
MATLAB R© / R Reference
November 24, 2009

David Hiebeler
Dept. of Mathematics and Statistics

University of Maine
Orono, ME 04469-5752

http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching
my course “MAT400, Modeling & Simulation” at the University of Maine. The course covers population
and epidemiological modeling, including deterministic and stochastic models in discrete and continuous
time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in
a computer lab where students work through modeling & simulation exercises. When I taught earlier
versions of the course, it was based on Matlab only. In Spring 2007, some biology graduate students in
the class who had learned R in statistics courses asked if they could use R in my class as well, and I said
yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class.
As I went, every time I learned how to do something in R for the course, I added it to this reference, so
that I wouldn’t forget it later. Some items took a huge amount of time searching for a simple way to do
what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do
in Matlab had an equivalent in R. I was also inspired to do this after seeing the “R for Octave Users”
reference written by Robin Hankin. I’ve continued to add to the document, with many additions based
on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a Matlab index and an R index at
the end, which should make it easy to look up a command you know in one of the languages and learn
how to do it in the other (or if you’re trying to read code in whichever language is unfamiliar to you,
allow you to translate back to the one you are more familiar with). The index entries refer to the item
numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful
will be appreciated. I hope all the time I spent on this will prove useful for others in addition to myself
and my students. Note that sometimes I don’t necessarily do things in what you may consider the “best”
way in a particular language; I often tried to do things in a similar way in both languages. But if you
believe you have a “better” way (either simpler, or more computationally efficient) to do something, feel
free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors;
and Thomas Clerc, Richard Cotton, Stephen Eglen, Andreas Handel, David Khabie-Zeitoune, Michael
Kiparsky, Andy Moody, Lee Pang, Manas A. Pathak, Rune Schjellerup Philosof, and Corey Yanofsky for
contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission
notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Copyright c©2007–2009 David Hiebeler

1

D. Hiebeler, Matlab / R Reference 2

Contents

1 Help 3

2 Entering/building/indexing matrices 3
2.1 Cell arrays and lists . 6
2.2 Structs and data frames . 6

3 Computations 6
3.1 Basic computations . 6
3.2 Complex numbers . 7
3.3 Matrix/vector computations . 8
3.4 Root-finding . 14
3.5 Function optimization/minimization . 14
3.6 Numerical integration / quadrature . 15
3.7 Curve fitting . 16

4 Conditionals, control structure, loops 17

5 Functions, ODEs 21

6 Probability and random values 23

7 Graphics 27
7.1 Various types of plotting . 27
7.2 Printing/saving graphics . 35
7.3 Animating cellular automata / lattice simulations . 36

8 Working with files 37

9 Miscellaneous 38
9.1 Variables . 38
9.2 Strings and Misc. 39

10 Spatial Modeling 42

Index of MATLAB commands and concepts 43

Index of R commands and concepts 48

D. Hiebeler, Matlab / R Reference 3

1 Help

No. Description Matlab R

1 Show help for a function (e.g.
sqrt)

help sqrt, or helpwin sqrt to see
it in a separate window

help(sqrt) or ?sqrt

2 Show help for a built-in key-
word (e.g. for)

help for help(’for’) or ?’for’

3 General list of many help top-
ics

help library() to see available libraries,
or library(help=’base’) for very
long list of stuff in base package which
you can see help for

4 Explore main documentation
in browser

doc or helpbrowser (previously it
was helpdesk, which is now being
phased out)

help.start()

5 Search documentation for
keyword or partial keyword
(e.g. functions which refer to
“binomial”)

lookfor binomial help.search(’binomial’)

2 Entering/building/indexing matrices

No. Description Matlab R

6 Enter a row vector ~v =
[

1 2 3 4
]

v=[1 2 3 4] v=c(1,2,3,4) or alternatively
v=scan() then enter “1 2 3 4” and
press Enter twice (the blank line
terminates input)

7 Enter a column vector









1
2
3
4









[1; 2; 3; 4] c(1,2,3,4)

(R does not distinguish between row
and column vectors.)

8 Enter a matrix

[

1 2 3
4 5 6

]

[1 2 3 ; 4 5 6] To enter values by row:
matrix(c(1,2,3,4,5,6), nrow=2,

byrow=TRUE) To enter values by
column: matrix(c(1,4,2,5,3,6),

nrow=2)

9 Access an element of vector v v(3) v[3]

10 Access an element of matrix
A

A(2,3) A[2,3]

11 Access an element of matrix
A using a single index: in-
dices count down the first col-
umn, then down the second
column, etc.

