Handed out: March 16 (Tue)

Hints for solution: Exercise class on March 19 (Fri)

Hand in: March 24 (Wed), the latest, @ Room A348

This assignment gives you maximally 5% worth of extra points for the computer assignments and the final exam.

All the exercises below have equal weight.

Ex. 1 — Gram Schmidt
1. Given two vectors \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \), show that

\[
\mathbf{u}_1 = \mathbf{a}_1 \\
\mathbf{u}_2 = \mathbf{a}_2 - \frac{\mathbf{u}_1^T \mathbf{a}_2}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1
\]

are orthogonal to each other. Furthermore, show that any linear combination of \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \) can be written in terms of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \).

2. Show by induction that for \(n \) vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n \), the vectors \(\mathbf{u}_k \), \(k = 1, \ldots, n \), are orthogonal.

\[
\mathbf{u}_k = \mathbf{a}_k - \sum_{i=1}^{k-1} \frac{(\mathbf{u}_i^T \mathbf{a}_k)}{\mathbf{u}_i^T \mathbf{u}_i} \mathbf{u}_i
\]

Ex. 2 — Linear Algebra: Eigenvalue Decomposition
For a square matrix \(A \) of size \(M \times M \), a vector \(\mathbf{u}_i \neq 0 \) which satisfies

\[
A \mathbf{u}_i = \lambda_i \mathbf{u}_i
\]

is called an eigenvector of \(A \), and \(\lambda_i \) is the corresponding eigenvalue. For a matrix of size \(M \times M \), there are \(M \) eigenvalues \(\lambda_i \) (which are not necessarily distinct).

1. Show that if \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) are eigenvectors with \(\lambda_1 = \lambda_2 \), then \(\alpha \mathbf{u}_1 + \beta \mathbf{u}_2 \) is also an eigenvector with the same eigenvalue.

2. Denote by \(U \) the matrix where the column vectors are the eigenvectors \(\mathbf{u}_i \) of \(A \). Verify that the equation (4) can be written in matrix form as \(AU = U \Lambda \), where \(\Lambda \) is a diagonal matrix with the eigenvalues \(\lambda_i \) as diagonal elements.
3. Show that we can write

\[A = U \Lambda V^T, \text{ where } V^T = U^{-1} \]

(5)

\[A = \sum_{i=1}^{M} \lambda_i u_i v_i^T \]

(6)

\[A^{-1} = U \Lambda^{-1} V^T \]

(7)

\[A^{-1} = \sum_{i=1}^{M} \frac{1}{\lambda_i} u_i v_i^T \]

(8)

Ex. 3 — Linear Algebra: Trace, Determinants and Eigenvalues

1. The trace of a matrix \(A \) is defined as \(\text{Tr}(A) = \sum_i a_{ii} \). Use the previous exercise to show that \(\text{Tr}(A) = \sum_i \lambda_i \). (You can use \(\text{Tr}(AB) = \text{Tr}(BA) \)).

2. Show that \(\det A = \prod_i \lambda_i \). (Use \(\det A^{-1} = 1/ \det A \) and \(\det(AB) = \det A \det B \) for any \(A \) and \(B \)).

Ex. 4 — Linear Algebra: Eigenvalue Decomposition for Symmetric Matrices

1. Assume that the matrix \(A \) is symmetric, i.e. \(A^T = A \). For two eigenvectors \(u_1 \) and \(u_2 \) with \(\lambda_1 \neq \lambda_2 \), show that the two vectors are orthogonal to each other, that is \(u_1^T u_2 = 0 \).

2. Conclude with the results of Ex.1 that for a symmetric matrix \(A \), all the eigenvectors \(u_i \) can be chosen orthogonal and of unit length (orthonormal).

3. A symmetric matrix \(A \) is said to be positive definite if \(v^T A v > 0 \) for all non-zero vectors \(v \). Show that positive definiteness implies that \(\lambda_i > 0, \ i = 1, \ldots, M \). Show that, vice versa, \(\lambda_i > 0, \ i = 1 \ldots M \) also implies that matrix \(A \) is positive definite. Conclude that positive definite matrices are invertible.

Ex. 5 — Maximum Likelihood for a Gaussian

Recall that a Gaussian random variable \(X \sim N(\mu, \sigma^2) \) with mean \(\mu \) and variance \(\sigma^2 \) has the density

\[f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right]. \]

(9)

1. Given iid. data \(X_1, \ldots, X_N \) following a Gaussian distribution of mean \(\mu \) and variance \(\sigma^2 \) find the likelihood \(L(\mu, \sigma) \).
2. Calculate the log-likelihood \(\ell(\mu, \sigma) = \log L(\mu, \sigma) \).

3. Show that the maximum likelihood estimates for the mean \(\mu \) and standard deviation \(\sigma \) are the sample mean

\[
\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n
\]

and the sample variance

\[
S^2 = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X})^2.
\]

Hint: Start from the log-likelihood. Explain why this is possible.