UML2012 Exercise set 1 Solutions to be presented in the 23.3.2012 session

Exercise 1:

1.1 Given two vertical vectors \mathbf{a}_1 and \mathbf{a}_2 in \mathbb{R}^n , show that

$$\mathbf{u}_1 = \mathbf{a}_1$$

$$\mathbf{u}_2 = \mathbf{a}_2 - \frac{\mathbf{u}_1^T \mathbf{a}_2}{\|\mathbf{u}_1\|_2^2} \mathbf{u}_1$$
(1)

are orthogonal to each other. Furthermore, show that any linear combination of \mathbf{a}_1 and \mathbf{a}_2 can be written in terms of \mathbf{u}_1 and \mathbf{u}_2 .

1.2 Let's assume that $\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{R}^n$ are linearly independent vectors (so that $k \leq n$), and define vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ by formula

$$\mathbf{u}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} \frac{\mathbf{u}_j^T \mathbf{a}_i}{\|\mathbf{u}_j\|_2^2} \mathbf{u}_j$$
(2)

Prove that \mathbf{u}_i are well defined, by showing that $\mathbf{u}_j \neq \mathbf{0}$ for all $j = 1, 2, \ldots, k$.

1.3 Prove that vectors \mathbf{u}_i are orthogonal to each other (meaning $\mathbf{u}_i^T \mathbf{u}_j = \|\mathbf{u}_i\|_2^2 \delta_{ij}$). Also prove that any linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_k$ can be written in terms of $\mathbf{u}_1, \ldots, \mathbf{u}_k$.

Exercise 2:

2.1 Assume two vectors \mathbf{a}_1 and \mathbf{a}_2 are in \mathbb{R}^2 . Together they span a parallelogram. Assume it known, that the area of the parallelogram is the length of the base multiplied by the height, and use exercise 1.1 to prove that the area S of the parallelogram satisfies

$$S^{2} = \|\mathbf{a}_{1}\|_{2}^{2}\|\mathbf{a}_{2}\|_{2}^{2} - (\mathbf{a}_{2}^{T}\mathbf{a}_{1})^{2}$$
(3)

2.2 Form the matrix $A = (\mathbf{a}_1, \mathbf{a}_2) \in \mathbb{R}^{2 \times 2}$, and show that

$$S^2 = \det(A)^2 \tag{4}$$

2.3 Consider the linear transformation $\mathbf{y} = A\mathbf{x}$ where A is a 2 × 2 matrix. What kind of set is AU_v , where $U_v = [v_1, v_1 + \ell_1] \times [v_2, v_2 + \ell_2]$ is some rectangle? (AU_v means the image of U_v under the mapping A.) What is the area of AU_v ?

2.4 Assume you had to integrate a function f over the set AU_v . Give an intuitive explanation why we have equality in the change of variables formula

$$\int_{AU_v} f(\mathbf{y}) dy = \int_{U_v} f(A\mathbf{x}) |\det(A)| dx$$
(5)

Exercise 3:

3.1 Assume that A is $n \times n$ matrix, and that vectors \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors of A with the same eigenvalue λ . (So that $A\mathbf{u}_i = \lambda \mathbf{u}_i$ for both i = 1, 2.) Prove that also $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2$ is an eigenvector of A for all $\alpha_1, \alpha_2 \in \mathbb{R}$.

3.2 Assume that $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are linearly independent eigenvectors of A, and form a matrix $U = (\mathbf{u}_1, \ldots, \mathbf{u}_n) \in \mathbb{R}^{n \times n}$. Prove that $AU = U\Lambda$, where Λ is a diagonal matrix whose diagonal contains the eigenvalues of A.

3.3 Let's define a matrix $V = (U^{-1})^T$, and vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ so that $V = (\mathbf{v}_1, \ldots, \mathbf{v}_n)$. Prove the following formulas, and assume that the eigenvalues are non-zero, when needed.

$$A = U\Lambda V^{T}$$

$$A = \sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$$

$$A^{-1} = U\Lambda^{-1} V^{T}$$

$$A^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$$
(6)

Exercise 4:

4.1 Recall that a Gaussian random variable $X \sim N(\mu, \sigma^2)$ with mean μ and variance σ^2 has the density

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$
 (7)

Assume that X_1, \ldots, X_N are iid (independent and indentically distributed) following a Gaussian distribution of mean μ and variance σ^2 , and solve the likelihood $L(\mu, \sigma^2 | x_1, \ldots, x_N)$.

4.2 Calculate the log-likelihood $\ell(\mu, \sigma^2 | x_1, \dots, x_N) = \log(L(\mu, \sigma^2 | x_1, \dots, x_N)).$

4.3 Show that the estimates $\hat{\mu}$ and $\hat{\sigma}^2$ which maximize the likelihood are given by formulas

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_N$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$
(8)

The parameter σ^2 is denoted in such way that it appears to be a square of some parameter σ , but you can consider σ^2 as a parameter of its own too, later defining $\sigma := \sqrt{\sigma^2}$. Calculating $\frac{\partial}{\partial \sigma^2} \ell \dots$ is allowed.

Exercise 5:

The gradient of a function $J: \mathbb{R}^n \to \mathbb{R}$ at point **w** is usually defined as

$$\nabla J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{pmatrix}$$
(9)

Alternatively, it can be defined as a vector with the property

$$J(\mathbf{w} + \varepsilon \mathbf{h}) = J(\mathbf{w}) + \varepsilon (\nabla J(\mathbf{w}))^T \mathbf{h} + o(\varepsilon) \qquad (\text{as } \varepsilon \to 0)$$
(10)

for all $\mathbf{h} \in \mathbb{R}^n$. Sometimes the second definition is more convenient because you can avoid multiplying out scalar products. Use either of the two definitions to find $\nabla J(\mathbf{w})$ in the following cases.

$$J(\mathbf{w}) = \mathbf{a}^{T}\mathbf{w}$$

$$J(\mathbf{w}) = \mathbf{w}^{T}A\mathbf{w}$$

$$J(\mathbf{w}) = \mathbf{w}^{T}\mathbf{w}$$

$$J(\mathbf{w}) = \|\mathbf{w}\|$$

$$J(\mathbf{w}) = f(\|\mathbf{w}\|)$$

$$J(\mathbf{w}) = f(\mathbf{a}^{T}\mathbf{w})$$
(11)

Here $\mathbf{a} \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, and $f : \mathbb{R} \to \mathbb{R}$ is some differentiable function.