A(5) A[5]

12 Build the vector [2 3 4 5 6 7] 2:7 2:7

13 Build the vector [7 6 5 4 3 2] 7:-1:2 7:2

14 Build the vector [2 5 8 11 14] 2:3:14 seq(2,14,3)

D. Hiebeler, Matlab / R Reference 4

No. Description Matlab R

15 Build a vector containing
n equally-spaced values be-
tween a and b inclusive

linspace(a,b,n) seq(a,b,length.out=n) or just
seq(a,b,len=n)

16 Build a vector containing
n logarithmically equally-
spaced values between 10a

and 10b inclusive

logspace(a,b,n) 10^seq(a,b,len=n)

17 Build a vector of length k
containing all zeros

zeros(k,1) (for a column vector) or
zeros(1,k) (for a row vector)

rep(0,k)

18 Build a vector of length k
containing the value j in all
positions

j*ones(k,1) (for a column vector)
or j*ones(1,k) (for a row vector)

rep(j,k)

19 Build an m×n matrix of zeros zeros(m,n) matrix(0,nrow=m,ncol=n) or just
matrix(0,m,n)

20 Build an m × n matrix con-
taining j in all positions

j*ones(m,n) matrix(j,nrow=m,ncol=n) or just
matrix(j,m,n)

21 n × n identity matrix In eye(n) diag(n)

22 Build diagonal matrix A us-
ing elements of vector v as di-
agonal entries

diag(v) diag(v,nrow=length(v)) (Note: if
you are sure the length of vector v is 2
or more, you can simply say diag(v).)

23 Extract diagonal elements of
matrix A

v=diag(A) v=diag(A)

24 “Glue” two matrices a1 and
a2 (with the same number of
rows) side-by-side

[a1 a2] cbind(a1,a2)

25 “Stack” two matrices a1 and
a2 (with the same number of
columns) on top of each other

[a1; a2] rbind(a1,a2)

26 Reverse the order of elements
in vector v

v(end:-1:1) rev(v)

27 Column 2 of matrix A A(:,2) A[,2] Note: that gives the result as a
vector. To make the result a m×1 ma-
trix instead, do A[,2,drop=FALSE]

28 Row 7 of matrix A A(7,:) A[7,] Note: that gives the result as a
vector. To make the result a 1×n ma-
trix instead, do A[7,,drop=FALSE]

29 All elements of A as a vector,
column-by-column

A(:) (gives a column vector) c(A)

30 Rows 2–4, columns 6–10 of A
(this is a 3 × 5 matrix)

A(2:4,6:10) A[2:4,6:10]

31 A 3 × 2 matrix consisting of
rows 7, 7, and 6 and columns
2 and 1 of A (in that order)

A([7 7 6], [2 1]) A[c(7,7,6),c(2,1)]

D. Hiebeler, Matlab / R Reference 5

No. Description Matlab R

32 Given a single index ind into
an m× n matrix A, compute
the row r and column c of
that position (also works if
ind is a vector)

[r,c] = ind2sub(size(A), ind) r = ((ind-1) %% m) + 1

c = floor((ind-1) / m) + 1

33 Given the row r and column
c of an element of an m × n
matrix A, compute the single
index ind which can be used
to access that element of A
(also works if r and c are vec-
tors)

ind = sub2ind(size(A), r, c) ind = (c-1)*m + r

34 Given equal-sized vectors r
and c (each of length k), set
elements in rows (given by r)
and columns (given by c) of
matrix A equal to 12. That
is, k elements of A will be
modified.

inds = sub2ind(size(A),r,c);

A(inds) = 12;

inds = cbind(r,c)

A[inds] = 12

35 Truncate vector v, keeping
only the first 10 elements

v = v(1:10) v = v[1:10], or length(v) = 10

also works
36 Extract elements of vector v

from position a to the end
v(a:end) v[a:length(v)]

37 All but the kth element of
vector v

v([1:(k-1) (k+1):end]) v[-k]

38 All but the jth and kth ele-
ments of vector v

No simple way? Generalize the pre-
vious item

v[c(-j,-k)]

39 Reshape matrix A, making it
an m × n matrix with ele-
ments taken columnwise from
the original A (which must
have mn elements)

A = reshape(A,m,n) dim(A) = c(m,n)

40 Extract the lower-triangular
portion of matrix A

L = tril(A) L = A; L[upper.tri(L)]=0

41 Extract the upper-triangular
portion of matrix A

U = triu(A) U = A; U[lower.tri(U)]=0

42 Enter n×n Hilbert matrix H
where Hij = 1/(i + j − 1)

hilb(n) Hilbert(n), but this is part of the
Matrix package which you’ll need to
install (see item 316 for how to in-
stall/load packages).

43 Enter an n-dimensional array,
e.g. a 3×4×2 array with the
values 1 through 24

reshape(1:24, 3, 4, 2) or
reshape(1:24, [3 4 2])

array(1:24, c(3,4,2)) (Note that
a matrix is 2-D, i.e. rows and
columns, while an array is more gen-
erally N -D)

D. Hiebeler, Matlab / R Reference 6

2.1 Cell arrays and lists

No. Description Matlab R

44 Build a vector v of length n,
capable of containing differ-
ent data types in different el-
ements (called a cell array in
Matlab, and a list in R)

v = cell(1,n) In general,
cell(m,n) makes an m × n cell
array. Then you can do e.g.:

v{1} = 12

v{2} = ’hi there’

v{3} = rand(3)

v = vector(’list’,n) Then you
can do e.g.:

v[[1]] = 12

v[[2]] = ’hi there’

v[[3]] = matrix(runif(9),3)

45 Extract the ith element of a
cell/list vector v

w = v{i}

If you use regular indexing, i.e. w

= v(i), then w will be a 1 × 1 cell
matrix containing the contents of the
ith element of v.

w = v[[i]]

If you use regular indexing, i.e. w =

v[i], then w will be a list of length 1
containing the contents of the ith ele-
ment of v.

