PIANOS design document

Group Linja

Helsinki 29th June 2005
Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Joonas Kukkonen
Anni Kotilainen
Marja Hassinen
Eemil Lagerspetz

Client
Marko Salmenkivi

Project Masters
Juha Taina
Vesa Vainio (Instructor)

Homepage
http://ww. cs. hel sinki.fi/group/linja

Contents

1 Preface 1
1.1 Mersionhistory 1

2 Glossary 2
2.1 Probabilisticinference L. 2
2.2 Modelsand relatedconcepts 4

2.3 Metropolis-Hastings algorithm 4

3 Architecture 6
4 The format of input files 7
4.1 Model descriptionlanguage 7
411 Formalsyntax. 7

4.2 Simulation parametersasinput 8
4.2.1 The burn-in length and the thinning factor 8

4.2.2 Blocking and the algorithmused 8

423 Initialvalues 9

4.2.4 Proposal strategies and proposal distributions 11

4.25 The update strategy and the number of updates 11

4.2.6 Which parameterstooutput 12

5 Generated program 13
5.1 Datastructures e 13
52 Modules 14
521 Moduleproposal 15

522 Programmain. 16

6 Component interfaces 20
7 Modules 21
8 References 22

1 Preface

1.1 Version history

Version Date Modifications

0.2 15.06.2005 The document template

2 Glossary

2.1 Probabilisticinference

Random variable (synonym: stochastic variable): Function which combines events
with their probabilities. A numeric variable related to a random phenomenon (for example
throwing a dice). The value of the variable is determined if the result of the phenomenon
is known, otherwise only the probabilities of different values are known. [Tode04]

Discrete random variable: Random variable with a discrete range.

Point probability function: Function f : R — R related to discrete random variable X
sothat Ve € R: f(x) = P{X = x} = the probability that the value of X is x. [Tode04]

Density function: f(z) is a density function iff

1. f>0
2. fisintegrableinRand [f(z)dz = 1.

[Tode04]

Cumulative distribution function: The function F' : R — R is the cumulative distribu-
tion function associated with random variable X iff F'(x) = P{X < x} = the probability
that X is less than or equal to =. [Tode04]

Continuous distribution: A random variable has a continuous distribution as its density
function f ifVa,b € R: P{a < X < b} = [’ f(x)dz [Tode04]

Joint distribution: If X and Y are random variables, their joint distribution describes
how probable all the possible combinations of X and Y are.

Independence: Events A and B are independent, if the probability of B is independent
on whether A has happened or not. (For example if A = “it rains”, B = “when | throw
a dice the result is 6” and C="when | throw a dice the result is even” then A and B are
independent but B and C are not.) [Tode04]

Conditional probability: If X and Y are random variables, the conditional probability
P{X = z|Y = y} means the probability that the value of X is z if it is assumed that the

value of Y is y.
Bayes’s rule: P{X = 2|y = y} = 2=k PIX=rl The ryle is obtained from the
observationthat P{Y =y|X =z} - P{X =2} =P{X =xANDY =y}

Chaining: Using the Bayes’s rule many times consecutively.

Bayesian model: A model which connects dependent random variables to each other by
defining dependencies and conditional probabilities. The model defines the joint distribu-
tion of the variables.

Likelihood function: P{data|explanation} is called the likelihood function because it
defines how likely it is to get such a data if the real conditions are known. (For example if

3

we know that a bird resides at some area, then how likely it is to get the observations we
have already got.)

Markov random field: A random field that exhibits the Markovian property:
(X = x| X; = z;,1 # j) = 7(X; = x;]6;), Where ¢, is the set of neighbours for X;.
That is, only the adjacent units affect the conditional probability. [Rand]

Discrete distributions:
e Uniform distribution
e Binomial distribution
e Geometric distribution

e Poisson distribution
Continuous distributions:

e Uniform distribution

e Normal distribution

e Multinomial distribution
e Exponential distribution
e Binormal distribution

e Lognormal distribution
e Beta distribution

e Gamma distribution

e Dirichlet distribution

Descriptions of these distributions can be found in [Math05].

Functional dependence: A condition between two variables X and Y so that the value of
X determines the value of Y unambiguously.

Stochastic dependence: A condition between two variables X and Y so that the value of
X doesn’t determine the value of Y but influences the probabilities of the possible values.

Spatial dependence: A special case of stochastic dependence where the dependence is
related to some spatial structure. (For example towns that are adjacent to each other
influence to each other.) The spatially dependent variables form a Markov random field.

Prior distribution: The prior distribution of the parameters describes their assumed joint
probability distribution before inferences based on the data are made.

4

Posterior distribution: The posterior distribution of the parameters describes their joint
probability distribution after inferences based on the data are made.

