXTERNAL)
necessary for using this distribution.

abstract getGenCode(String[]
parameters

ArrayList<String>Returns the Fortran call for the proposal gen-
eration subroutine for the distribution as a
String[].

abstract getFreqCode(String[]
parameters)

ArrayList<String>Returns the Fortran call for the frequency
subroutine for the distribution as a String[].



26

5.2.6 DistributionSkeleton

The DistributionSkeleton serves as a collection of information that DistributionFactory
uses for constructing UserDefinedDistribution instances.

5.2.6.1 Fields of DistributionSkeleton

Field name Type Description
numberOfParameters int The number of parameters for the mathemat-

ical function of the distribution.
typeOfParameters boolean

[num-
berOfPa-
rameters]

Contains the types of parameters of this
skeleton of a user-defined distribution. The
value of an index is true if the parameter at
the index in question should be an integer,
otherwise it is false.

hasGenFunction() boolean true iff the distribution in question has a pro-
posal generation function, that is the user
distributions file has the header name_gen
and such a subroutine exists there. Note that
user generation subroutines are expected to
generate an arrayful of proposals on a single
invocation.

name String Contains the name of the distribution, this
being the first part of the distribution’s
corresponding subroutine names mentioned
above.



27

5.2.6.2 Operations of DistributionSkeleton

These operations allow for query of field values, only. Setting the field values is always
done upon creation, see the constructor.

Operation Return
type

Description

DistributionSkeleton (String
name, int numberOfParameters,
boolean[] typeOfParameters,
boolean hasFreqFunction,
boolean hasGenFunction)

- The constructor: creates a new Distribu-
tionSkeleton instance. This will be called
after reading the user-defined distributions
from the user distribution file, once for each
such distribution name.

getName() String Returns the value of name.
getNumberOfParameters() int returns the value of numberOfParameters.
getTypeOfParameters() boolean[] Returns a reference to typeOfParameters
hasGenFunction() boolean Returns the value of hasGenFunction

5.2.7 DistributionFactory

The DistributionFactory stores information about the distributions, both user-defined and
provided. It can be used to match a distribution name to its corresponding Distribution
entity and create an instance of this for the linking of a Variable to other Variables via its
Distribution.

5.2.8 Fields of DistributionFactory

Field name Type Description
userDistributions HashMap

<String,
Distribu-
tionSkele-
ton>

Contains a map of DistributionSkeletons that
can be accessed by the distribution names.



28

5.2.8.1 Operations of DistributionFactory

The operations used for acquiring distributions for variables.

Operation Return
type

Description

DistributionFactory (File dis-
tributionFile)

- The constructor: associates the new instance
with a given user-defined distributions file.

getDistribution(String name) Distribution Returns a reference to a newly created Dis-
tribution with the given name, by first index-
ing the userDistributions and then construct-
ing a Distribution subclass from the informa-
tion. Returns also internal Distributions such
as BetaDistribution.

5.2.9 UserDefinedDistribution

UserDefinedDistribution is a subclass of Distribution. A UserDefinedDistribution object
is constructed for each user-defined distribution used in the model.

5.2.9.1 Fields of UserDefinedDistribution

UserDefinedDistribution has the same fields as other Distribution class’ subclasses have.
It also has a field for a DistributionSkeleton object.

5.2.9.2 Operations of UserDefinedDistribution

The UserDefinedDistribution represents a non-standard distribution instance. It differs
from Distribution only with its constructor.

Operation Return
type

Description

UserDefinedDistribution (Dis-
tributionSkeleton userDistribu-
tion)

- The constructor: creates a new instance ac-
cording to the information in userDistribu-
tion.



29

5.3 package PIANOS.io

This package contains the classes that read the input or write the output.

5.3.1 ComputationalModelParser

The parser is the part of the generator that reads the model and simulation input files, puts
the data into correct places and returns the data structure to the main generator program.

