PAGE
iii

University of Helsinki

Department of Computer Science
Software Engineering Project Perf+
Maintenance Manual

Kirsi Elo-Holma

Juhani Snellman

Timo Tapanainen

Laura Väisänen

08.12.2002

Version history

Version
Date
Comment
Authors

1.0
28.05.2002
First draft
Aija Airaksinen

Eevaliisa Colb

Hannele Hakkarainen

Saara Nygren

Tuula Summanen

Petteri Susi

2.0
31.05.2002
First version
Aija Airaksinen

Eevaliisa Colb

Hannele Hakkarainen

Saara Nygren

Tuula Summanen

Petteri Susi

3.0
28.11.2002
The updated version
Kirsi Elo-Holma

Juhani Snellman

Timo Tapanainen

Laura Väisänen

3.1
08.12.2002
The version, that has been corrected after the FTR
Kirsi Elo-Holma

Juhani Snellman

Timo Tapanainen

Laura Väisänen

Contents

11. Introduction

2. Current state of Perf
1
2.1. Currently implemented features
1
2.2. Limitations
2
2.3. Architecture
2
3. Modifying Perf
4
3.1. Measuring a Project
4
3.2. Statistical Analysis
5
3.3. Activity Diagrams
6
3.4. Names of Identifiers in Diagrams
7
3.5. Use of SymbolicClassSizeStorage in Other Parts of the Program
8
3.6. Change of Numerical Sizes to Float Variables
8
3.7. Stereotypes “create” and “destroy” in Messages of a Collaboration Diagram
9
3.8. Concurrency in Perf
10
3.8.1. Concurrency of Execution Paths
10
3.8.2. Concurrency in the Class SymbolicClassSize
11
3.9. PerfResourceHandler and PerfWindow
11
References
12

1. Introduction

Perf estimates the future memory usage of a program based on UML diagrams drawn during development. It is a part of MAISA [WWW02a], a software metrics project of the University of Helsinki, and was developed for the course Software Engineering Project (Ohjelmistotuotantoprojekti) in the spring of 2002. Perf was expanded in the autumn of 2002 by Software Engineering Project Perf+. The features that added to the present version of Perf are finding the typical execution paths of an activity diagram, making a memory estimate for a certain execution path chosen by the user, inserting threshold values, and finding the execution paths which exceeded these values and sequence diagram support. UML diagrams presently used by Perf and Perf+ are class diagrams, activity diagrams and collaboration diagrams.

This maintenance manual gives a general idea of how Perf and Perf+ functions and, particularly, how it can be updated. Since Perf is a part of MAISA metrics tool, the maintenance of it is closely connected to that of MAISA [Mai01]. Further details about the classes of Perf are presented as Javadoc comments, which can be found in the Perf implementation document [Per02c] appendix A.

Chapter 2 explains the general architecture, design solutions and currently implemented features of Perf and Perf+. Chapter 3 introduces some ideas for upgrading Perf and Perf+ and gives suggestions for how to make the changes.

2. Current state of Perf

Top priority requirements of Perf’s and Perf+’s requirement analyses (Määrittelydokumentti) [Per02a, Pe+02a] are currently implemented. These features are explained in chapter 2.1. The lower priority requirements, however, are not implemented yet. Some of these were excluded at early stages of the design phase of the development process, and therefore are not thoroughly designed as of now. These un-implemented requirements, and other constraints of Perf are listed in chapter 2.2. The functional description of Perf system can be found in chapter 2.3.

2.1. Currently implemented features

The features that the present version of Perf supports are listed below. Further details about the definitions and the implementation are explained in the Perf’s Implementation Document [Per02c] and Perf+’s Implementation Document [Pe+02c].

· Finding the shortest, longest and typical execution paths of an activity diagram.

· Making a memory estimate for a certain execution path chosen by the user.

· Inserting threshold values, and finding the execution paths which exceeded these values.

· Collaboration and sequence diagram support.

· Calculating the following estimates:

· lower bounded memory usage estimate, which takes into account only the objects created on the heap.

· upper bounded memory usage estimate, which is calculated assuming no created objects are ever destroyed during the execution of the program.

· combined memory usage estimate, which is made taking into account the static objects, heap objects and stack objects. Thus it is made of both heap- and non-heap objects.

· Finding the point of an execution path where the memory estimate is greatest.

