UML2012 Exercise set 2 Solutions to be presented in the 27.3.2012 session

Exercise 1:

If the function J maps a matrix $W \in \mathbb{R}^{n \times m}$ to \mathbb{R} , the gradient is defined as

$$\nabla J(W) = \begin{pmatrix} \frac{\partial J(W)}{\partial W_{11}} & \cdots & \frac{\partial J(W)}{\partial W_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial J(W)}{\partial W_{n1}} & \cdots & \frac{\partial J(W)}{\partial W_{nm}} \end{pmatrix}.$$
 (1)

Alternatively, it is defined to be the matrix $\nabla J(W)$ such that

$$J(W + \varepsilon \mathbf{e}_i \mathbf{e}_j^T) = J(W) + \varepsilon \mathbf{e}_i^T \nabla J(W) \mathbf{e}_j + o(\varepsilon), \qquad (\varepsilon \to 0)$$
(2)

Here, \mathbf{e}_i is a vertical *column* vector which is everywhere zero but in slot *i* where it is 1. Number of elements in \mathbf{e}_i and \mathbf{e}_j depend on where they are used. Here $\mathbf{e}_i \mathbf{e}_j^T$ is a $(n \times m)$ -matrix, where we assume $1 \le i \le n, 1 \le j \le m$, and $\mathbf{e}_i \in \mathbb{R}^{n \times 1}$, $\mathbf{e}_j^T \in \mathbb{R}^{1 \times m}$.

Sometimes, the second definition is more convenient because you can avoid multiplying out matrices. Use either of the two definitions to find $\nabla J(W)$ in the following cases (here: $\mathbf{u} \in \mathbb{R}^n, \mathbf{v} \in \mathbb{R}^m, A \in \mathbb{R}^{n \times m}, f : \mathbb{R} \to \mathbb{R}$).

1.
$$J(W) = \mathbf{u}^T W \mathbf{v}$$

2. $J(W) = \mathbf{u}^T (W + A) \mathbf{v}$
3. $J(W) = \sum_{n'=1}^n f(W_{n'*} \mathbf{v})$, where $W_{n'*}$ are the horizontal rows
4. $J(W) = \mathbf{u}^T W^{-1} \mathbf{v}$, where we assume $n = m$.
(3)

Hint: Prove $(W + \varepsilon H)^{-1} = W^{-1} - \varepsilon W^{-1} H W^{-1} + O(\varepsilon^2)$ first.

Exercise 2:

In this exercise, we calculate the gradient of

$$J(W) = \log |\det(W)| \tag{4}$$

using what we learned in previous exercise sessions.

2.1 Assume that $\mathbf{u}_1, \ldots, \mathbf{u}_N$ are linearly independent eigenvectors of W, and form a matrix $U = (\mathbf{u}_1, \ldots, \mathbf{u}_N)$. Let's then define $V = (U^{-1})^T$, and define vectors

 $\mathbf{v}_1, \ldots, \mathbf{v}_N$ so that $V = (\mathbf{v}_1, \ldots, \mathbf{v}_N)$. Show that the eigenvalues λ_n can be written by formula

$$\lambda_n = \mathbf{v}_n^T W \mathbf{u}_n \tag{5}$$

2.2 We can consider λ_n , \mathbf{u}_n and \mathbf{v}_n to be functions of W, so that they can be written as $\lambda_n(W)$, $\mathbf{u}_n(W)$ and $\mathbf{v}_n(W)$. Calculate a formula for $\nabla \lambda_n(W)$, by substituting $\lambda_n(W) = \mathbf{v}_n(W)^T W \mathbf{u}_n(W)$. You can assume that $\mathbf{u}_n(W)$ and $\mathbf{v}_n(W)$ are differentiable functions of W.

2.3 Use your formula for $\nabla \lambda_n(W)$ to obtain a formula for $\nabla J(W)$, by first writing J(W) in terms of the eigenvalues $\lambda_n(W)$.