46 Set the name of the ith ele-
ment in a list.

(Matlab does not have names asso-
ciated with elements of cell arrays.)

names(v)[3] = ’myrandmatrix’

Use names(v) to see all names, and
names(v)=NULL to clear all names.

2.2 Structs and data frames

No. Description Matlab R

47 Create a matrix-like object
with different named columns
(a struct in Matlab, or a
data frame in R)

avals=2*ones(1,6);

yvals=6:-1:1; v=[1 5 3 2 3 7];

d=struct(’a’,avals,

’yy’, yyvals, ’fac’, v);

v=c(1,5,3,2,3,7); d=data.frame(

cbind(a=2, yy=6:1), v)

Note that I (surprisingly) don’t use R for statistics, and therefore have very little experience with data
frames (and also very little with Matlab structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No. Description Matlab R

48 a + b, a − b, ab, a/b a+b, a-b, a*b, a/b a+b, a-b, a*b, a/b
49

√
a sqrt(a) sqrt(a)

50 ab a^b a^b

51 |a| (note: for complex ar-
guments, this computes the
modulus)

abs(a) abs(a)

52 ea exp(a) exp(a)

53 ln(a) log(a) log(a)

54 log2(a), log10(a) log2(a), log10(a) log2(a), log10(a)
55 sin(a), cos(a), tan(a) sin(a), cos(a), tan(a) sin(a), cos(a), tan(a)

56 sin−1(a), cos−1(a), tan−1(a) asin(a), acos(a), atan(a) asin(a), acos(a), atan(a)
57 sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a)

58 sinh−1(a), cosh−1(a),
tanh−1(a)

asinh(a), acosh(a), atanh(a) asinh(a), acosh(a), atanh(a)

D. Hiebeler, Matlab / R Reference 7

No. Description Matlab R

59 n MOD k (modulo arith-
metic)

mod(n,k) n %% k

60 Round to nearest integer round(x) round(x) (Note: R uses IEC 60559
standard, rounding 5 to the even digit
— so e.g. round(0.5) gives 0, not 1.)

61 Round down to next lowest
integer

floor(x) floor(x)

62 Round up to next largest in-
teger

ceil(x) ceiling(x)

63 Sign of x (+1, 0, or -1) sign(x) (Note: for complex values,
this computes x/abs(x).)

sign(x) (Does not work with com-
plex values)

64 Error function erf(x) =

(2/
√

π)
∫ x

0
e−t2dt

erf(x) 2*pnorm(x*sqrt(2))-1

65 Complementary er-
ror function cerf(x) =

(2/
√

π)
∫

∞

x
e−t2dt = 1-erf(x)

erfc(x) 2*pnorm(x*sqrt(2),lower=FALSE)

66 Inverse error function erfinv(x) qnorm((1+x)/2)/sqrt(2)

67 Inverse complementary error
function

erfcinv(x) qnorm(x/2,lower=FALSE)/sqrt(2)

68 Binomial coefficient
(

n
k

)

= n!/(n!(n − k)!)

nchoosek(n,k) choose(n,k)

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work
with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No. Description Matlab R

69 Enter a complex number 1+2i 1+2i

70 Modulus (magnitude) abs(z) abs(z) or Mod(z)
71 Argument (angle) angle(z) Arg(z)

72 Complex conjugate conj(z) Conj(z)

73 Real part of z real(z) Re(z)

74 Imaginary part of z imag(z) Im(z)

D. Hiebeler, Matlab / R Reference 8

3.3 Matrix/vector computations

No. Description Matlab R

75 Matrix multiplication AB A * B A %*% B

76 Element-by-element multipli-
cation of A and B

A .* B A * B

77 Transpose of a matrix, AT A’ (This is actually the complex con-
jugate (i.e. Hermitian) transpose;
use A.’ for the non-conjugate trans-
pose if you like; they are equivalent
for real matrices.)

t(A) for transpose, or Conj(t(A)) for
conjugate (Hermitian) transpose

78 Solve A~x = ~b A\b Warning: if there is no solution,
Matlab gives you a least-squares
“best fit.” If there are many solu-
tions, Matlab just gives you one of
them.

solve(A,b) Warning: this only works
with square invertible matrices.

79 Reduced echelon form of A rref(A) R does not have a function to do this
80 Compute inverse of A inv(A) solve(A)

81 Compute AB−1 A/B A %*% solve(B)

82 Element-by-element division
of A and B

A ./ B A / B

83 Compute A−1B A\B solve(A,B)

84 Square the matrix A A^2 A %*% A

85 Raise matrix A to the kth

power
A^k (No easy way to do this in R

other than repeated multiplication
A %*% A %*% A...)