· Inserting the sizes of the attribute types of classes.

· Inserting the whole class sizes and additional sizes.

2.2. Limitations

The following procedures cannot yet be performed by Perf and Perf+:

· Finding the points of execution path where threshold values are exceeded.
· Making memory estimates per project, i.e. for a set of activity diagrams.

· Statistical analysis of the measured estimates.

These are the items to be developed next to make Perf more flexible and consistent with the rest of MAISA.

In addition to these there are restrictions for example in the format of UML-diagrams used for making the calculations. These are listed in detail in Perf’s and Perf+’s design and implementation documents [Per02b, Per02c, Pe+02b, Pe+02c].

2.3. Architecture

Figure 2.1. shows Perf’s general architecture, containing four functional modules.
[image: image1.png]Estinator

‘ActivtyDiagramHandier

ClassDiagramHander

\
@)

InteractionDiagramHandier

CollaborationDiagraimHander

‘SecuenceDiagramHander

Figure 2.1. Perf architecture

The first, ActivityDiagramHandler transforms MAISA’s CActivityDiagrams into a new format, PerfActivityDiagram, and provides the execution paths of the new diagram to Estimator. In this module, a copy of the original CActivityDiagram is made, and the subdiagrams of the CActivityDiagram are attached directly to their respective nodes. Also, a node of the new diagram includes further information about the objects. This construction is called PerfActivityDiagram.

The second module, InteractionDiagramHandler implemented by CollaborationDiagramHandler and SequenceDiagramHandler, finds information about the created and destroyed objects from CInteractionDiagrams connected to the CActivityDiagram node. The information is stored in each node of a PerfActivityDiagram.

The third module, ClassDiagramHandler, calculates the sizes of the classes both as bytes and symbolic values.

The fourth module, Estimator, when called by CActivityDiagram, initiates the memory estimate calculation and collects the achieved data from the other modules. It receives the execution paths, including the object information, from ActivityDiagramHandler and the class sizes from ClassDiagramHandler. Estimator makes the final memory estimates based on these and returns the results to CActivityDiagram, which in turn brings it to the metric results. Thus, the class Estimator serves as the interface to MAISA.

Loosely connected to the rest of the architecture is the user interface, PerfWindow, and the file handling that is implemented by PerfSimpleFileHandler. PerfWindow is created by MAISA when the user selects the class/attribute type size editing option from MAISA’s main window. PerfWindow uses the PerfSimpleFileHandler to get data from disk and displays it to the user. The user can also save edited size information in the window and save it to the disk. It is not necessary to use the graphic user interface though, the size files can also be edited directly.
Other communication between MAISA and Perf is described in detail in Chapter 3 of the Perf implementation document [Per02c].

3. Modifying Perf

This chapter gives suggestions for how Perf can be modified in the future to make it an even more effective tool for measuring and analyzing the memory use of software being developed.

3.1. Measuring a Project

The architecture measured in MAISA can be represented in two different ways: by a single diagram or by a project, which is a set of one or more diagrams.

Perf provides functionality to measure memory usage of a scenario represented by a single activity diagram, one or more class diagrams, and one or more interaction diagrams. The activity diagram is the starting point for the measurement Perf performs, both in the user interface of MAISA and in the architecture of MAISA. Currently, Perf only measures memory usage of a single activity diagram. The following describes the changes required to implement memory usage measurement of a project containing one or more activity diagrams.

The interface between MAISA and Perf is the class Estimator. Estimator both executes the measurement of memory usage and acts as a storage of computed memory usage estimates. When implementing the measuring of a project, you create an Estimator for each CActivityDiagram in the project, call the method Estimator.estimate once for each Estimator, and then read and handle the estimates accessed using the method Estimator.getEstimate. Memory usage estimates are similar to execution time estimates in that both types of estimates are computed from a single activity diagram. Therefore memory usage estimates could be handled in the same way as the execution time estimates are handled, e.g. when calculating averages for estimates from all of the activity diagrams in one project.

More specifically, measuring memory usage of a project would require the modification of the following parts of MAISA:

· The method CActivityDiagram.calculateMetrics(MetricResult, MetricConfiguration). Here you would create an Estimator, store it into a CActivityDiagram object field and call the method Estimator.estimate.

· The method handleActivityMetrics in the private class ActivityMetrics of class CProject. You would add to this method the abilities to read estimates from Estimator and to compare them in a similar way as the execution time estimates are compared.