5.3.1.1 Operations



30

Operation Return type Description
readModel( String modelFile-
Name, String initialValueFile-
Name, String simulationFile-
Name, String proposalFile-
Name, String updateFileName,
String toOutputFileName, Dis-
tributionFactory factory) throws
IOException, SyntaxException,
MissingDistributionException

Computational-
Model

Parses all the files and constructs a Com-
putationalModel instance that represents
the model files given to the Parser. Calls
other methods of the Parser. Called by the
Generator.

readModelFile( File file,
LinkedList <Variable> vari-
ableList, LinkedList <Entity>
entityList, HashMap <String,
Entity> entityMapper, HashMap
<String, Variable> variableMap-
per, DistributionFactory fact)
throws IOException, SyntaxEx-
ception, MissingDistributionEx-
ception

void Reads the model file and puts the infor-
mation into the maps and lists provided.

parseVariable( File file, boolean
isInteger, String toParse,
HashMap <String, Variable>
variableMapper, Distribution-
Factory fact) throws SyntaxEx-
ception, MissingDistributionEx-
ception

Variable Reads a variable definition line and re-
turns a representation of the variable, pub-
lic for testing purposes.

readEntity( File file, LinkedList
<Entity> entityList, HashMap
<String, Entity> entityMap-
per, HashMap <String, Vari-
able> variableMapper, String
header, Scanner reader, Dis-
tributionFactory fact) throws
SyntaxException, MissingDis-
tributionException

void Reads an entity section in the model file
and saves the information into the struc-
tures provided.



31

readSimulation( File file) throws
SyntaxException, IOException

int[] Reads a simulation parameter file that gives
burn-in and thinning. Returns {burn-in, thin-
ning}.

readUpdate( File file, HashMap
<String, Variable> variableMap-
per, String updateStrategy)
throws SyntaxException, IOEx-
ception

Object[] Reads the update strategy file, saves individ-
ual updates ( if any) into the variables in the
maps, returns {String updateStrategy, int it-
erations}

readOutput( File file, HashMap
<String, Variable> variableMap-
per) throws SyntaxException,
IOException

String[] Reads the parameter names to output -file
and sets isPrinted-flags.

readProposal( File file,
HashMap <String, Vari-
able> variableMapper, Dis-
tributionFactory fact) throws
SyntaxException, IOException,
MissingDistributionException

void Reads the proposal distributions/strategies
file, sets them for specified variables.

readEntityData( LinkedList
<Entity> entityList) throws
IOException, SyntaxException

void Reads through entities’ data files to see if
they are correct. builds the missing values
matrix files.

readInitialValues( File file,
HashMap <String, Variable>
variableMapper) throws IOEx-
ception, SyntaxException

void Reads the initial values definition file and
checks that the format is correct and all miss-
ing values of data are present.

countNeighbours( LinkedList
<Entity> entityList) throws
SyntaxException, FileNot-
FoundException

int Counts the maximum number of spatial
neighbours in the model.



32

5.3.2 FortranWriter

FortranWriter receives lines of Fortran source code and writes them to a file correctly
indented and wrapped to 79 characters in length.

5.3.2.1 Interface

Operation Return type Description
FortranWriter( String file-
Name)

- Constructor, specifies which file to write

write( ArrayList <String> lines)
throws IOException

Writes lines to the specified file, correctly in-
dented and multilined if longer than 79 char-
acters

write( String[] lines) throws
IOException

Writes lines to the specified file, correctly in-
dented and multilined if longer than 79 char-
acters

5.3.2.2 Indentation

If one of the following keywords is found on a line, the next line begins an indented
section.

• BLOCK DATA

• DO

• FORALL

• FUNCTION

• IF

• INTERFACE

• MODULE

• PROGRAM

• SELECT CASE

• SUBROUTINE

• TYPE typename

• WHERE

If END is found on a line, the previous line was the last line of an indented section.

Keywords that mark both the ending of the previous indented section and the beginning
of another:



33

• CASE

• CONTAINS

• ELSE

• ELSEWHERE

5.3.2.3 Line wrapping

If a line is over 79 characters long, it’s cut at the last whitespace found so that it’s no
longer than 77 characters. ‘ &’ is added to the end of the line and the rest of it is moved
to the next line, indented. If the line is cut from the middle of a character string literal,
‘&’ is appended to the beginning of the cut, too. If the remaining line is too long as well,
it receives the same treatment excluding the indenting of the following line.



34

5.4 package PIANOS.generator

This package contains classes that generate different parts of the Fortran program.

5.4.1 FortranMain

This class generates the Fortran module main (see 4.2.4).

Public methods
Operation Return type Description
generateMain (String callPa-
rameters, ComputationalModel
model) throws IOException,
InvalidModelException, Il-
legalParametersException,
MissingFunctionException

void Generates and writes the Fortran module
main.f90.