Marginal distribution: The prior or posterior distribution concerning only one parame-
ter.

2.2 Modelsand related concepts

Model: Means: Bayesian model

Variable: A variable is an entity in the model that can have an assigned value from its
range of values. Variables and their dependencies form the base of the problem that the
software is developed to solve.

Parameter: A parameter is a variable whose value is not defined by data.

Adjacency matrix: The adjacency matrix of a simple graph is a matrix with rows and
columns labeled by graph vertices, with a 1 or 0 in position ij according to whether i and
J are adjacent or not.

Floating point number: A computer representation of a real number with finite precision.

2.3 Metropolis-Hastings algorithm

Iteration: A single round of the algorithm when all the parameters have been updated
once.

Burn-in-iterations: The iterations that are run before any output is produced.

Thinning factor: The thinning factor t means that every ¢** iteration value is used in the
output and the rest are discarded.

Block: A set of parameters which are defined to be updated together. That is, the propos-
als are generated to all of them and the acceptance of all the proposals is decided at the
same time.

Update: Proposing a value to a parameter and then accepting it (the value changes) or
discarding it (the value remains the same).

Proposal strategy: The proposal strategy defines how the next proposed value is gener-
ated. Possible choises are

1. Fixed proposal strategy: The next proposed values for a parameter is taken from its
proposal distribution.

2. Random walk: The next proposed value for a parameter is created by adding a value
taken from the proposal distribution to the current value of the parameter.

Proposal distribution:

5

1. The distribution from which the next proposed value for a parameter is chosen
(when using the “Fixed proposal distribution” proposal strategy).

2. The distribution that is used in generating proposed values for a parameter by
adding a value taken from the distribution to the parameter’s current value (when
using the “Random walk” proposal strategy).

Update strategy: The update strategy describes which variables belong to the same
block. (See: Block) The update strategy also includes information about whether the
blocks are considered for updates in sequential order, whether the next block to update is
chosen at random or whether the block to update is chosen based on the block weights.

Convergence: The phenomenon that during the simulation the parameter values get
closer to the posterior distribution. The speed of the convergence depends on the initial
values and other simulation parameters.

3 Architecture

This section will contain diagrams of the division of the software into the generator and
the executable program the generator produces.

— — - — — —
Proposal distributions

3 |
| |
| | Mumber of iteratiuns;’@ |
Proposal strategy
l_ J

Data |
FParameters to output p———ewuup

Generator

l Adjacency matrix

Initial values (matrices)
hMHH‘ Result program f————p Update summary

| ~

Posterior polnts

Last walues

Figure 1: A diagram of the software input/output files and data flow.

Figure 1 represents the generator and the result program that it produces, and how data is
used by them. Every rectangle and dotted line rectangle is a file (except the generator and
the result program). An arrow means that data from the component at the source of the
arrow is used by the component that the arrow leads to.

4 Theformat of input fi les

This section describes the format of the input files, that is the model description and the
files for the simulation technical parameters.

4.1 Mode description language

A model description consists of variable and entity definitions. It can also include com-
ment lines, any line beginning with ‘#’ is considered a comment. The order of the lines
or capitalization make no difference.

Variables can be either integers or floating point numbers. This is expressed with a ‘int’
or “float” in front of their names.

Examples:
fl oat al pha ~ Gamma(0.1, 1.0)

Alpha is a stochastic variable with a Gamma distribution. The distribution’s parameters
are 0.1 and 1.0.

int beta = al pha + delta”2
Beta is a functional variable. 1t’s value is alpha + delta™ 2.

day, "day.txt" {
x(10)
}

Day is an entity. The value of x_i is found in the file day.txt on row i, col 10.

4.1.1 Formal syntax

An explanation of the notation used can be found at
http://www.python.org/dev/doc/devel/ref/notation.html

model: (variable | entity | comment)*

variable: stochastic_variable | functional_variable
stochastic_variable: type * > name ‘~’ distribution
functional_variable: type “ * name ‘=’ equation
type: ‘int’ | “float’

entity: name [*, file [, file] [*, combines(’ name *,” name *)’]] *{ * variable* ‘}
comment: ‘#’ .*

name: letter*

distribution:

equation:

file: letter* “.txt’

letter: ‘a’...‘z

4.2 Simulation parametersasinput
4.2.1 The burn-in length and the thinning factor

The burn-in length and the thinning factor are both integers. They must be given in a
single file, given like in the example below:

? burn-in
1000

? thinning
4

4.2.2 Blocking and the algorithm used

A block is defined by listing parameters which belong to it. The format is

(paraneterl, paraneter?2)
(paraneter3, paraneter4, paraneterb)
etc.

