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Exercise set 3

Solutions to be presented in the 28.3.2014 session

Exercise 1:
1.1 Show that

(A+ εB)−1 = A−1 − εA−1BA−1 +O(ε2) (1)

in the limit ε→ 0
1.2 Show that

∂

∂Aij

(A−1)nm = −(A−1)ni(A
−1)jm (2)

1.3 Assume that f : RN×N → R is some differentiable function whose partial
derivatives are known. Find some useful formula for

∂g(A)

∂Aij

(3)

when g has been defined with the formula g(A) = f(A−1).
Advice: We can assume that the Neumann series

(id + A)−1 = id− A+ A2 − A3 + · · · (4)

is already known. (You can study this series too, though, if you are not familiar
with it. . . ) In 1.1 you must begin with A + εB = A(id + εA−1B) or A + εB =
(id + εBA−1)A. In 1.3 you must use the chain rule of differentiation. It is simple
with vectors, but the matrix form of the input parameter can make it feel more
complicated. One possibility is to define a function I : RN×N → RN×N , I(A) =
A−1, and see g as g = f ◦ I.

Exercise 2:
In this exercise, we calculate the gradient of

J(W ) = log |det(W )|. (5)

2.1 Assume that u1, . . . ,uN are linearly independent eigenvectors of W , and
form a matrix U = (u1, . . . ,uN). Let’s then define V = (U−1)T , and define vectors
v1, . . . ,vN so that V = (v1, . . . ,vN). Show that the eigenvalues λn can be written
by formula

λn = vT
nWun (6)

2.2 We can consider λn, un and vn to be functions of W , so that they can
be written as λn(W ), un(W ) and vn(W ). Show that ∇λn(W ) = vnu

T
n by first
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substituting λn(W ) = vn(W )TWun(W ). You can assume that un(W ) and vn(W )
are differentiable functions of W .

2.3 Use the formula for ∇λn(W ) to show that ∇J(W ) = (W−1)T .
Advice: In 2.2 it is probably clearer to begin searching for ∂

∂Wij
λn(W ) with

some fixed i, j. At some point you must use the fact that un is a right eigenvector
of W , and vn a left eigenvector of W , so seek opportunities for these if you seem
to get stuck. In 2.3 you must recall last week’s exercises.

Exercise 3:
A Gaussian random vector x of dimension N has the density

f(x) =
1

(2π)N/2det(Σ)1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
, (7)

where Σ is the covariance matrix and µ is the mean.
3.1 Given independently distributed data x1, . . . ,xK where each sample xk is

a Gaussian random vector with mean µ and covariance matrix Σ, formulate the
log-likelihood `(µ,Σ).

3.2 Calculate the gradient of `(µ,Σ) with respect to µ and Σ.
3.3 Conclude that the ML (maximum likelihood) estimate for µ is the sample

mean

µ̂ =
1

K

K∑
k=1

xk, (8)

and that the ML estimate for Σ is the sample covariance matrix

Σ̂ =
1

K

K∑
k=1

(xk − µ̂)(xk − µ̂)T , (9)

You can omit the study of Hessian for simplicity.

Exercise 4:
Assume that X ∈ RN×K is a matrix of K sample vectors. We denote the

sample vectors as X∗k, which with fixed k are N × 1 matrices. Let w ∈ RN×1 be
a vector which reduces the dimension of the data from N to 1 via Z = wTX. So
Z is a 1×K matrix. Next we want to reconstruct X from Z via

X̂ = wZ. (10)

Notice that X̂ is again a N ×K matrix. In this exercise, we will show that taking
for w the first principal component is the optimal way of reducing the dimension,
if the optimality criterion is the squared reconstruction error J

J(w) =
1

K

K∑
k=1

∥∥X∗k − X̂∗k
∥∥2 (11)
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Here Z and X̂ are considered to be functions of w, so that we could denote
Z = Z(w) and X̂ = X̂(w).

4.1 Prove that minimizing J(w) with constraint ‖w‖ = 1 is equivalent to
maximizing wTXXTw (with the same constraint).

4.2 Assume that λ1 > · · · > λN are some fixed numbers, and that parameters
m1, . . . ,mN must satisfy mn ≥ 0 and m1 + · · ·+mN = 1. Prove, that under these
constraints, the quantity

λ1m1 + · · ·+ λNmN (12)

is maximized by choosing (m1,m2, . . . ,mN) = (1, 0, . . . , 0).
4.3 Assume that A is some real symmetric matrix with distinct eigenvalues.

Prove that if the vector w must satisfy ‖w‖ = 1, the quantity wTAw will be
maximized with respect to w precisely when w is an eigenvector of A corresponding
to the largest eigenvalue.

4.4 Deduce that minimizing J(w) with constraint ‖w‖ = 1 is equivalent to
finding an eigenvector of XXT with the largest eigenvalue.

Advice: In 4.1 one possibility is to use the definition of the norm ‖x‖2 =∑N
n=1 x

2
n and see what happens. This will lead to plenty of work, but the path will

not be impossible. A smarter alternative is to notice that the objective function can
be written in the form J(w) = 1

K
Tr
(
(XT − X̂T )(X − X̂)

)
. After substituing X̂ =

wwTX, a nicer path to the end result might begin to appear. The claim in 4.2 can
be proven in several different ways. One possibility is to use m1 = 1−m2−· · ·−mN

to transform the N dimensional constrained optimization problem into an N − 1
dimensional unconstrained optimization problem (or differently constrained). An
alternative way is to prove that if (m1,m2, . . . ,mN) 6= (1, 0, . . . , 0) (anti-thesis),
then

λ1 > λ1m1 + · · ·+ λNmN . (13)

This claim is equivalent to

λ1 > λ2
m2

1−m1

+ · · ·+ λN
mN

1−m1

. (14)
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