86 Raise each element of A to
the kth power

A.^k A^k

87 Rank of matrix A rank(A) qr(A)$rank

88 Set w to be a vector of eigen-
values of A, and V a matrix
containing the corresponding
eigenvectors

[V,D]=eig(A) and then w=diag(D)

since Matlab returns the eigenval-
ues on the diagonal of D

tmp=eigen(A); w=tmp$values;

V=tmp$vectors

89 Permuted LU factorization of
a matrix

[L,U,P]=lu(A) then the matrices
satisfy PA = LU . Note that this
works even with non-square matrices

tmp=expand(lu(Matrix(A)));

L=tmp$L; U=tmp$U; P=tmp$P then
the matrices satisfy A = PLU , i.e.
P−1A = LU . Note that the lu and
expand functions are part of the Ma-
trix package (see item 316 for how to
install/load packages). Also note that
this doesn’t seem to work correctly
with non-square matrices. L, U, and
P will be of class Matrix rather than
class matrix; to make them the latter,
instead do L=as.matrix(tmp$L),
U=as.matrix(tmp$U), and
P=as.matrix(tmp$P) above.

D. Hiebeler, Matlab / R Reference 9

No. Description Matlab R

90 Singular-value decomposi-
tion: given m × n matrix
A with rank r, find m × r
matrix P with orthonormal
columns, diagonal r × r
matrix S, and r × n matrix
QT with orthonormal rows
so that PSQT = A

[P,S,Q]=svd(A,’econ’) tmp=svd(A); U=tmp$u; V=tmp$v;

S=diag(tmp$d)

91 Schur decomposi-
tion of square matrix,
A = QTQH = QTQ−1 where
Q is unitary (i.e. QHQ = I)
and T is upper triangular;
QH = QT is the Hermitian
(conjugate) transpose

[Q,T]=schur(A) tmp=Schur(Matrix(A)); T=tmp@T;

Q=tmp@Q Note that Schur is part of
the Matrix package (see item 316 for
how to install/load packages). T and
Q will be of class Matrix rather than
class matrix; to make them the latter,
instead do T=as.matrix(tmp@T) and
Q=as.matrix(tmp@Q) above.

92 Cholesky factorization of a
square, symmetric, positive
definite matrix A = RT R,
where R is upper-triangular

R = chol(A) R = chol(A) Note that chol is part
of the Matrix package (see item 316
for how to install/load packages).

93 QR factorization of matrix A,
where Q is orthogonal (sat-
isfying QQT = I) and R is
upper-triangular

[Q,R]=qr(A) satisfying QR = A, or
[Q,R,E]=qr(A) to do permuted QR
factorization satisfying AE = QR

z=qr(A); Q=qr.Q(z); R=qr.R(z);

E=diag(n)[,z$pivot] (where n is
the number of columns in A) gives
permuted QR factorization satisfying
AE = QR

94 Vector norms norm(v,1) for 1-norm ‖~v‖1,
norm(v,2) for Euclidean norm
‖~v‖2, norm(v,inf) for infinity-norm
‖~v‖∞, and norm(v,p) for p-norm

‖~v‖p = (
∑

|vi|p)1/p

R does not have a norm func-
tion for vectors; only one for
matrices. But the following will
work: norm(matrix(v),’1’) for
1-norm ‖~v‖1, norm(matrix(v),’i’)

for infinity-norm ‖~v‖∞, and
sum(abs(v)^p)^(1/p) for p-norm

‖~v‖p = (
∑ |vi|p)1/p

95 Matrix norms norm(A,1) for 1-norm ‖A‖1,
norm(A) for 2-norm ‖A‖2,
norm(A,inf) for infinity-norm
‖A‖∞, and norm(A,’fro’) for

Frobenius norm
(
∑

i(A
T A)ii

)1/2

norm(A,’1’) for 1-norm ‖A‖1,
max(svd(A)$d) for 2-norm ‖A‖2,
norm(A,’i’) for infinity-norm ‖A‖∞,
and norm(A,’f’) for Frobenius norm
(
∑

i(A
T A)ii

)1/2

96 Condition number cond(A) =
‖A‖1‖A−1‖1 of A, using 1-
norm

cond(A,1) (Note: Matlab also has
a function rcond(A) which computes
reciprocal condition estimator using
the 1-norm)

1/rcond(A,’1’)

97 Condition number cond(A) =
‖A‖2‖A−1‖2 of A, using 2-
norm

cond(A,2) kappa(A, exact=TRUE) (leave out
the “exact=TRUE” for an esti-
mate)

98 Condition number cond(A) =
‖A‖∞‖A−1‖∞ of A, using
infinity-norm

cond(A,inf) 1/rcond(A,’I’)

D. Hiebeler, Matlab / R Reference 10

No. Description Matlab R

99 Compute mean of all ele-
ments in vector or matrix

mean(v) for vectors, mean(A(:)) for
matrices

mean(v) or mean(A)

100 Compute means of columns
of a matrix

mean(A) colMeans(A)

101 Compute means of rows of a
matrix

mean(A,2) rowMeans(A)

102 Compute standard deviation
of all elements in vector or
matrix

std(v) for vectors, std(A(:)) for
matrices. This normalizes by n − 1.
Use std(v,1) to normalize by n.

sd(v) for vectors, sd(c(A)) for ma-
trices. This normalizes by n − 1.