If the user wants to define that the Gibbs sampling algorithm must be used when updating
the block, the key word “Gibbs” is entered after the block’s definition. For example:

(al pha_1, beta_3, gammma) G bbs
The default algorithm used is the Metropolis-Hastings algorithm.

If the block contains only one parameter, it doesn’t have to be defined unless the user
wants to use the Gibbs sampling algorithm.

4.2.3 Initial values

The user must provide initial values for all parameters. The initial values are given in a
single file.
The first line of the file must be:

?? initial values

The format of the file is:
1) Legend, which can be one of the following:

? par anet er nane
? paranet er nanme begi n: end

? paranet er nane begi n: end begi n2: end2

2) The initial values in an array or a matrix corresponding to the legend.
The file may contain several consecutive legend - values - pairs.
An example:

O

entity |

entity |

Figure 2: A model with two intersecting entities

? gamma
4.0

10

The legend means that we are giving an initial value to a single variable on the line after
the legend.

al pha 1:5

NG WO WY
O WkFrk WN

The legend describes that we are giving initial values to alphay, alphas, alphas, alphay
and alphas in an array on the lines following the legend line. After setting the initial
values, we have alpha; = 3.2, alpha, = 0.3 etc.

The legend means that we are giving initial values to beta, beta, and betas in an array on
the lines after the legend. After setting the initial values, we have beta; = 5.4, beta, = 2.1
etc.

BNR NN O
=W o wo ke
NNO R WwW

ORWkEE-
oM ONO X
oONAOCTWR

The legend describes that we are giving initial values to x1 1, 212,213, 21, ...253. The
values are in a matrix form after the legend line. The first index corresponds to the vertical
dimension and the second index corresponds to the horizontal dimension of the matrix.
After setting the initial values, we have x5, = 4.1 for example.

If some instances of, say, the variable obs are missing from the data, the user must provide
initial values for them.

? obs 4:4 1:1
4.3

This definition states that the initial value of obs, ; is 4.3.

11

4.2.4 Proposal strategies and proposal distributions

The format of the proposal strategies and distributions input file is similar to the initial
values input file.

The first line of the file must be:
?? proposal distributions
An example of giving the proposal distributions:

? al pha all
Poi sson(3)

This expression states that the parameters alphay, ..., alphas have the same proposal dis-
tribution Poisson(3) and the fixed proposal strategy is used as default.

? x all
Norm(0, 0.1) RW

This expression states that the parameters x; 1, ... use the random walk as proposal strat-
egy and the proposal distribution for them is Norm(0, 0.1).

4.2.5 The update strategy and the number of updates

The format of the file depends on the update strategy to be chosen.
1) If the user wants to update the parameters in sequential order:

? update
sequenti al

? iterations
42

The user gives the number of iterations, that is: the parameters are updated once and then
the output is printed (considering the thinning factor of course) and this is repeated as
many times as the iteration count.

2) If the user wants the next parameter to update to be chosen at random:

? update
random

? updat es

12

500

? x 2:5 2:3
600

The user gives first gives the update strategy, then the default number of updates. Consid-
ering this example all parameters must be updated at least 500 times before the simulation
is finished. After giving the default number, the user can also give the number of updates
for single parameters. Note: The output is printed after each update so the user may want
to use a bigger thinning factor.

4.2.6 Which parameters to output
The parameters to output are defined in a manner similar to the initial values. For example:

al pha all
beta 2:2
ganma

This definition states that the parameter to output are alphay, ..., alphas, betas and gamma.

5 Generated program

5.1 Datastructures

int_variables

+buffer: INTEGER, ALLOCATABLE, DIMENSION(:)
+buffer_index: INTEGER

+one_dim: TYPE({int variable)., ALLOCATABLE,
+two_dim: TYPE(int variable), ALLOCATABLE,

DIMEMSION(:)
DIMENSIONC:,

i3

real variables

+buffer: REAL, ALLOCATABLE, DIMEMSION(:)
+buffer index: INTEGER

+one_dim: TYPE(real_variable), ALLOCATAELE,
+two_dim: TYPE(real_variable), ALLOCATABLE,

DIMENSION(:)
DIMENSION(: ,

il

13

int_variable

+1s_data: LOGICAL
+initial_wvalue_set: LOGICAL
+value: INTEGER

+new_value: INTEGER
+updates_wanted: INTEGER
+update count: INTEGER
+successful_changes: INTEGER

real variable

Figure 3: A diagram of the generated data structures.