Private methods
Operation Return type Description
generateUpdateOne (String pa-
rameters, ComputationalModel
model)

ArrayList<String> Generates the subroutine update_one. Note:
This method has not been implemented and
it does nothing!

generateUpdateAll (String pa-
rameters, ComputationalModel
model) throws InvalidModelEx-
ception, IllegalParametersEx-
ception, MissingFunctionExcep-
tion

ArrayList<String> Generates the subroutine update_all.

setSpatialStartValue (Variable
var) throws InvalidModelExcep-
tion

ArrayList<String> Generates code that calculates the initial
value for a spatial variable var.

setFunctionalStartValue (Vari-
able var)

ArrayList<String> Generates code that calculates the initial
value for a functional non-spatial variable
var.



35

5.4.2 Acceptation

Acceptation generates parts of the subroutine update_all: new value generation, accepta-
tion formulae and acceptation codes (things to do when a proposal is accepted). Fortran-
Main calls the methods of this class.

Public methods
Operation Return type Description
setTopologicalList (Ar-
rayList<Variable> list)

void Sets the topological variable list needed in
the following methods. This method should
be called before calling any other methods of
this class.

generateNewValueCode (Vari-
able variable)

ArrayList<String> Generates code that fetches a proposed new
value for a parameter from its buffer or if the
buffer is empty, calls the Fortran subroutine
‘generate’.

generateNewValues Functional-
Code(Variable variable) throws
InvalidModelException

ArrayList<String> Generates code that calculates new values
for functional parameters depending on the
variable.

generateAcceptationFormula
(Variable variable) throws
InvalidModelException

ArrayList<String> Generates code that calculates the accepta-
tion probability for the new value.

generateAcceptationCode (Vari-
able variable, String strategy)
throws InvalidModelExcpetion

ArrayList<String> Generates code that decides whether the new
value is accepted and makes the necessary
changes: updates the value of the current
parameter and all functional parameters de-
pending on it.

Private methods
Operation Return type Description
generateSpatialDeps (Variable
functional, String indexing,
boolean spatialY)

ArrayList<String> Sets correct indexing for functional variables
with spatial dependencies. For example: q
= sum(&x) and p = q/2.0. When x is up-
dated (the spatial target) first q is calculated
for all neighbours of x, then all neighbours
of x get a new p to match their new q val-
ues. This method is used when generating
the new value calculation for p. This meth-
ods doesn’t generate any loops.



36

Operation Return type Description
acceptationAffectedOf (Variable
variable, Variable depending)

ArrayList<String> Generates code which updates the value of
depending when the value of variable is ac-
cepted. Depending is assumed to be non-
spatial.

generateUpdateOneFunctional
(Variable depending)

ArrayList<String> Generates code that replaces the value of de-
pending with its new value.

generateNewValueForOne
Functional (Variable functional,
Set<Variable> newToBeUsed)
throws InvalidModelException

ArrayList<String> Generates code which calculates the new
value for functional by using the new values
of the variables belonging to the set newTo-
BeUsed and the current values of other vari-
ables.

generateAcceptationFormula
Global (Variable variable)

ArrayList<String> Generates code that calculates the accepta-
tion probability for a global variable.

generateAcceptationFormula
OneDimensional (Variable
variable)

ArrayList<String> Generates code that calculates the accepta-
tion probability for an one-dimensional vari-
able.

generateAcceptationFormula
TwoDimensional (Variable
variable)

ArrayList<String> Generates code that calculates the accepta-
tion probability for a two-dimensional vari-
able.

generateLikelihoodFormula
Global (Variable depending,
Set<Variable> newToBeUsed)

ArrayList<String> Generates code that calculates the likelihood
probability of a global variable depending
by using new values of the variables belong-
ing to newToBeUsed, that is: P(depending |
new values of variables in newToBeUsed) /
P(depending | values of variables in newTo-
BeUsed).

generateLikelihoodFormula
OneDimensional (Variable
depending, Set<Variable>
newToBeUsed)

ArrayList<String> Generates code that calculates the likeli-
hood probability of an one-dimensional vari-
able depending by using new values of the
variables belonging to newToBeUsed, that
is: P(depending | new values of variables
in newToBeUsed) / P(depending | values of
variables in newToBeUsed).

generateLikelihoodFormula
TwoDimensional (Variable
depending, Set<Variable>
newToBeUsed)

ArrayList<String> Generates code that calculates the likeli-
hood probability of a two-dimensional vari-
able depending by using new values of the
variables belonging to newToBeUsed, that
is: P(depending | new values of variables
in newToBeUsed) / P(depending | values of
variables in newToBeUsed).

generateTransitionFormula
(Variable variable)

ArrayList<String> Generates code that calculates the transition
probability for variable, that is q(variable’,
variable) / q(variable, variable’).



