
UML2014
Exercise set 2

Solutions to be presented in the 21.3.2014 session

Exercise 1:
Suppose we wanted to construct algorithms that approximate the number x =√
y, once a parameter y > 0 is given as input. Consider the functions

f1(x, y) = (x2 − y)2 and f2(x, y) = x2 − y. (1)

These functions have the properties f1(
√
y, y) = 0 and f2(

√
y, y) = 0.

1.1 Show that iterations

xn+1 = xn − µ
∂f1(xn, y)

∂x
(2)

can produce a sequence x1, x2, . . . that converges to
√
y at an exponential rate.

Here µ is some real constant.
1.2 Show that iterations

xn+1 = xn −
f2(xn, y)
∂f2(xn,y)

∂x

(3)

can produce a sequence x1, x2, . . . that converges to
√
y at a rate that is faster

than exponential.
Advice: First solve explicit formulas for the partial derivatives. Then write

xn =
√
y + εn, and study approximative recursion formulas for the sequences

ε1, ε2, . . .. It is not necessary to prove any rigor asymptotics for this exercise. The
essential will become clear when the recursion formulas for ε1, ε2, . . . are studied.

Exercise 2:
2.1 Assume that J : RN → R is some differentiable function. Its partial

derivatives are defined as

∂J(x)

∂xi
= lim

ε→0

J(x + εei)− J(x)

ε
. (4)

Assume that x is fixed, and that some vector v has the property

J(x + εh) = J(x) + εv · h + o(ε) when ε→ 0 (5)

for all vectors h. Prove that v cannot be anything else than the ∇f(x). In other

words vi = ∂f(x)
∂xi

for all i.
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2.2 Assume that J : RN×N → R is some differentiable function. Its partial
derivatives are defined as

∂J(A)

∂Aij
= lim

ε→0

J(A+ εeie
T
j )− J(A)

ε
. (6)

Assume that A is fixed, and that some matrix B has the property

J(A+ εhwT ) = J(A) + εhTBw + o(ε) when ε→ 0 (7)

for all vectors h,w. Prove that B cannot be anything else than the ∇f(A). In

other words Bij = ∂J(A)
∂Aij

for all i, j.

2.3 Assume that matrices A,B ∈ RN×N and vectors x,y ∈ RN2
have the forms

A =

 A11 · · · A1N
...

...
AN1 · · · ANN

 , B =

 B11 · · · B1N
...

...
BN1 · · · BNN

 (8)

x =

 x1
...

xN2

 , y =

 y1
...
yN2

 , (9)

and also assume that they are related by the relations

A =


x1 · · · xN
xN+1 · · · x2N

...
...

xN2−N · · · xN2

 , B =


y1 · · · yN
yN+1 · · · y2N

...
...

yN2−N · · · yN2

 (10)

Prove that yTx = Tr(BTA).
2.4 Again assume that J : RN×N → R is some differentiable function, and that

∇J(A) is its gradient (as N ×N matrix) at location A. Prove that

J(A+ εW ) = J(A) + εTr
(
W T∇J(A)

)
+ o(ε) when ε→ 0 (11)

holds for all N ×N matrices W .
Advice: Notice that in 2.1 the claimed property holds for all h, so we have

freedom to choose all kinds of vectors for h. When proving vi = ∂f(x)
∂xi

, first fix
i, then choose suitable h. The 2.2 must be done similarly as 2.1. First fix a
pair (i, j), then choose h and w suitably. In 2.3 the trace is defined as Tr(C) =∑N

n=1Cnn. When proving yTx = Tr(BTA), simply use the definition of trace, and
then the definition of a matrix multiplication. It turns out that the way the vector
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elements are ordered into the matrix form doesn’t matter, so don’t be mislead by
unnecessary details. In 2.4 transform the matrix function into a vector function,
use vector calculus (which we can assume to be known), and transform the vector
inner product into a matrix form. Finally, check that pieces fit together and stuff
makes sense: Is the quantity hT∇f(A)w related to the quantity Tr

(
W T∇f(A)

)
?

Exercise 3:
3.1 Assume two vectors a1 and a2 are in R2. Together they span a paral-

lelogram. Assume it known, that the area of the parallelogram is the length of
the base multiplied by the height, and prove that the area S of the parallelogram
satisfies

S2 = ‖a1‖22‖a2‖22 − (aT2 a1)
2 (12)

3.2 Form the matrix A = (a1, a2) ∈ R2×2, and show that

S2 = det(A)2 (13)

3.3 Consider the linear transformation y = Ax where A is a 2 × 2 matrix.
What kind of set is AUv, where Uv = [v1, v1 + `1]× [v2, v2 + `2] is some rectangle?
(AUv means the image of Uv under the mapping A.) What is the area of AUv?

3.4 Assume you had to integrate a function f over the set AUv. Give an
intuitive explanation why we have equality in the change of variables formula∫

AUv

f(y)dy =

∫
Uv

f(Ax)| det(A)|dx (14)

Advice: There is no one right way to do this exercise, but it is recommended
that you draw some pictures. The integrals can be approximated as sums over
some grid points.

Exercise 4:
4.1 Assume that A is n×n matrix, and that vectors u1 and u2 are eigenvectors

of A with the same eigenvalue λ. (So that Aui = λui for both i = 1, 2.) Prove
that also α1u1 + α2u2 is an eigenvector of A for all α1, α2 ∈ R.

4.2 Assume that u1, . . . ,un are linearly independent eigenvectors of A, and
form a matrix U = (u1, . . . ,un) ∈ Rn×n. Prove that AU = UΛ, where Λ is a
diagonal matrix whose diagonal contains the eigenvalues of A.

4.3 Let’s define a matrix V = (U−1)T , and vectors v1, . . . ,vn so that V =
(v1, . . . ,vn). Prove the following formulas, and assume that the eigenvalues are
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non-zero, when needed.

A = UΛV T

A =
n∑
i=1

λiuiv
T
i

A−1 = UΛ−1V T

A−1 =
n∑
i=1

1

λi
uiv

T
i

(15)

Exercise 5:
5.1 Recall that a Gaussian random variable X ∼ N(µ, σ2) with mean µ and

variance σ2 has the density

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
(16)

Assume that X1, . . . , XN are iid (independent and indentically distributed) follow-
ing a Gaussian distribution of mean µ and variance σ2, and solve the likelihood
L(µ, σ2|x1, . . . , xN) and the log-likelihood `(µ, σ2|x1, . . . , xN) = log(L(µ, σ2|x1, . . . , xN)).

5.2 Show that the estimates µ̂ and σ̂2 which maximize the likelihood are given
by formulas

µ̂ =
1

N

N∑
n=1

xN

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2

(17)

Advice: Remember p(x) = p(x1) · . . . · p(xN), and use zeros of derivatives for
maxima. The study of second order derivatives can be omitted for simplicity, but
you can examine them if you want. The parameter σ2 is denoted in such way
that it appears to be a square of some parameter σ, but you can consider σ2 as a
parameter of its own too, later defining σ :=

√
σ2. Calculating ∂`

∂σ2 is allowed.
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