103 Compute standard deviations
of columns of a matrix

std(A). This normalizes by n − 1.
Use std(A,1) to normalize by n

sd(A). This normalizes by n − 1.

104 Compute standard deviations
of rows of a matrix

std(A,0,2) to normalize by n − 1,
std(A,1,2) to normalize by n

apply(A,1,sd). This normalizes by
n − 1.

105 Compute variance of all ele-
ments in vector or matrix

var(v) for vectors, var(A(:)) for
matrices. This normalizes by n − 1.
Use var(v,1) to normalize by n.

var(v) for vectors, var(c(A)) for
matrices. This normalizes by n − 1.

106 Compute variance of columns
of a matrix

var(A). This normalizes by n − 1.
Use var(A,1) to normalize by n

apply(A,2,var). This normalizes by
n − 1.

107 Compute variance of rows of
a matrix

var(A,0,2) to normalize by n − 1,
var(A,1,2) to normalize by n

apply(A,1,var). This normalizes by
n − 1.

108 Compute covariance for two
vectors of observations

cov(v,w) computes the 2 × 2 co-
variance matrix; the off-diagonal ele-
ments give the desired covariance

cov(v,w)

109 Compute covariance matrix,
giving covariances between
columns of matrix A

cov(A) var(A) or cov(A)

110 Given matrices A and B,
build covariance matrix C
where cij is the covariance be-
tween column i of A and col-
umn j of B

I don’t know of a direct way to
do this in Matlab. But one way is
[Y,X]=meshgrid(std(B),std(A));

X.*Y.*corr(A,B)

cov(A,B)

111 Compute Pearson’s linear
correlation coefficient be-
tween elements of vectors v
and w

corr(v,w) Note: v and w must
be column vectors. To make it
work regardless of whether they
are row or column vectors, do
corr(v(:),w(:))

cor(v,w)

112 Compute Kendall’s tau corre-
lation statistic for vectors v
and w

corr(v,w,’type’,’kendall’) cor(v,w,method=’kendall’)

113 Compute Spearman’s rho
correlation statistic for
vectors v and w

corr(v,w,’type’,’spearman’) cor(v,w,method=’spearman’)

114 Compute pairwise Pearson’s
correlation coefficient be-
tween columns of matrix
A

corr(A) The ’type’ argument may
also be used as in the previous two
items

cor(A) The method argument may
also be used as in the previous two
items

115 Compute matrix C of pair-
wise Pearson’s correlation co-
efficients between each pair of
columns of matrices A and B,
i.e. so cij is the correlation
between column i of A and
column j of B

corr(A,B) The ’type’ argument
may also be used as just above

cor(A,B) The method argument
may also be used as just above

D. Hiebeler, Matlab / R Reference 11

No. Description Matlab R

116 Compute sum of all elements
in vector or matrix

sum(v) for vectors, sum(A(:)) for
matrices

sum(v) or sum(A)

117 Compute sums of columns of
matrix

sum(A) colSums(A)

118 Compute sums of rows of ma-
trix

sum(A,2) rowSums(A)

119 Compute matrix exponential
eA =

∑

∞

k=0
Ak/k!

expm(A) expm(Matrix(A)), but this is part of
the Matrix package which you’ll need
to install (see item 316 for how to in-
stall/load packages).

120 Compute cumulative sum of
values in vector

cumsum(v) cumsum(v)

121 Compute cumulative sums of
columns of matrix

cumsum(A) apply(A,2,cumsum)

122 Compute cumulative sums of
rows of matrix

cumsum(A,2) t(apply(A,1,cumsum))

123 Compute cumulative sum
of all elements of matrix
(column-by-column)

cumsum(A(:)) cumsum(A)

124 Cumulative product of ele-
ments in vector v

cumprod(v) (Can also be used in the
various ways cumsum can)

cumprod(v) (Can also be used in the
various ways cumsum can)

125 Cumulative minimum or
maximum of elements in
vector v

I don’t know of an easy way to do
this in Matlab

cummin(v) or cummax(v)

126 Compute differences between
consecutive elements of vec-
tor v. Result is a vector
w 1 element shorter than v,
where element i of w is ele-
ment i+1 of v minus element
i of v

diff(v) diff(v)

127 Make a vector y the same size
as vector x, which equals 4
everywhere that x is greater
than 5, and equals 3 every-
where else (done via a vector-
ized computation).

z = [3 4]; y = z((x > 5)+1) y = ifelse(x > 5, 4, 3)

128 Compute minimum of values
in vector v

min(v) min(v)

129 Compute minimum of all val-
ues in matrix A

min(A(:)) min(A)