+1s_data: LOGICAL
+initial_wvalue_set: LOGICAL
+value: REAL

+new_value: REAL
+updates_wanted: INTEGER
+update_count: INTEGER
+successful_changes: INTEGER

Figure 3 shows the data structures used in the generated program. The int_variable and
real_variable can represent both data variables and parameters. Each instance corre-
sponds for example to one alphas2 or x314. A variables instance represents a repetitive
structure of the model, for example alpha and z. The one_dim and two_dim are used for
one- and two-dimensional variable structures, respectively.

5.2 Modules

14

module proposal

interface generate

module definitions

int_variables

subroutine generate_real

subroutine generate int

real varlables
real wvariable

program main

subroutine read data

subroutine update all

subroutine set initial wvalues

subroutine check initial wvalues

subroutine write output

subroutine write_summary

Figure 4: A diagram of the generated modules and their subroutines.

Figure 4 illustrates the division of the generated program into modules. Each module is

placed in its own source file.

5.2.1 Module proposal

Subroutine name:

Description:

Parameters:

Generating:

generate_int

Generates a buffer of new proposals for a given variable by
its name.

CHARACTER(LEN=*), INTENT(IN) :: name
INTEGER, DIMENSION(:), INTENT(OUT) :: buffer

1. name:
On entry: The name of the variable to generate pro-
posals for, e. g. alpha

2. buffer:
On exit: The buffer filled with new proposals from
the variable’s proposal distribution.

All the names of the variable groups, their proposal distribu-
tions (names and parameters) and the corresponding func-
tions/subroutines.

Subroutine name:

Description:

Parameters:

Generating:

generate_real

See generate_int

15

5.2.2 Program main

Program name: main
Description:

Generating:

e The names and types (real or integer) of the variables
in the model

e The name of the output file

e The loop lengths, that is, how many different entities
(birds, squares etc.) we have

e The number of iterations, the thinning factor and the
burn-in iteration count

Subroutine name: read_data

Description: Reads the data from data files into the data structure defined
in figure 3.
Parameters: None. This subroutine uses the global variables defined in

the beginning of the main.

Generating:

e The names of the data files

e The maximum length of a line in all the data files -
this is needed because reading matrices that may con-
tain ‘no data’-characters as well as numbers is diffi-
cult in Fortran

e The names of the variables and whether they are one-
dimensional or two-dimensional

e The loop lengths, that is, how many different entities
(birds, squares etc.) we have

Subroutine name:

Description:

Parameters:

Generating:

set_initial_values

This subroutine reads the initial values from a data file into
the data structure defined in figure 3.

None. This subroutine uses the global variables defined in
the beginning of the main.

The name of the initial values file. The names of the vari-
able groups and whether they are one-dimensional or two-
dimensional.

Subroutine name:

Description:

Parameters:

Generating:

check_initial_values

This subroutine checks if the initial values of all parameters
(not found in data) are given. If not, the simulation cannot
start.

None. This subroutine uses the global variables defined in
the beginning of the main.

The names of the variable groups and whether they are one-
dimensional or two-dimensional.

17

Subroutine name:

Description:

Parameters:

Generating:

update_all

This subroutine updates each parameter once. It occurs in
the generated program if and only if the user has chosen the
sequential update strategy.

None. This subroutine uses the global variables defined in
the beginning of the main.

e The names of the parameters and whether they are
one-dimensional or two-dimensional

e The loop lengths, that is, how many different entities
(birds, squares etc.) we have

e The proposal strategy (fixed or random walk) for each
parameter

e The formula of the acceptance probability for each
parameter (which variables depend on it and which
parameter depend on it and what distributions define
the dependencies

e The proposal distributions for each parameter

Subroutine name:

Description:

Parameters:

Generating:

write_output

This subroutine writes the output of one iteration into the
output file. The file is opened and closed in the main pro-
gram.

None. This subroutine uses the global variables defined in
the beginning of the main.

Which parameters to write as output and whether they are
one- or two-dimensional.

18

Subroutine name:

Description:

Parameters:

Generating:

write_summary

This subroutine writes the summary of the simulation into a
summary output file. The summary includes the number of
updates and successful changes for each parameter.

None. This subroutine uses the global variables defined in
the beginning of the main.

The names of the parameters and whether they are one- or
two-dimensional. The file name of the summary file.

Subroutine name:

Description:
Parameters:

Generating:

19

20

6 Component interfaces

This section will describe the ways of interaction between the generator, the executable
program, and input files.

21
7 Modules

This chapter will divide the generator into logical Java classes and the executable program
prototype into Fortran modules. There will be diagrams and descriptions.

8 References

Rand Definition of Random Fields in Encyclopedia
http://encyclopedia.laborlawtalk.com/Random_fields

Tode04 Pekka Tuominen: Todennakdisyyslaskenta |

Math05 http://mathworld.wolfram.com/

22

