UML2012
Exercise set 2
Solutions to be presented in the 27.3.2012 session

Exercise 1:
If the function J maps a matrix W € R™™ to R, the gradient is defined as

8I(W) 8J(W)
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Alternatively, it is defined to be the matrix V.J(WW) such that
J(W +ceel ) = J(W) +ce] VJ(W)e; + o(e), (e = 0) (2)

Here, e; is a vertical column vector which is everywhere zero but in slot ¢ where
it is 1. Number of elements in e; and e; depend on where they are used. Here
eie]T is a (n x m)-matrix, where we assume 1 <i <n, 1 <j <m, and e; € R,
T Ixm
e; € R™
Sometimes, the second definition is more convenient because you can avoid
multiplying out matrices. Use either of the two definitions to find V.J(W) in the
following cases (here: u € R", v € R™ A € R™™ f:R — R).

L JW)=u"Wv
2. JW)=u"(W+ A)v
. 3
3. J(W)= Z f(Wu.v), where W, are the horizontal rows 3)
=1

4. JW)=u'"W™v, where we assume n = m.

Hint: Prove (W +eH) ' =W —cWTHW™! + O(£?) first.

Exercise 2:
In this exercise, we calculate the gradient of

J(W) = log det(W)| (4)
using what we learned in previous exercise sessions.

2.1 Assume that uy,...,uy are linearly independent eigenvectors of W, and
form a matrix U = (uy, ..., uy). Let’s then define V = (U1, and define vectors



Vi,...,Vvy sothat V = (vq,...,vy). Show that the eigenvalues A\, can be written

by formula
Ay = ViWu, (5)

2.2 We can consider \,, u, and v, to be functions of W, so that they can
be written as \,(W), u,(W) and v,(W). Calculate a formula for VA, (W), by
substituting A,(W) = v,,(W)TWu,,(W). You can assume that u, (W) and v,,(W)
are differentiable functions of W.

2.3 Use your formula for VA, (W) to obtain a formula for V.J(W), by first
writing J (W) in terms of the eigenvalues A, (W).

2.4 Show that

aJ(W)
aWnn’

V(W) = (WHT (meaning - (W’l)n/n> (6)

You should also recall results from the last week’s exercise set.

Exercise 3:
A Gaussian random vector x of dimension m has the density

) = G | k-0 S k- )] )

where ¥ is the covariance matrix and p is the mean.

3.1 Given independently distributed data x1,...,xy where each sample x;, is
a Gaussian random vector with mean p and covariance matrix ¥, formulate the
log-likelihood (e, 3).

3.2 Calculate the gradient of ¢(u, ) with respect to g and ¥. You can use
the results from the exercises 1 and 2.

3.3 Conclude that the ML estimate for p is the sample mean

1 N
“:N;Xna (8)

and that the ML estimate for X is the sample covariance matrix

L1 ) o
Y= N;(Xn—x)(xn -x)", (9)



Exercise 4:

4.1 Let w € R™ be a vector which reduces the dimension of x € R” from n to
one via z = wlx = ZZ w;x;. Assume also that you want to reconstruct x from z
via

X = ZW. (10)

In this exercise, we will show that taking for w the first principal component is the
optimal way of reducing the dimension if the optimality criterion is the squared
reconstruction error J

J(w) =E(|x - x[[) =E (Z(%’ - wj2)2> : (11)

Here z and % are considered to be functions of w, so that z = z(w) and x = x(w).

Prove that minimizing J(w) with constraint ||w| = 1 is equivalent to maxi-
mizing w E(xx?)w (with the same constraint).

4.2 Assume that \; > --- > ), are some fixed numbers, and that parameters
my, ..., my, must satisfty m,» > 0 and my + - -- 4+ m,, = 1. Prove, that under these
constraints, the quantity
is maximized by choosing (my, mo,...,m,) = (1,0,...,0).

Advice: You want to prove, that if (my,me,...,m,) # (1,0,...,0) (anti-
thesis), then

AL > Aimy 4 Aamy,. (13)
This is equivalent to
mo my,
AL > A et A, . 14
! 2 1-— ma + + 1-— ma ( )

You can use induction step from here.

4.3 Assume that A is some real symmetric matrix with distinct eigenvalues.
Prove that if the vector w must satisfy |[w| = 1, the quantity w’ Aw will be
maximized with respect to w precisely when w is an eigenvector of A corresponding
to the largest eigenvalue.

4.4 Deduce that minimizing J(w) with constraint |w|| = 1 is equivalent to
finding an eigenvector of E(xx’) with the largest eigenvalue.