130 Compute minimum value of
each column of matrix A

min(A) (returns a row vector) apply(A,2,min) (returns a vector)

131 Compute minimum value of
each row of matrix A

min(A, [], 2) (returns a column
vector)

apply(A,1,min) (returns a vector)

D. Hiebeler, Matlab / R Reference 12

No. Description Matlab R

132 Given matrices A and B,
compute a matrix where each
element is the minimum of
the corresponding elements of
A and B

min(A,B) pmin(A,B)

133 Given matrix A and scalar
c, compute a matrix where
each element is the minimum
of c and the corresponding el-
ement of A

min(A,c) pmin(A,c)

134 Find minimum among all val-
ues in matrices A and B

min([A(:) ; B(:)]) min(A,B)

135 Find index of the first time
min(v) appears in v, and
store that index in ind

[y,ind] = min(v) ind = which.min(v)

Notes:

• Matlab and R both have a max function (and R has pmax and which.max as well) which behaves
in the same ways as min but to compute maxima rather than minima.

• Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the
computations for each element of the matrix.

No. Description Matlab R

136 Number of rows in A size(A,1) nrow(A)

137 Number of columns in A size(A,2) ncol(A)

138 Dimensions of A, listed in a
vector

size(A) dim(A)

139 Number of elements in vector
v

length(v) length(v)

140 Total number of elements in
matrix A

numel(A) length(A)

141 Max. dimension of A length(A) max(dim(A))

142 Sort values in vector v sort(v) sort(v)

143 Sort values in v, putting
sorted values in s, and indices
in idx, in the sense that s[k]
= x[idx[k]]

[s,idx]=sort(v) tmp=sort(v,index.return=TRUE);

s=tmp$x; idx=tmp$ix

144 Sort the order of the rows of
matrix m

sortrows(m)

This sorts according to the first col-
umn, then uses column 2 to break
ties, then column 3 for remaining
ties, etc. Complex numbers are
sorted by abs(x), and ties are then
broken by angle(x).

m[order(m[,1]),]

This only sorts according to the first
column. To use column 2 to break
ties, and then column 3 to break fur-
ther ties, do
m[order(m[,1], m[,2], m[,3]),]

Complex numbers are sorted first by
real part, then by imaginary part.

145 Sort order of rows of matrix
m, specifying to use columns
c1, c2, c3 as the sorting
“keys”

sortrows(m, [c1 c2 c2]) m[order(m[,c1], m[,c2],

m[,c3]),]

D. Hiebeler, Matlab / R Reference 13

No. Description Matlab R

146 Same as previous item, but
sort in decreasing order for
columns c1 and c2

sortrows(m, [-c1 -c2 c2]) m[order(-m[,c1], -m[,c2],

m[,c3]),]

147 Sort order of rows of matrix
m, and keep indices used for
sorting

[y,i] = sortrows(m) i=order(m[1,]); y=m[i,]

148 To count how many values in
the vector v are between 4
and 7 (inclusive on the upper
end)

sum((v > 4) & (v <= 7)) sum((v > 4) & (v <= 7))

149 Given vector v, return list of
indices of elements of v which
are greater than 5

find(v > 5) which(v > 5)

150 Given matrix A, return list
of indices of elements of A
which are greater than 5, us-
ing single-indexing

find(A > 5) which(A > 5)

151 Given matrix A, generate
vectors r and c giving rows
and columns of elements of A
which are greater than 5

[r,c] = find(A > 5) w = which(A > 5, arr.ind=TRUE);

r=w[,1]; c=w[,2]

152 Given vector x (of presum-
ably discrete values), build a
vector v listing unique val-
ues in x, and corresponding
vector c indicating how many
times those values appear in
x

v = unique(x); c = hist(x,v); w=table(x); c=as.numeric(w);

v=as.numeric(names(w))

153 Given vector x (of presum-
ably continuous values), di-
vide the range of values into k
equally-sized bins, and build
a vector m containing the
midpoints of the bins and a
corresponding vector c con-
taining the counts of values in
the bins

[c,m] = hist(x,k) w=hist(x,seq(min(x),max(x),

length.out=k+1), plot=FALSE);

m=w$mids; c=w$counts

154 Convolution / polynomial
multiplication (given vectors
x and y containing polyno-
mial coefficients, their convo-
lution is a vector containing
coefficients of the product of
the two polynomials)

conv(x,y) convolve(x,rev(y),type=’open’)

Note: the accuracy of this is not
as good as Matlab; e.g. doing
v=c(1,-1); for (i in 2:20)

v=convolve(v,c(-i,1),

type=’open’) to generate the
20th-degree Wilkinson polynomial
W (x) =

∏20

i=1
(x−i) gives a coefficient

of ≈ −780.19 for x19, rather than the
correct value -210.

D. Hiebeler, Matlab / R Reference 14

3.4 Root-finding

No. Description Matlab R

155 Find roots of polynomial
whose coefficients are stored
in vector v (coefficients in v
are highest-order first)

roots(v) polyroot(rev(v)) (This function
really wants the vector to have the
constant coefficient first in v; rev re-
verses their order to achieve this.)

