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Exercise set 6

Solutions to be presented in the 27.4.2012 session

Exercise 1:
First some theory: The EM-algorithm is a method to estimate parameters θ

when you can only observe a subgroup x of all the variables (x, s) in the model. In
other words, given the statistical model p(x, s, θ) you want to estimate θ from the
iid observations x(1) . . .x(T ). Note that, however, you do not have observations
s(1) . . . s(T ) available. The si in the vector s are called latent variables.

One solution for such a situation would be to integrate out the latent variables
to obtain p(x, θ). Then, to maximize the likelihood `(θ),

`(θ) =
∑
t

log p(x(t), θ) (1)

in order to find θ. The EM-algorithm offers an alternative solution.
If you were able to observe both x and s, your log-likelihood would be `xs(θ) =∑
t log p(x(t), s(t), θ) which you would maximize to find θ. We call this likelihood

the full likelihood because it is based both on x(t) and the latent variables s(t).
However, we do not know the s(t), and thus the log p(x(t), s(t), θ). The idea in the
EM-Algorithm is to replace log p(x(t), s(t), θ) with an estimate, and to maximize
then the estimated `xs(θ) with respect to θ.

Assume that you have an initial estimate of θ available, call it θ0. Then, you
can calculate the posterior p(s|x, θ0)

p(s|x, θ0) =
p(x, s, θ0)

p(x, θ0)
, (2)

and replace log p(x(t), s(t), θ) by its expected value (expected with respect to s(t))
given θ0 and the data x(t), i.e. by∫

[log p(x(t), s(t), θ)] p(s(t)|x(t), θ0)ds(t). (3)

The estimated full log-likelihood becomes then

J(θ|θ0) =
∑
t

Jt(θ|θ0) (4)

with

Jt(θ|θ0) =

∫
[log p(x(t), s(t), θ)] p(s(t)|x(t), θ0)ds(t), (5)
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which is a function of θ. This is called the E-step in the EM-algorithm. Max-
imization of J(θ|θ0), which is called the M-step, yields then a new estimate θ1
for θ. With the new estimate, a new posterior p(s|x, θ1), and a new estimated
log-likelihood J(θ|θ1) is calculated. From here, you obtain the next estimate θ2 for
θ.

The goal of this exercise is to show that the EM-iteration described above
leads to estimates θk which increase the likelihood `(θk) in each iteration. (Recall
that `(θ) was the likelihood that would be obtained by integrating out the latent
variables s.)

Now to the questions:
1.1 Show that maximization of J(θ|θk) is the same as maximization of J̃(θ, θk) =∑
t J̃t(θ|θk), where

J̃t(θ|θk) =

∫
log

(
p(x(t), s(t), θ)

p(x(t), s(t), θk)

)
p(s(t)|x(t), θk)ds(t). (6)

1.2 Explain why for the EM-algorithm it holds that J̃(θk+1|θk) ≥ 0.
1.3 Use the fact

p(x, s, θ) = p(s|x, θ)p(x, θ) (7)

to show that

J̃(θk+1|θk) = `(θk+1)− `(θk)+∑
t

∫
log

(
p(s(t)|x(t), θk+1)

p(s(t)|x(t), θk)

)
p(s(t)|x(t), θk)ds(t).

(8)

1.4 For this question you can assume it known that

D(f, g) =

∫
log

(
f(x)

g(x)

)
f(x)dx (9)

is ≥ 0 for all functions f, g and D(f, f) = 0. D(f, g) is called the Kullback-Leibler
(KL) distance between f and g. Using this property of the KL distance, show that
`(θk+1) ≥ `(θk).

Exercise 2:
We need to calculate the integral in Eq. (11.20) for the E-step of the EM

algorithm. The equation (11.20) from the lecture notes is roughly

J(θ|θk−1) =

∫
log
(
p(X,S; θ)

)
p(S|X, θk−1)dS (10)

This form is the general case where the data might not be iid. Notice that the
integral is NST dimensional integral, where NS is the dimension of the vector space
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where vectors st are, and T is the number of sample points. Here, we derive the
expression for the simpler case of iid data that was used in Exercise 1.