· The method CProject.calculateMetrics. Here you would add the calculations of averages from the estimates produced by Perf (in a similar way as the averages of execution times are calculated in this method).

3.2. Statistical Analysis

MAISA provides statistical features for measurement estimates, whereas Perf does not support these yet. With MAISA it is possible to draw statistical diagrams, calculate key figures and perform statistical tests from the selected metric result or comparison results. In addition, it is possible to collect data about previously measured estimates, and draw statistical conclusions about the history of the program being developed. Adding these statistical characteristics to Perf requires several changes.

MAISA’s interface to Perf is the class Estimator, which is created by MAISA’s CActivityDiagram. As when calculating execution time estimates (an existing feature of MAISA), the memory usage estimates provided by Perf are always connected to exactly one CActivityDiagram. Therefore, the manipulation of memory usage statistics would be similar to that of execution time statistics. As of now, the memory estimates are not saved between execution times.

There are three major issues in updating Perf in the way described above. First, Perf should be able to display statistics about one current diagram. Second, it should be able to compare statistical results of two current diagrams. Third, Perf should handle statistics about history data. And fourth, Perf should be able to manipulate the statistical features involved in project level metrics.

Enabling Perf to manipulate statistics about one diagram involves updating MAISA.StatPanel. After CActivityDiagram requests a memory estimate from the class Estimator, it initiates the memory calculation and stores the results. Then CActivityDiagram accesses the results by method getEstimate and sends them to MAISA.datastruct.MetricResult. To save the memory estimate in a file, (causing a file format change) methods MAISA.datastruct.MetricResult.read(File), MAISA.datastruct.MetricResult.write(File, int), and MAISA.MAISA_tool.update (Observable, Object) must be changed accordingly. Code to produce MAISA.datastruct.MetricSample from metric results, to set the metrics, and to add the row to MAISA.datastruct.Sample should be added too. In addition to these changes, the GUI component for MAISA.StatPanel, should be updated to offer the choice of variable memory estimate per activity diagram.

To add the statistical comparison features to Perf requires updating MAISA.StatPanel2. This is done in a similar manner to MAISA.StatPanel, except by using MAISA.Datasruct.ComparisonResult (consists of 4 MAISA.datastruct.MetricData objects and thus maintains two references to the current sample) instead of MAISA.datastruct.MetricData. Also, methods MAISA.datastruct.ComparisonResult.read (File), MAISA.datastruct.CoparisonResult.write (File, int), MAISA.MAISA_tool.update (Observable, Object) and the caretaker class MAISA.MAISA_system must be changed accordingly.

Adding statistical features to the data history of memory estimates involves making a change to MAISA.StatPanelForHistoryData. After the memory estimates are brought to the metric results window, the user can choose to save them for later use in performing statistical calculations. For MAISA to be able to do this, the estimate in MAISA.datastruct.MetricResult will have to be saved to history.data. Therefore, the format for saving and reading the information has to be altered to be able to handle this new type of measurement (the memory estimate).

Updating Perf to handle memory estimates at project level will create another dimension to the statistical features. This change adds a need to keep up metrics on two levels e.g. estimates per CActivityDiagram and per project. The ability to handle project level statistics should be added to Perf only after it has been updated to handle project measurements otherwise.

As a conclusion, to add statistical manipulation to Perf, the following parts of MAISA need to be modified:

· The three similarly functioning statistical panels: MAISA.StatPanel, MAISA.StatPanel2 and MAISA.StatPanelForHistoryData.

· The classes manipulating the storing of the data: MAISA.datastruct.MetricResult, MAISA.datastruct.ComparisonResult, MAISA.datastruct.MetricSample, MAISA.datastruct.Sample.

· The parts, which are affected by the storing the data in a new file format: CProject, MAISA.MAISA_tool.update(Observable, Object), and the caretaker class MAISA.MAISA_system.

· MAISA.datastruct.StatisticTester, which calculates statistic tests.

· GUI components for each panel.

Also, MAISA.StatDrawPanel may have to be altered in order to draw the diagram based on the memory estimate figures.

3.3. Activity Diagrams

There are more features in activity diagrams influencing memory usage than the current version of Perf takes into account.

If these features of activity diagrams give different result forms, the Estimate class and the user interface of MAISA must both be modified so that the program can tell the correct results. If the user has to be able to give some more information to Perf before the execution of MAISA, PerfWindow must also be modified.

