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Exercise set 5

Solutions to be presented in the 11.4.2014 session

Exercise 1:
Kurtosis of a zero mean random variable x is defined as

kurt(x) = E(x4)− 3(E(x2))2 (1)

Kurtosis is a measure of the ”peakedness” of the probability distribution of x.
Calculate the kurtosis for the

1.1 Uniform distribution p(x),

p(x) =

{
1

2
√
3
|x| ≤

√
3

0 else.
(2)

1.2 Laplacian distribution p(x),

p(x) =
1√
2

exp(−
√

2|x|). (3)

1.3 Gaussian distribution p(x) with mean zero and variance σ2,

p(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
. (4)

1.4 Calculate the kurtosis for the following mixture of Gaussians (called a
Gaussian scale mixture)

p(x) =
1

2
(p1(x) + p2(x)), (5)

where

pi(x) =
1√

2πσ2
i

exp
(
− x2

2σ2
i

)
. (6)

Show that the kurtosis is always > 0 if σ1 6= σ2.
1.5 Consider now the following mixture of Gaussians of the same variance but

different means:

p(y) =
1

3

(
pµ(y) + p0(y) + p−µ(y)

)
(7)

where

pa(y) =
1√
2π

exp
(
− (y − a)2

2

)
. (8)
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Calculate the kurtosis and show that it is always negative for nonzero mean. You
can use the fact that the normal distribution has skewness of zero, i.e. E(u3) = 0.
(Hint: You might want to use that E(u2) = V (u) + E(u)2. Also: (a + b)4 =
a4 + 4a3b+ 6a2b2 + 4ab3 + b4.)

1.6 Let u = x + αy, where x follows the distribution in Equation (5), and y
has the distribution in Equation (7). Furthermore, x and y are independent. How
can you choose α ∈ R so that kurt(u) = 0?

Exercise 2:
For a zero-mean random variable, skewness of a distribution is defined to be

its third moment, i.e.
skew(x) = E(x3). (9)

It measures the asymmetry of a distribution. If the independent variables s have
a highly asymmetric distribution, skewness can be used to perform ICA.

Suppose Z is N ×K data matrix, and denote as zk the columns of Z with each
fixed 1 ≤ k ≤ K. We would like to maximize

J(w) =
1

K

K∑
k=1

(w · zk)3 (10)

under the constraint that ‖w‖ = 1.
2.1 Find the gradient ∇J(w).
2.2 What is the gradient-ascent optimization iteration, considering the con-

straint ‖w‖?
2.3 Take the limit of large stepsizes, i.e. µ → ∞. What is the optimization

iteration now?

Exercise 3:
Assume the data z1, . . . , zK is iid and follows the model z = As, where z ∈

RN is white random vector, A is orthonormal, i.e. ATA = I, and the sn are
independent random variables.

3.1 Write down the log-likelihood `(A|z1, . . . , zK) of A in terms of the distri-
bution ps(s) which may be arbitrary.

3.2 Show that the log-likelihood does not depend anymore on the matrix A if
the distribution of sn are Gaussian.

Exercise 4:
In the maximum likelihood estimation of the ICA model, we may not know the

densities of the independent variables s. Therefore, they must be approximated in
one way or the other.
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We have seen in the lecture that as long the approximation p̃i(si) fulfills

E
(
sigi(si)− g′i(si)

)
> 0 (11)

for all i, where gi = p̃′i/p̃i, maximization of the likelihood will lead to the right
solution for the mixing matrix B (see Theorem 1 on page 66).

4.1 Assume that si is Gaussian (zero mean, unit variance). Is the condition in
Eq (11) fulfilled? (Advise: Examine the quantities E(sigi(si)) and E(g′i(si)) with
integration by parts. Assume that gi grow slower than exp(s2i /2).)

4.2 Suppose you make the choice gi(si) = s3i . To what does the condition
in Eq (11) correspond to? (Assume that si is zero mean and normalized to unit
variance.)

4.3 Show that making the choice gi(si) = −si corresponds to p̃i being a Gaus-
sian distribution.
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