Exercise 1:
Kurtosis of a zero mean random variable x is defined as

$$\text{kurt}(x) = \mathbb{E}(x^4) - 3(\mathbb{E}(x^2))^2$$ \hspace{1cm} (1)$$

Kurtosis is a measure of the "peakedness" of the probability distribution of x.
Calculate the kurtosis for the

1.1 Uniform distribution $p(x)$,

$$p(x) = \begin{cases}
\frac{1}{2\sqrt{3}} & |x| \leq \sqrt{3} \\
0 & \text{else.}
\end{cases}$$ \hspace{1cm} (2)$$

1.2 Laplacian distribution $p(x)$,

$$p(x) = \frac{1}{\sqrt{2}} \exp(-\sqrt{2}|x|).$$ \hspace{1cm} (3)$$

1.3 Gaussian distribution $p(x)$ with mean zero and variance σ^2,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right).$$ \hspace{1cm} (4)$$

1.4 Calculate the kurtosis for the following mixture of Gaussians (called a
Gaussian scale mixture)

$$p(x) = \frac{1}{2}(p_1(x) + p_2(x)),$$ \hspace{1cm} (5)$$

where

$$p_i(x) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{x^2}{2\sigma_i^2}\right).$$ \hspace{1cm} (6)$$

Show that the kurtosis is always > 0 if $\sigma_1 \neq \sigma_2$.

1.5 Consider now the following mixture of Gaussians of the same variance but
different means:

$$p(y) = \frac{1}{3}(p_{\mu}(y) + p_0(y) + p_{-\mu}(y))$$ \hspace{1cm} (7)$$

where

$$p_\alpha(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y - \alpha)^2}{2}\right).$$ \hspace{1cm} (8)$$
Calculate the kurtosis and show that it is always negative for nonzero mean. You can use the fact that the normal distribution has skewness of zero, i.e. \(E(u^3) = 0 \).

(Hint: You might want to use that \(E(u^2) = V(u) + E(u)^2 \). Also: \((a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \).)

1.6 Let \(u = x + \alpha y \), where \(x \) follows the distribution in Equation (5), and \(y \) has the distribution in Equation (7). Furthermore, \(x \) and \(y \) are independent. How can you choose \(\alpha \in \mathbb{R} \) so that \(\text{kurt}(u) = 0 \)?

Exercise 2:
For a zero-mean random variable, skewness of a distribution is defined to be its third moment, i.e.

\[
\text{skew}(x) = E(x^3). \tag{9}
\]

It measures the asymmetry of a distribution. If the independent variables \(s \) have a highly asymmetric distribution, skewness can be used to perform ICA.

Suppose \(Z \) is \(N \times K \) data matrix, and denote as \(z_k \) the columns of \(Z \) with each fixed \(1 \leq k \leq K \). We would like to maximize

\[
J(w) = \frac{1}{K} \sum_{k=1}^{K} (w \cdot z_k)^3 \tag{10}
\]

under the constraint that \(\|w\| = 1 \).

2.1 Find the gradient \(\nabla J(w) \).

2.2 What is the gradient-ascent optimization iteration, considering the constraint \(\|w\|? \)

2.3 Take the limit of large stepsizes, i.e. \(\mu \to \infty \). What is the optimization iteration now?

Exercise 3:
Assume the data \(z_1, \ldots, z_K \) is iid and follows the model \(z = As \), where \(z \in \mathbb{R}^N \) is white random vector, \(A \) is orthonormal, i.e. \(A^T A = I \), and the \(s_n \) are independent random variables.

3.1 Write down the log-likelihood \(\ell(A|z_1, \ldots, z_K) \) of \(A \) in terms of the distribution \(p_s(s) \) which may be arbitrary.

3.2 Show that the log-likelihood does not depend anymore on the matrix \(A \) if the distribution of \(s_n \) are Gaussian.

Exercise 4:
In the maximum likelihood estimation of the ICA model, we may not know the densities of the independent variables \(s \). Therefore, they must be approximated in one way or the other.
We have seen in the lecture that as long the approximation \(\tilde{p}_i(s_i) \) fulfills

\[
E(s_i g_i(s_i) - g'_i(s_i)) > 0 \quad (11)
\]

for all \(i \), where \(g_i = \tilde{p}_i'/\tilde{p}_i \), maximization of the likelihood will lead to the right solution for the mixing matrix \(B \) (see Theorem 1 on page 66).

4.1 Assume that \(s_i \) is Gaussian (zero mean, unit variance). Is the condition in Eq (11) fulfilled? (Advise: Examine the quantities \(E(s_i g_i(s_i)) \) and \(E(g'_i(s_i)) \) with integration by parts. Assume that \(g_i \) grow slower than \(\exp(s_i^2/2) \).)

4.2 Suppose you make the choice \(g_i(s_i) = s_i^3 \). To what does the condition in Eq (11) correspond to? (Assume that \(s_i \) is zero mean and normalized to unit variance.)

4.3 Show that making the choice \(g_i(s_i) = -s_i \) corresponds to \(\tilde{p}_i \) being a Gaussian distribution.