Decision and guards on transitions

If you want to add the possibility to estimate activity diagrams with guards and transitions, PerfActivityDiagram and -Node must be changed to CActivityDiagram and –node, respectively. You also have to modify the estimation process at Estimator and ActivityDiagramHandler so that they can include decisions and/or guards in estimations’ different ExecutionPaths. It might be necessary to change ExecutionPaths so that they have the information about which decision is made in their path or which guards are followed in it. You might also need to add some elements such as the user interface PerfWindow or some of MAISA’s classes (e.g. MeasuresEtMetrics) so that the user can choose to take guards or decisions into account in estimation.

Call states

If you want to add call states as their own kind of activity states in activity diagrams, you need to modify at least class PerfActivityState in Perf. In call state you can get the information about the only operation it invokes and the classifier that has this operation. If you want to calculate the memory usage of the operations in Perf you might have to change ClassDiagramHandler so that it can give this information and ObjectSequence and –Set to include them in the calculation process. If you do not want to change the estimation process, but only add the call states as normal PerfActivityStates, you have to modify ActivityDiagramHandler so that it maps calls states into PerfActivityStates.

Swimlanes

If you want to take swimlanes into consideration in memory usage estimation in Perf, you have to modify at least ActivityDiagramHandler so that it can transform the CActivityDiagram with swimlanes into PerfActivityDiagram with swimlanes in method expand, forming the ExecutionPaths correctly in method DepthFirstTraversal. You might also have to alter ExecutionPath and PerfActivityDiagram and –Node so that they contain all the information needed in the estimation. If the swimlines change the algorithm in which the estimate is calculated, also Estimator must be modified.

Object flow

If you want to include the input and output objects in activity diagrams (object flow) in Perf-estimations, you have to modify PerfActivityDiagram, -Node, and –State. You also have to change ObjectSet and –Sequence in order to get them to calculate these input and output objects into the entire memory usage.

Signals and synch states

If you want to use signals or synch states in transitions with Perf, you need to modify ActivityDiagramHandler’s method expand to consider these in creating PerfActivityDiagram. Also PerfActivityDiagram itself might need changes. If signals change the estimation process, you also have to change the estimate method of Estimator.

Concurrent invocation

If you want to add concurrency in activity states you have to change PerfActivityDiagram and –State so that they can include this information, and ActivityDiagramHandler so that it includes concurrency in it correctly. Also estimate method in Estimator must be altered so that it does the estimation correctly with multiple execution times of activity states.

3.4. Names of Identifiers in Diagrams

The method isReference(String) in the class ValidClasses checks if the name of the class given as argument is already stored in the Vector validClassNames. The parameter is a String object which is returned by the method getType() of the CAttribute class. (Thus, it can also be the primitive type of some variable such as integer, real, etc.).

The vector validClassNames contains the names of the classes that are found in the activity diagram. The method isReference uses the methods isJavaIdentifierStart and isJavaIdentifierPart from the class Character of java.lang package [WWW02b]. The method isJavaIdentifierStart recognizes JavaIdentifiers that begin with ASCII letters A-Z and a-z or with currency sign (such as $) or with the underscore (“_”). (It is possible that the sign of Euro is not yet supported). The method isJavaIdentifierPart recognizes JavaIdentifiers if the parameter (char) is a Unicode identifier. Therefore, successful operation is guaranteed only if the identifiers (names of classes and attributes of the classes) of the classes in class and activity diagrams follow these limitations.

Not all programming languages limit the names of identifiers in the same way as Java. Therefore, we recommend the use of Java-type identifiers in diagrams. If this cannot be done, the isReference method of ValidClasses may need to be modified.

3.5. Use of SymbolicClassSizeStorage in Other Parts of the Program

A SymbolicClassSizeStorage class implements a Singleton design pattern. Thus, only one instance of the class SymbolicClassSizeStorage exists while the program is running.

If you need the information concerning the symbolic sizes of some class in other parts of the program, you can call for the instance of the SymbolicClassSizeStorage using the method getInstance. After that the symbolic size of the class can be received using the method getSymbolicClassSize.

Note that the storage of the information of the symbolic class sizes (= hashtable) can be cleared using the method clear. If you are going to use the instance of the SymbolicClassSizeStorage somewhere in the program, make sure that the method clear has not been used after the filling of the storage.

