UML2014 Exercise set 4 Solutions to be presented in the 4.4.2014 session

Exercise 1:

1.1 Assume that \mathcal{Y}_1 and \mathcal{Y}_2 are two real random variables, and that $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^K$ are sample vectors whose elements are independent sample draws from the random variables \mathcal{Y}_1 and \mathcal{Y}_2 . Explain how the correlation (or uncorrelatedness) of \mathcal{Y}_1 and \mathcal{Y}_2 is related to possible orthogonality of vectors \mathbf{y}_1 and \mathbf{y}_2 .

1.2 Assume that X is an $N \times K$ data matrix, seen as a collection of K sample vectors. Assume that U is an $M \times N$ matrix, whose columns are normalized eigenvectors of $\frac{1}{K}XX^T$ corresponding to the most significant eigenvalues We define $\overline{X} = U^T X$. Prove that the rows of \overline{X} are orthogonal to each other.

Advice: By definition, the correlation deals with the quantity $\mathbb{E}(\mathcal{Y}_1\mathcal{Y}_2)$, while the orthogonality deals with the quantity $\mathbf{y}_1 \cdot \mathbf{y}_2$.

Exercise 2:

2.1 Assume that A is some $N \times M$ matrix, M < N, and that the columns of A are linearly independent. Prove that AA^T has M non-zero eigenvalues, and that zero appears as the eigenvalue N - M times.

2.2 Assume that A is some $N \times N$ diagonal matrix, and that its diagonal values are all positive. If a matrix B has a property $B^2 = A$, we say that B is a square root of A. Solve how many different diagonal matrices B there are with this property.

2.3 Assume that A is some $N \times M$ matrix and $M \leq N$. Also assume that we have found a square root $(A^T A)^{\frac{1}{2}}$ which is symmetric and invertible. Prove that if we define \overline{A} by

$$\overline{A} = A(A^T A)^{-\frac{1}{2}},\tag{1}$$

the columns of \overline{A} will be orthogonal.

2.4 Assume that A is some $N \times M$ matrix and $N \leq M$. This time assume that we have found a square root $(AA^T)^{\frac{1}{2}}$ which is symmetric and invertible. Prove that if we define \overline{A} by

$$\overline{A} = (AA^T)^{-\frac{1}{2}}A,\tag{2}$$

the rows of \overline{A} will be orthogonal.

Exercise 3:

3.1 Assume that the covariance matrix of a random vector $\mathbf{x} \in \mathbb{R}^2$ with a zero mean has the form

$$\left(\begin{array}{cc}
1 & \rho\\
\rho & 1
\end{array}\right)$$
(3)

Solve the eigenvalues and -vectors of the covariance as functions of ρ .

3.2 Assume that a random vector $\mathbf{y} \in \mathbb{R}^2$ has been defined by the formula

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \end{pmatrix}$$
(4)

where \mathcal{E}_1 and \mathcal{E}_2 are independent from other random variables, and have means and variances $\mathbb{E}(\mathcal{E}_i) = 0$ and $\mathbb{E}(\mathcal{E}_i^2) = \sigma_i^2$ for i = 1, 2, where σ_1^2 and σ_2^2 are some positive constants. Solve the covariance matrix for \mathbf{y} , and solve its eigenvalues.

3.3 Approximate the eigenvalues under the assumption that σ_1^2 and σ_2^2 are small, by using the first order Taylor series with respect to σ_1^2 and σ_2^2 . **3.4** Under the approximation that σ_1^2 and σ_2^2 are small, approximate the eigen-

vectors of the covariance of \mathbf{y} .

Exercise 4:

The objective function for a single factor is

$$J_{ls}(\mathbf{a}) = \|C - \mathbf{a}\mathbf{a}^T\|^2,\tag{5}$$

where C is some covariance matrix, and the squared norm $||A||^2$ of a matrix A is defined as $||A||^2 = \sum_{ij} A_{ij}^2$. **4.1** Write down the details of how to get from Equation (5) to

$$J_{ls} = \|\mathbf{a}\|^4 - 2\mathbf{a}^T C \mathbf{a} + \operatorname{Tr}(CC^T)$$
(6)

4.2 Calculate the gradient of J_{ls} , as defined in Equation (6), with respect to **a**.

4.3 Show that if the gradient is zero for some vector **v**, then **v** is an eigenvector. Let **e** be an eigenvector of C with unit norm. Find all the scalars α such that the vector $\mathbf{a}^* = \alpha \mathbf{e}$ makes the gradient of J_{ls} zero.

4.4 Calculate the value of J_{ls} for \mathbf{a}^* . Conclude that the eigenvector \mathbf{e} that has the eigenvalue with the largest norm minimizes J_{ls} .

Exercise 5:

The optimization problem for quartimax is to maximize

$$J(U) = \sum_{ij} G((AU)_{ij}) \tag{7}$$

under the constraint of orthogonality of U (see Section 5.5).

5.1 Derive an iterative update rule for the matrix U which solves the optimization problem for $G(y) = y^4$.

5.2 Show that J(U) is constant for all orthogonal U if $G(y) = y^2$.