2.4 Show that

$$\nabla J(W) = (W^{-1})^T \qquad \left(\text{meaning} \quad \frac{\partial J(W)}{\partial W_{nn'}} = (W^{-1})_{n'n}\right) \tag{6}$$

You should also recall results from the last week's exercise set.

Exercise 3:

A Gaussian random vector \mathbf{x} of dimension m has the density

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right],$$
(7)

where Σ is the covariance matrix and μ is the mean.

3.1 Given independently distributed data $\mathbf{x}_1, \ldots, \mathbf{x}_N$ where each sample \mathbf{x}_k is a Gaussian random vector with mean $\boldsymbol{\mu}$ and covariance matrix Σ , formulate the log-likelihood $\ell(\boldsymbol{\mu}, \Sigma)$.

3.2 Calculate the gradient of $\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. You can use the results from the exercises 1 and 2.

3.3 Conclude that the ML estimate for μ is the sample mean

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n,\tag{8}$$

and that the ML estimate for Σ is the sample covariance matrix

$$\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T, \qquad (9)$$

where $\bar{\mathbf{x}} = \hat{\boldsymbol{\mu}}$.

Exercise 4:

4.1 Let $\mathbf{w} \in \mathbb{R}^n$ be a vector which reduces the dimension of $\mathbf{x} \in \mathbb{R}^n$ from n to one via $z = \mathbf{w}^T \mathbf{x} = \sum_i w_i x_i$. Assume also that you want to reconstruct \mathbf{x} from z via

$$\hat{\mathbf{x}} = z\mathbf{w}.\tag{10}$$

In this exercise, we will show that taking for \mathbf{w} the first principal component is the optimal way of reducing the dimension if the optimality criterion is the squared reconstruction error J

$$J(\mathbf{w}) = \mathrm{E}(||\mathbf{x} - \hat{\mathbf{x}}||^2) = \mathrm{E}\left(\sum_j (x_j - w_j z)^2\right).$$
 (11)

Here z and $\hat{\mathbf{x}}$ are considered to be functions of \mathbf{w} , so that $z = z(\mathbf{w})$ and $\hat{\mathbf{x}} = \hat{\mathbf{x}}(\mathbf{w})$.

Prove that minimizing $J(\mathbf{w})$ with constraint $\|\mathbf{w}\| = 1$ is equivalent to maximizing $\mathbf{w}^T E(\mathbf{x}\mathbf{x}^T)\mathbf{w}$ (with the same constraint).

4.2 Assume that $\lambda_1 > \cdots > \lambda_n$ are some fixed numbers, and that parameters m_1, \ldots, m_n must satisfy $m_{n'} \ge 0$ and $m_1 + \cdots + m_n = 1$. Prove, that under these constraints, the quantity

$$\lambda_1 m_1 + \dots + \lambda_n m_n \tag{12}$$

is maximized by choosing $(m_1, m_2, ..., m_n) = (1, 0, ..., 0)$.

Advice: You want to prove, that if $(m_1, m_2, \ldots, m_n) \neq (1, 0, \ldots, 0)$ (antithesis), then

$$\lambda_1 > \lambda_1 m_1 + \dots + \lambda_n m_n. \tag{13}$$

This is equivalent to

$$\lambda_1 > \lambda_2 \frac{m_2}{1 - m_1} + \dots + \lambda_n \frac{m_n}{1 - m_1}.$$
 (14)

You can use induction step from here.

4.3 Assume that A is some real symmetric matrix with distinct eigenvalues. Prove that if the vector \mathbf{w} must satisfy $\|\mathbf{w}\| = 1$, the quantity $\mathbf{w}^T A \mathbf{w}$ will be maximized with respect to \mathbf{w} precisely when \mathbf{w} is an eigenvector of A corresponding to the largest eigenvalue.

4.4 Deduce that minimizing $J(\mathbf{w})$ with constraint $||\mathbf{w}|| = 1$ is equivalent to finding an eigenvector of $E(\mathbf{x}\mathbf{x}^T)$ with the largest eigenvalue.