156 Find zero (root) of a function
f(x) of one variable

Define function f(x), then do
fzero(f,x0) to search for a root
near x0, or fzero(f,[a b]) to find
a root between a and b, assuming
the sign of f(x) differs at x = a
and x = b. Default forward error
tolerance (i.e. error in x) is machine
epsilon ǫmach.

Define function f(x), then do
uniroot(f, c(a,b)) to find a root
between a and b, assuming the sign
of f(x) differs at x = a and x = b.
Default forward error tolerance (i.e.
error in x) is fourth root of machine
epsilon, (ǫmach)0.25. To specify e.g.
a tolerance of 2−52, do uniroot(f,

c(a,b), tol=2^-52).

3.5 Function optimization/minimization

No. Description Matlab R

157 Find value m which mini-
mizes a function f(x) of one
variable within the interval
from a to b

Define function f(x), then do

m = fminbnd(f, a, b)

Define function f(x), then do

m = optimize(f,c(a,b))$minimum

158 Find value m which mini-
mizes a function f(x, p1, p2)
with given extra parameters
(but minimization is only oc-
curing over the first argu-
ment), in the interval from a
to b.

Define function f(x,p1,p2), then use
an “anonymous function”:

% first define values for p1

% and p2, and then do:

m=fminbnd(@(x) f(x,p1,p2),a,b)

Define function f(x,p1,p2), then:

first define values for p1

and p2, and then do:

m = optimize(f, c(a,b), p1=p1,

p2=p2)$minimum

159 Find values of x, y, z which
minimize function f(x, y, z),
using a starting guess of x =
1, y = 2.2, and z = 3.4.

First write function f(v) which ac-
cepts a vector argument v containing
values of x, y, and z, and returns the
scalar value f(x, y, z), then do:

fminsearch(@f,[1 2.2 3.4])

First write function f(v) which ac-
cepts a vector argument v containing
values of x, y, and z, and returns the
scalar value f(x, y, z), then do:

optim(c(1,2.2,3.4),f)$par

160 Find values of x, y, z
which minimize function
f(x, y, z, p1, p2), using a
starting guess of x = 1,
y = 2.2, and z = 3.4, where
the function takes some extra
parameters (useful e.g. for
doing things like nonlinear
least-squares optimization
where you pass in some data
vectors as extra parameters).

First write function f(v,p1,p2)
which accepts a vector argument
v containing values of x, y, and
z, along with the extra parame-
ters, and returns the scalar value
f(x, y, z, p1, p2), then do:

fminsearch(@f,[1 2.2 3.4], ...

[], p1, p2)

Or use an anonymous function:

fminsearch(@(x) f(x,p1,p2), ...

[1 2.2 3.4])

First write function f(v,p1,p2) which
accepts a vector argument v contain-
ing values of x, y, and z, along with
the extra parameters, and returns the
scalar value f(x, y, z, p1, p2), then do:

optim(c(1,2.2,3.4), f, p1=p1,

p2=p2)$par

D. Hiebeler, Matlab / R Reference 15

3.6 Numerical integration / quadrature

No. Description Matlab R

161 Numerically integrate func-
tion f(x) over interval from
a to b

quad(f,a,b) uses adaptive Simp-
son’s quadrature, with a default
absolute tolerance of 10−6. To
specify absolute tolerance, use
quad(f,a,b,tol)

integrate(f,a,b) uses adaptive
quadrature with default absolute
and relative error tolerances being
the fourth root of machine epsilon,
(ǫmach)0.25 ≈ 1.22 × 10−4. Tol-
erances can be specified by using
integrate(f,a,b, rel.tol=tol1,

abs.tol=tol2). Note that the func-
tion f must be written to work even
when given a vector of x values as its
argument.

162 Simple trapezoidal numerical
integration using (x, y) values
in vectors x and y

trapz(x,y) sum(diff(x)*(y[-length(y)]+

y[-1])/2)

D. Hiebeler, Matlab / R Reference 16

3.7 Curve fitting

No. Description Matlab R

163 Fit the line y = c1x + c0 to
data in vectors x and y.

p = polyfit(x,y,1)

The return vector p has the coeffi-
cients in descending order, i.e. p(1)
is c1, and p(2) is c0.

p = coef(lm(y ~ x))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c0, and p[2] is c1.

164 Fit the quadratic polynomial
y = c2x

2 + c1x+ c0 to data in
vectors x and y.

p = polyfit(x,y,2)

The return vector p has the coeffi-
cients in descending order, i.e. p(1)
is c2, p(2) is c1, and p(3) is c0.

p = coef(lm(y ~ x + I(x^2)))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c0, p[2] is c1, and p[3] is c2.

165 Fit nth degree polynomial
y = cnxn + cn−1x

n−1 + . . . +
c1x + c0 to data in vectors x
and y.

p = polyfit(x,y,n)

The return vector p has the coeffi-
cients in descending order, p(1) is
cn, p(2) is cn−1, etc.