3.6. Change of Numerical Sizes to Float Variables

Since the numerical sizes of the classes are assumed to be integer variables, the maximum size of a class is 2 147 483 647. If a larger size is needed, the integer variables have to be changed to float variables. Below are listed the classes, the methods and how the methods must be changed in this case.

ClassDiagramHandler

Integer variables size and size2 in the method getSize must be changed to Float variables and the signature of the method must be changed to return a Float variable.

UserDefinedClassSizes

The signature of the method getUserDefinedClassSize has to be changed to return a Float. In the same method, the object size must be casted to Float and a method floatValue must be used instead of Integer and method intValue. The parameter size in the method addUserDefinedClassSize must be changed to Float.

AdditionalSizes

The signature of the method getAdditionalSize must be changed to return a Float. In the same method the object size must be casted to Float and a method floatValue must be used as in the case of UserDefinedClassSizes class. Likewise, the parameter size must be changed to a Float variable in the method addAdditionalSize.

AttributeTypeSizes

The signature of the method getAttributeTypeSize must be changed to return a Float. Again, in this method the object size must be casted to Float and a method floatValue must be used instead of Integer and method intValue. In the method setSizeInStorage the parameter size must be changed to real and instead of new Integer, new Float must be used. Similar changes must be done in the method addAttributeTypeSize.

NumericClassSizeStorage

The signature of the method getNumericClassSize must be changed to return a Float variable. In the same method the object size must be casted to Float and a method floatValue must be used instead of Integer and method intValue. The parameter of the method addNumericClassSize must be changed to Float and a new Integer expression must be replaced by a new Float expression.

SymbolicClassSize

The signature of the method getSize must be changed to return a Float and a variable size must be changed to a Float. Also, Integer variable attrSize must be changed to a Float.

NumericClassSize

The signature of the method getSize must be changed to return a Float and variables size, size2 and size3 must be changed to Float variables.

3.7. Stereotypes “create” and “destroy” in Messages of a Collaboration Diagram

If you want to add new stereotypes such as «new» and «delete» to make Perf more flexible, so that it accepts a keyword «new» instead of «create» or a keyword «delete» instead of «destroy», you have to make changes in four classes. First, static final variables STEREOTYPE_CREATE (=”create”) and STEREOTYPE_DESTROY (=”destroy”) are defined in the class InteractionDiagramHandler. They are used in the classes ExecutionPathNode, ObjectSequence and ObjectSet.

For example, if you want Perf to accept a keyword «new» in addition to «create» as a keyword, which tells that a new instance is created, you can add a new stereotype STEREOTYPE_NEW into the class InteractionDiagramHandler. Then you have change classes ExecutionPathNode, ObjectSequence and ObjectSet so, that STEREOTYPE_CREATE and STEREOTYPE_NEW are treated in the same way.

3.8. Concurrency in Perf

3.8.1. Concurrency of Execution Paths

There are a few places in the Perf program which are particularly suitable for parallel computing. One such point is the calculation of numeric sizes of (usually) many execution paths. If sizes of a few execution paths were calculated at the same time, the execution time of the program would be shorter.

If you wanted to calculate more than the size of only one execution path at a time, a few changes have to be made. Here are a few suggestions for doing this:

First, the method estimate should be changed. The while loop, which picks the next execution path, the size of which is to be calculated, has to be changed. However, the method hasNext and next should be regarded as a critical section. Otherwise, one process might check the iterator of the paths and assume that there is still at least one execution path available. If there is only one path left in the iterator, it might happen that another process uses the next method to get this execution path. Then there would be no paths anymore for the first process. Also, all checks for whether a process has found a new shortest, longest or most typical path (in the method estimate) have to be performed in a critical section. Otherwise a real minimum or maximum value might not be reached.

Also, a few sections in the classes, which take part in the computation of the sizes of the classes, are critical. They are listed below. Here, we have assumed that the additional sizes and userdefined sizes of the classes are not changed while the numeric sizes of the execution paths are calculated in the estimate method.

AttributeTypeSizes: The call of the method put of the hashtable attributeTypeSizes in the method getAttributeTypeSize must be in a critical section. Also, the call of the same method of the same hashtable in the methods setSizeInStorage and addAttributeTypeSize must be in critical sections.

