
UML2012
Exercise set 2

Solutions to be presented in the 27.3.2012 session

Exercise 1:
If the function J maps a matrix W ∈ Rn×m to R, the gradient is defined as

∇J(W ) =


∂J(W )
∂W11

. . . ∂J(W )
∂W1m

...
. . .

...
∂J(W )
∂Wn1

. . . ∂J(W )
∂Wnm

 . (1)

Alternatively, it is defined to be the matrix ∇J(W ) such that

J(W + εeie
T
j ) = J(W ) + εeTi ∇J(W )ej + o(ε), (ε→ 0) (2)

Here, ei is a vertical column vector which is everywhere zero but in slot i where
it is 1. Number of elements in ei and ej depend on where they are used. Here
eie

T
j is a (n×m)-matrix, where we assume 1 ≤ i ≤ n, 1 ≤ j ≤ m, and ei ∈ Rn×1,

eTj ∈ R1×m.
Sometimes, the second definition is more convenient because you can avoid

multiplying out matrices. Use either of the two definitions to find ∇J(W ) in the
following cases (here: u ∈ Rn,v ∈ Rm, A ∈ Rn×m, f : R→ R).

1. J(W ) = uTWv

2. J(W ) = uT (W + A)v

3. J(W ) =
n∑

n′=1

f(Wn′∗v), where Wn′∗ are the horizontal rows

4. J(W ) = uTW−1v, where we assume n = m.

(3)

Hint: Prove (W + εH)−1 = W−1 − εW−1HW−1 +O(ε2) first.

Exercise 2:
In this exercise, we calculate the gradient of

J(W ) = log |det(W )| (4)

using what we learned in previous exercise sessions.
2.1 Assume that u1, . . . ,uN are linearly independent eigenvectors of W , and

form a matrix U = (u1, . . . ,uN). Let’s then define V = (U−1)T , and define vectors
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v1, . . . ,vN so that V = (v1, . . . ,vN). Show that the eigenvalues λn can be written
by formula

λn = vT
nWun (5)

2.2 We can consider λn, un and vn to be functions of W , so that they can
be written as λn(W ), un(W ) and vn(W ). Calculate a formula for ∇λn(W ), by
substituting λn(W ) = vn(W )TWun(W ). You can assume that un(W ) and vn(W )
are differentiable functions of W .

2.3 Use your formula for ∇λn(W ) to obtain a formula for ∇J(W ), by first
writing J(W ) in terms of the eigenvalues λn(W ).

2.4 Show that

∇J(W ) = (W−1)T
(

meaning
∂J(W )

∂Wnn′
= (W−1)n′n

)
(6)

You should also recall results from the last week’s exercise set.

Exercise 3:
A Gaussian random vector x of dimension m has the density

f(x) =
1

(2π)m/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
, (7)

where Σ is the covariance matrix and µ is the mean.
3.1 Given independently distributed data x1, . . . ,xN where each sample xk is

a Gaussian random vector with mean µ and covariance matrix Σ, formulate the
log-likelihood `(µ,Σ).

3.2 Calculate the gradient of `(µ,Σ) with respect to µ and Σ. You can use
the results from the exercises 1 and 2.

3.3 Conclude that the ML estimate for µ is the sample mean

µ̂ =
1

N

N∑
n=1

xn, (8)

and that the ML estimate for Σ is the sample covariance matrix

Σ̂ =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T , (9)

where x̄ = µ̂.
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Exercise 4:
4.1 Let w ∈ Rn be a vector which reduces the dimension of x ∈ Rn from n to

one via z = wTx =
∑

iwixi. Assume also that you want to reconstruct x from z
via

x̂ = zw. (10)

In this exercise, we will show that taking for w the first principal component is the
optimal way of reducing the dimension if the optimality criterion is the squared
reconstruction error J

J(w) = E(||x− x̂||2) = E

(∑
j

(xj − wjz)2

)
. (11)

Here z and x̂ are considered to be functions of w, so that z = z(w) and x̂ = x̂(w).
Prove that minimizing J(w) with constraint ‖w‖ = 1 is equivalent to maxi-

mizing wTE(xxT )w (with the same constraint).
4.2 Assume that λ1 > · · · > λn are some fixed numbers, and that parameters

m1, . . . ,mn must satisfy mn′ ≥ 0 and m1 + · · ·+mn = 1. Prove, that under these
constraints, the quantity

λ1m1 + · · ·+ λnmn (12)

is maximized by choosing (m1,m2, . . . ,mn) = (1, 0, . . . , 0).
Advice: You want to prove, that if (m1,m2, . . . ,mn) 6= (1, 0, . . . , 0) (anti-

thesis), then
λ1 > λ1m1 + · · ·+ λnmn. (13)

This is equivalent to

λ1 > λ2
m2

1−m1

+ · · ·+ λn
mn

1−m1

. (14)

You can use induction step from here.
4.3 Assume that A is some real symmetric matrix with distinct eigenvalues.

Prove that if the vector w must satisfy ‖w‖ = 1, the quantity wTAw will be
maximized with respect to w precisely when w is an eigenvector of A corresponding
to the largest eigenvalue.

4.4 Deduce that minimizing J(w) with constraint ‖w‖ = 1 is equivalent to
finding an eigenvector of E(xxT ) with the largest eigenvalue.
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