37

5.4.3 Input

This class is used to generate the Fortran module ‘input’. See 4.2.2.

Public methods
Operation Return type Description
generateInput (String callPa-
rameters, ComputationalModel
model) throws IOException,
SyntaxException

void Generates and writes the Fortran module in-
put.f90.

Private methods
Operation Return type Description
generateReadData
(LinkedList<Variable> vari-
ables, LinkedList<Entity>
entities, String callParameters)
throws SyntaxException

ArrayList<String> Generates the subroutine read_data.

generateSetInitialValues (String
file, LinkedList<Variable> vari-
ables, LinkedList<Entity> enti-
ties, String callParameters)

ArrayList<String> Generates the subroutine setInitialValues.

generateReadSpatial (int neigh-
bours, LinkedList<Entity> enti-
ties

ArrayList<String> Generates the subroutine set_spatial.

5.4.4 Output

This class is used to generate the Fortran module ‘output’. See 4.2.3.

Public methods
Operation Return type Description
generateOutput (String callPa-
rameters, ComputationalModel
model) throws IOException

void Generates and writes the Fortran module
output.f90.



38

Private methods
Operation Return type Description
generateWriteOutput (Computa-
tionalModel model, String call-
Parameters)

ArrayList<String> Generates the subroutine write_output.

generateWriteSummary (Com-
putationalModel model, String
callParameters)

ArrayList<String> Generates the subroutine write_summary.

generateWriteLastValues (Com-
putationalModel model, String
callParameters)

ArrayList<String> Generates the subroutine write_last_values.

5.4.5 Proposal

This class is used to generate the Fortran module ‘proposal’. See 4.2.

Operation Return type Description
generateProposal (Computa-
tionalModel model) throws
InvalidProposalException,
IllegalParametersException,
MissingFunctionException,
IOException

void Generates and writes the Fortran module
proposal.f90.



39

6 Correspondence to requirements

This chapter describes the correspondence between requirements found in SRS document
and the implementation of the software.

Requirement defines the identification and name of the requirement. Priority defines the
priority of the requirement (E = essential, C = conditional, O = optional), Implementation
status describes whether the requirement was implemented and Chapters list the chapters
of this document related to the particular requirement.

Possible implementation statuses include:

• Implemented: The software supports the requirement

• Designed but not implemented: The requirement was designed to be implemented
but it was dropped at the implementation phase

• Not implemented: The was not designed and it was not implemented

6.1 Model requirements

Requirement Priority Implementation status
M1: Using models E Implemented
M2: Defining variables whose val-
ues are taken from data

E Implemented

M3: Defining parameters whose
values are not taken from data

E Implemented

M4: Defining dependencies E Implemented
M5: Equations E Implemented
M6: Defining variable/parameter
repetition structures

E Implemented

M7: Defining spatial relations E Implemented
M9: Reading models from text files E Implemented
M10: The distributions used E Only distributions found in

the NAG library are sup-
ported.

M11: Distributions defined by the
user

C Implemented

M12: Defining distributions E Implemented

6.2 Data requirements

Requirement Priority Implementation status
D1: The general data format E Implemented
D2: Data not available E Implemented
D3: Invalid data E Implemented



40

6.3 Simulation requirements

Requirement Priority Implementation status
S1: The algorithm used E Implemented
S2: Choice of algorithm C Not implemented
S3: Setting the number of updates E Implemented (except when

related to blocks)
S4: Setting the number of burn-in
iterations

E Implemented

S5: Setting the thinning factor E Implemented
S6: Setting the blocks C Not implemented
S7: Setting the update strategy C Designed but not imple-

mented
S8: Setting the weight of the blocks O Not implemented
S9: Setting the proposal strategies
for variables

E Implemented

S10: Proposal distributions E Implemented
S11: Setting initial values E Implemented
S12: Defining parameters to output E Implemented
S14: Informing the user about the
progress

E Implemented

S15: Soft stop O Not implemented
S16: Parameters in random walk O Not implemented

6.4 Output requirements

Requirement Priority Implementation status
OP1: Writing output into a file E Implemented
OP2: Output file names E Implemented
OP3: The output E Implemented
OP4: Information written to output
files