NumericClassSizeStorage.java: The call of the method put of the hashtable numericClassSizes in the method addNumericClassSize must be in a critical section. It could happen that two processes begin to compute the numeric size of the same class, which is not efficient and might cause an error. Therefore, it would be reasonable to the process to check if there is another process calculating the size of the same class. If yes, this process should wait for the result of the process, which is calculating the size. If not, the process would begin the calculation of the size itself.

SymbolicClassSize: Four calls of the method put of the hashtable symbolicClassSizeUnits in the constructor of the class SymbolicClassSize must be in a critical section. Also, the code has to be changed in the method getSize in the calculation of the numeric size. It is possible that one process adds size 0 into the AttributeTypeSizes instance. If the next process finds value 0 it now assumes that this is the real size of the attribute. This can be avoided by checking if the value of the variable attrSize is greater than zero. Now the program checks if the variable is greater or equal to zero.

SymbolicClassSizeStorage: The call of the method put of the hashtable symbolicClassSizes in the method getSymbolicClassSize must be in a critical section. However, the whole “if-else” sentence in the method getSymbolicClassSize is problematic. It could happen that two processes find that the symbolic size of the class is not calculated, and both of them would begin to calculate the size of the same class in the present program. The best solution would be perhaps one in which the process checks if the program is performing the calculation of the size of the same class which it is looking for. If yes, the process would wait for the result. If not, the process would begin the calculation itself.

At a minimum, the above-mentioned features need to be changed in order to enable concurrent behaviour in the computation of the sizes of different execution paths.

3.8.2. Concurrency in the Class SymbolicClassSize
In class SymbolicClassSize there is a point where a concurrency could be utilized. In the constructor of this class, the symbolic size of the class (the identity label of which is the parameter of the constructor) is calculated. Therefore, all the attributes of this class are gone through in the constructor. The operations concerning each attribute could be performed concurrently. However, the use of put method of the hashtable symbolicClassSizeUnits is a critical section.

3.9. PerfResourceHandler and PerfWindow

Currently Perf uses files for storing information. The file handling system (PerfSimpleFileHandler) is completely separate from MAISA's file handling. In further development it could be integrated to be a part of MAISA's Observer/Mediator system if greater consistency were desired. Also, if a database system is taken to use, the concrete handler class (that implements the PerfResourceHandler interface) must be designed to use queries to the database.

PerfWindow is also a separate user interface and is not connected to MAISA's event handling, disk handling or Observer/Mediator system. Again, if greater consistency were desired, PerfWindow could be implemented as a Colleague in MAISA's Mediator system, and it could have a Courier that would make it an observable component in the Observer system.

References

Per02a
Airaksinen, A. et al., Ohjelmistotuotantoprojekti Perf, Määrittelydokumentti, University of Helsinki, Department of Computer Science, Helsinki, 2002.

Per02b
Airaksinen, A. et al., Ohjelmistotuotantoprojekti Perf, Suunnitteludokumentti, University of Helsinki, Department of Computer Science, Helsinki, 2002.

Per02c
Airaksinen, A. et al., Software Engineering Project Perf, Implementation Document, University of Helsinki, Department of Computer Science, Helsinki, 2002.

Pe+02a
Elo-Holma, K. et al., Ohjelmistotuotantoprojekti Perf+, Määrittelydokumentti, University of Helsinki, Department of Computer Science, Helsinki, 2002.

Pe+02b
Elo-Holma, K. et al., Ohjelmistotuotantoprojekti Perf,+ Suunnitteludokumentti, University of Helsinki, Department of Computer Science, Helsinki, 2002.

Pe+02c
Elo-Holma, K. et al., Software Engineering Project Perf+, Implementation Document, University of Helsinki, Department of Computer Science, Helsinki, 2002.

MAI01
Nenonen, L., Gustafsson J., MAISA metric tool: Maintenance manual, version 1.3, University of Helsinki, Department of Computer Science, MAISA project, Helsinki 2001.

WWW02a
Homepage of MAISA project http://www.cs.helsinki.fi/group/maisa, University of Helsinki, Department of Computer Science [4.4.2002].

WWW02b
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc. html#40625 [13.3.2002].

ZHE01
Zheng, H., Runtime Memory Usage Estimation from UML diagrams, Master's thesis in Computer Science, University of Helsinki, 2001, series of publications C-2001-21.

PAGE

