Exercise 1:

Let’s examine algorithms, which approximate a number \(x = \sqrt{y} \), once a parameter \(y > 0 \) is given as input. The following functions provide some possible ways to achieve the goal:

\[
 f_1(x, y) = (x^2 - y)^2, \quad f_2(x, y) = x^2 - y
\]

1.1 Explain why iterations

\[
 x_{n+1} = x_n - \mu \frac{\partial f_1(x_n, y)}{\partial x}
\]

can produce a sequence \(x_1, x_2, \ldots \) that converges to \(\sqrt{y} \) at an exponential rate.

1.2 Explain why iterations

\[
 x_{n+1} = x_n - \frac{f_2(x_n, y)}{\frac{\partial f_2(x_n, y)}{\partial x}}
\]

can produce a sequence \(x_1, x_2, \ldots \) that converges to \(\sqrt{y} \) at a rate that is faster than exponential.

Advice: No need for rigor asymptotics or studies of domains of convergence. The claimed results can be justified reasonably with some approximations. You can write \(x_n = \sqrt{y} + \varepsilon_n \), and study approximative recursion formulas for the sequence \(\varepsilon_1, \varepsilon_2, \ldots \).

Exercise 2:

Suppose we want to maximize the function

\[
 f(w) = \frac{1}{T} \sum_{t=1}^{T} (w^T x(t))^4
\]

with a constraint \(\|w\| = 1 \), by using the recursive formulas

\[
 \dot{w}_{n+1} = w_n + \mu \nabla f(w_n) \\
 w_{n+1} = \frac{\dot{w}_{n+1}}{\|\dot{w}_{n+1}\|}
\]

Let’s assume that we can write \(w_n = w_{\text{max}} + \varepsilon_n \), where \(\varepsilon_n \) are some vectors with small norms (\(\|\varepsilon_n\| \approx 0 \)), and that \(w_{\text{max}} \) is a vector that maximizes the \(f \) with the constraint \(\|w_{\text{max}}\| = 1 \).
2.1 Prove that formula
\[\tilde{w}_{n+1} = (1 + \alpha)w_{\text{max}} + (\text{id} + \mu Q)\varepsilon_n + O(\|\varepsilon_n\|^2) \] (6)
holds where \(\alpha = \mu \| \nabla f(w_{\text{max}}) \| \) is a real coefficient, and \(Q \in \mathbb{R}^{N \times N} \) is some matrix.

2.2 Prove the formula
\[Q = \frac{12}{T} \sum_{t=1}^{T} (x(t)x(t)^Tw_{\text{max}}w_{\text{max}}^Tx(t)x(t)^T) \] (7)

2.3 Prove the formula
\[\|\tilde{w}_{n+1}\| = (1 + \alpha) + w_{\text{max}}^T(\text{id} + \mu Q)\varepsilon_n + O(\|\varepsilon_n\|^2) \] (8)

2.4 Prove the formula
\[w_{n+1} = w_{\text{max}} + P \frac{\text{id} + \mu Q}{1 + \alpha} \varepsilon_n + O(\|\varepsilon_n\|^2), \] (9)
where \(P \) is the projection matrix to the space \(\langle w_{\text{max}} \rangle^\perp \).

Exercise 3:

3.1 Assume that \(X \) and \(Y \) are independent random real variables such that \(E(X) = 0 \) and \(E(Y) = 0 \), and define a function
\[f_\alpha(U) = E(U^4) + \alpha(E(U^2))^2 \] (10)
with arbitrary real coefficient \(\alpha \). Solve a formula for the quantity
\[f_\alpha(X + Y) - f_\alpha(X) - f_\alpha(Y). \] (11)
How does it depend on the variable \(\alpha \)?

3.2 Assume that \(S_1 \) and \(S_2 \) are independent random real variables with \(E(S_1) = 0 \), \(E(S_2) = 0 \), \(\text{kurt}(S_1) > 0 \) and \(\text{kurt}(S_2) > 0 \), and that \(S \) is a two component random variable
\[S = \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} \] (12)
Define a matrix \(W \) as a function of real parameter \(\theta \) by
\[W(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \] (13)
and a function \(f(\theta) \) by the formula
\[f(\theta) = \text{kurt}((WS)_1) + \text{kurt}((WS)_2). \] (14)
Solve and explicit formula for f, that shows how it depends on θ.

Exercise 4:

4.1 The Hermite polynomials are special functions which look like this:

$$
H_0(x) = 1 \\
H_1(x) = x \\
H_2(x) = x^2 - 1 \\
H_3(x) = x^3 - 3x
$$

(15)

They satisfy an orthogonality relation

$$
\int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2} H_n(x) H_m(x) dx = \sqrt{2\pi} n! \delta_{nm}
$$

(16)

Assume that a function f can be written as

$$
f(x) = e^{-\frac{1}{2}x^2} \sum_{n=0}^{\infty} a_n H_n(x)
$$

(17)

and solve a formula for each coefficient a_n in terms of the function f. (Advice: Multiply $f(x)$ with $H_m(x)$, integrate over x, change the order of integral and sum.)

4.2 The Hermite polynomials also satisfy a formal completeness relation

$$
\sum_{n=0}^{\infty} \frac{1}{n!} H_n(x) H_n(x') = \sqrt{2\pi} \delta(x - x') e^{\frac{1}{2}x^2}
$$

(18)

Prove, under the assumption that the formal completeness formula works, that any f can be written as series like in (17). (Advice: Substitute your formula for coefficients a_n into the series (17), and change the order of integral and sum.)

4.3 Assume that we can approximate a probability distribution $p(x)$ of some random variable by formula

$$
p(x) \approx \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \left(1 + \sum_{n=3}^{N} a_n H_n(x)\right)
$$

(19)

where the coefficients a_n are small in some sense. Prove the approximation

$$
- \int_{-\infty}^{\infty} p(x) \log(p(x)) dx \approx \log(\sqrt{2\pi}) + \frac{1}{2} - \sum_{n=3}^{N} n! a_n^2
$$

(20)

The left side is the definition of entropy. (Advice: Use approximation $\log(1+t) \approx t$. Also notice $x^2 = H_2(x) + H_0(x)$, and use orthogonality properties.)