2.1 With the notation of Eq. (11.20), assume that

p(X,S; θ) =
∏
t

p(xt|st; θ)p(st; θ) (11)

where the T observations are X = (x1 . . .xT ) and the latent variables are S =
(s1 . . . sT ). This is the iid assumption. Begin with the definition p(X; θ) =∫
p(X,S; θ)dS, and prove p(X; θ) =

∏
t p(xt; θ).

2.2 Show that Eq. (11.20) becomes

J(θ|θk−1) =
T∑
t=1

Et
(

log p(xt, st; θ)
)

(12)

where the expectation Et is taken with respect to the posterior p(st|xt; θk−1). For
continuous data J is thus

J(θ) =
T∑
t=1

∫
log p(xt, st; θ)p(st|xt; θk−1)dst (13)

while for discrete data it is

J(θ) =
T∑
t=1

∑
st

log p(xt, st; θ)p(st|xt; θk−1). (14)

2.3 Explain why in the lecture notes Eq. (11.16) the numbers q∗t,c are the
posteriors p(st|xt; θk−1). Advice: Denote st = r(t), and θ = (µc, Cc, πc)c=1,2,...,k.

Exercise 3:
In this exercise, we first set up a statistical model to do clustering and use then

the EM-algorithm to estimate the parameters in the model. This material is be
treated in Section 11.7.

The data generation process is as follows: For t = 1 till T ,

(a) Choose randomly a cluster r(t) ∈ {1 . . . C}. Here, we assume that the prob-
ability for choosing cluster c is P (r(t) = c) = πc.

(b) Draw the t-th sample x(t) ∈ Rn from a multivariate normal distribution with
mean µr(t) and covariance matrix Cr(t).

This process generates thus data (x(1) . . .x(T )), and (r(1) . . . r(T )) but only the
x(t) are observed. The latent variable in this statistical model is r. The parameters
are πc, µc, and Cc for c = 1 . . . C. In what follows, they are together denoted as θ.
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3.1 Given iid data (x(1) . . .x(T )), and (r(1) . . . r(T )) set up the (full) log-
likelihood `xr(θ), where θ stands for the parameters of the model (compare with
Exercise 1 for the idea of the full log-likelihood).

3.2 Show that the posterior P (r(t) = c|x(t), θ) is given by

P (r(t) = c|x, θ) =

πc√
|Cc|

exp
(
−0.5

∑
t(x(t)− µc)TC−1c (x(t)− µc)

)
∑C

k=1
πk√
|Ck|

exp
(
−0.5

∑
t(x(t)− µk)TC−1k (x(t)− µk)

) (15)

Note that P (r(t) = c|x(t), θ) corresponds to p(s(t)|x(t), θ) in Exercise 1. The
difference is, however, that r is a discrete random variable while s is a (collection
of) continuous random variable(s). Therefore, what was integration over s becomes
here summation over the values of r.

3.3 Given an estimate θk, what is the estimated full log-likelihood J(θ|θk)?
(See Equation (4) of Ex. 1)

3.4 Calculate the gradients ∇µcJ(θ|θk) and ∇CcJ(θ|θk). To get the gradients,
you may find it useful to check exercise 13 (Maximum Likelihood Estimation for
Multivariate Gaussians) (same as Set 2 Ex 3 2012). Set the gradients to zero, to
obtain the following EM-update rules for µc and Cc, c = 1 . . . C:

µc(k + 1) =

∑T
t=1 P (r(t) = c|x(t), θk)x(t)∑T
t=1 P (r(t) = c|x(t), θk)

(16)

Cc(k + 1) =

∑T
t=1 P (r(t) = c|x(t), θk)(x(t)− µc(k + 1))(x(t)− µc(k + 1))T∑T

t=1 P (r(t) = c|x(t), θk)
(17)

3.5 The optimization of J(θ|θk) with respect to the distribution of r, i.e. the
weights πc, is more complicated because it is a constrained optimization problem:
πc ≥ 0 and

∑
c πc = 1. There is a trick to convert the constrained optimization

problem into an unconstrained one: Write πc as

πc =
exp(γc)∑C
k=1 exp(γk)

, (18)

where γc ∈ R. Verify that the trick works, i.e. that πc as defined above satisfies
the constraints for all γi.

3.6 Find the derivative ∇γcJ(θ|θk), and set it to zero to find the EM-update
rule for πc:

πc(k + 1) =
1

T

T∑
t=1

P (r(t) = c|x(t), θk) (19)
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