E Implemented

OP5: Summary of the simulation C Implemented
OP6: File access check C Implemented

6.5 General error conditions

Requirement Priority Implementation status
E1: File not found E Implemented
E2: Reporting syntax errors O Implemented
E3: Reporting semantic errors O Not implemented



41

6.6 Non-functional requirements

Requirement Priority Implementation status
N1: Working on Linux E Implemented
N2: The implementation language E Implemented
N3: Parallel computation O Not implemented
N4: Graphical user interface O Not implemented

6.7 General requirements

Requirement Priority Design status
G1: Adding comments to definition
files

E Implemented



42

7 Future development

The following subsections describe features that could be added to the software and define
which parts of the program they would affect. The features which could be implemented
easily are described at first.

7.1 Random update strategy

Requirement S7

The only change necessary would be to add the method generateUpdateOne to Fortran-
Main. Other classes and methods would remain unchanged. (For example the classes
Definitions, Acceptation and the Parser already support the random update strategy.)

The prototypes have the subroutine update_one implemented so that they could be used
when implementing the method generateUpdateOne.

This feature was designed but not implemented.

7.2 More distributions

Requirement M10

More distributions could be added by modifying the Fortran module user_dist.f90. No
changes to the Generator would be needed. Some subroutines are trivial to implement by
using existing NAG subroutines and functions while other subroutines are more difficult.

7.3 Making the generating quicker

If some input files (for example data) are not changed since the previous run the generator
wouldn’t have to check their validity. There are multiple ways to implement this feature.

7.4 Defining properties for single parameters

The format of the input files should be changed so that it would be possible to define
a proposal distribution or an update count for a single parameter instead of parameter
groups. The Parser should be changed accordingly. The data structures and Generator
classes already support these features.

7.5 The Gibbs algorithm

Requirement S2



43

When using the Gibbs algorithm for a parameter its proposal distribution may contain
references to other variables. The proposed value is accepted without calculating its like-
lihood.

Adding the Gibbs strategy would change the structure of the Fortran program. It would be
impossible to generate new value proposals in advance, since the proposal distributions
would change during the simulation.

The module “proposal” would no longer be able to generate proposals for all the parame-
ters. The parameters with a static proposal strategy could utilize it as before. New values
for other parameters should be generated in the subroutine update_all (or update_one if
the random update strategy is used), since it would be too inefficient to add perform a
subroutine call every time a proposal is needed. The acceptation procedures would also
change a little.

The data structures Distribution and Variable are flexible enough to allow the description
of non-static proposal distributions.

The Parser would have to be changed to allow variable references when defining proposal
distributions.

The classes Acceptation and FortranMain would have to be changed to generate code
which updates also the parameters with the Gibbs algorithm.

The class Variable already has a field for algorithm choice.

7.6 Parameters of proposal distribution

Requirement S16

The parameters of proposal distribution could depend on the parameter’s current value
when using the random walk proposal strategy.

The implementation should be straightforward if the Gibbs algorithm is supported since
the parameter can be a parameter of its own proposal distribution.

7.7 Parameter blocks

Requirements S6, S8

This feature was not designed. It would be necessary to introduce a data structure de-
scribing a block and changes to almost every class would be needed.

7.8 Soft stop

Requirement S15

By pressing a defined soft-stop key the user could be able to interrupt the simulation so
that the output files would be at consistent state (for example with only fully executed



44

iterations and the last values file existing).

The soft-stop feature could be added by editing the method generateMain in class Fortran-
Main. It hasn’t been determined if the soft stop is possible to be implemented in Fortran
(that is, if it is possible to determine if a certain key is pressed).

7.9 Graphical user interface

Requirement N4

A graphical user interface for drawing the models and defining other parameters could be
added to the generator.

7.10 Reporting semantic errors

Requirement E3

The Generator could report semantic errors in model descriptions. It is not straightforward
to determine whether a model is semantically invalid.

7.11 Parallel computing

Requirement N3

The Fortran program could be designed to utilize multiple processors. For example gen-
erating proposals could be done in parallel with simulation. It has not been determined
which other parts of the execution could be done in parallel.



45

8 References

NAG NAG Fortran library (Mark 19)
http://www.csc.fi/cschelp/sovellukset/math/nag/NAGdoc/fs/html/genint/libconts_fs20.html