There isn’t a simple function built
into the standard R distribution to do
this, but see the polyreg function in
the mda package (see item 316 for
how to install/load packages).

166 Fit the quadratic polynomial
with zero intercept, y =
c2x

2 + c1x to data in vectors
x and y.

(I don’t know a simple way do this
in Matlab, other than to write a
function which computes the sum
of squared residuals and use fmin-
search on that function. There is
likely an easy way to do it in the
Statistics Toolbox.)

p=coef(lm(y ~ -1 + x + I(x^2)))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c1, and p[2] is c2.

167 Fit natural cubic spline
(S′′(x) = 0 at both end-
points) to points (xi, yi)
whose coordinates are in
vectors x and y; evaluate at
points whose x coordinates
are in vector xx, storing
corresponding y’s in yy

pp=csape(x,y,’variational’);

yy=ppval(pp,xx) but note that
csape is in Matlab’s Spline
Toolbox

tmp=spline(x,y,method=’natural’,

xout=xx); yy=tmp$y

168 Fit cubic spline using
Forsythe, Malcolm and
Moler method (third deriva-
tives at endpoints match
third derivatives of exact cu-
bics through the four points
at each end) to points (xi, yi)
whose coordinates are in
vectors x and y; evaluate at
points whose x coordinates
are in vector xx, storing
corresponding y’s in yy

I’m not aware of a function to do this
in Matlab

tmp=spline(x,y,xout=xx);

yy=tmp$y

D. Hiebeler, Matlab / R Reference 17

No. Description Matlab R

169 Fit cubic spline such that
first derivatives at endpoints
match first derivatives of ex-
act cubics through the four
points at each end) to points
(xi, yi) whose coordinates are
in vectors x and y; evaluate
at points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

pp=csape(x,y); yy=ppval(pp,xx)

but csape is in Matlab’s Spline
Toolbox

I’m not aware of a function to do this
in R

170 Fit cubic spline with periodic
boundaries, i.e. so that first
and second derivatives match
at the left and right ends
(the first and last y values
of the provided data should
also agree), to points (xi, yi)
whose coordinates are in vec-
tors x and y; evaluate at
points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

pp=csape(x,y,’periodic’);

yy=ppval(pp,xx) but csape is in
Matlab’s Spline Toolbox

tmp=spline(x,y,method=

’periodic’, xout=xx); yy=tmp$y

171 Fit cubic spline with “not-
a-knot” conditions (the first
two piecewise cubics coincide,
as do the last two), to points
(xi, yi) whose coordinates are
in vectors x and y; evaluate
at points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

yy=spline(x,y,xx) I’m not aware of a function to do this
in R

4 Conditionals, control structure, loops

No. Description Matlab R

172 “for” loops over values in a
vector v (the vector v is of-
ten constructed via a:b)

for i=v

command1

command2

end

If only one command inside the loop:

for (i in v)

command

or

for (i in v) command

If multiple commands inside the loop:

for (i in v) {

command1

command2

}

D. Hiebeler, Matlab / R Reference 18

No. Description Matlab R

173 “if” statements with no else
clause if cond

command1

command2

end

If only one command inside the clause:

if (cond)

command

or

if (cond) command

If multiple commands:

if (cond) {

command1

command2

}

174 “if/else” statement

if cond

command1

command2

else

command3

command4

end

Note: Matlab also has an “elseif”
statement, e.g.:

if cond1

command1

elseif cond2

command2

elseif cond3

command3

else

command4

end

If one command in clauses:

if (cond)

command1 else

command2

or

if (cond) cmd1 else cmd2

If multiple commands:

if (cond) {

command1

command2

} else {

command3

command4

}

Warning: the “else” must be on the
same line as command1 or the “}”
(when typed interactively at the com-
mand prompt), otherwise R thinks the
“if” statement was finished and gives
an error.
R does not have an “elseif” state-
ment.

Logical comparisons which can be used on scalars in “if” statements, or which operate element-by-
element on vectors/matrices:

Matlab R Description
x < a x < a True if x is less than a
x > a x > a True if x is greater than a
x <= a x <= a True if x is less than or equal to a
x >= a x >= a True if x is greater than or equal to a
x == a x == a True if x is equal to a
x ~= a x != a True if x is not equal to a

D. Hiebeler, Matlab / R Reference 19

Scalar logical operators:

Description Matlab R

a AND b a && b a && b

a OR b a || b a || b

a XOR b xor(a,b) xor(a,b)

NOT a ~a !a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and
|| stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description Matlab R

a AND b a & b a & b

a OR b a | b a | b

a XOR b xor(a,b) xor(a,b)

NOT a ~a !a

No. Description Matlab R

175 To test whether a scalar value
x is between 4 and 7 (inclu-
sive on the upper end)

if ((x > 4) && (x <= 7)) if ((x > 4) && (x <= 7))

176 To count how many values in
the vector x are between 4
and 7 (inclusive on the upper
end)

sum((x > 4) & (x <= 7)) sum((x > 4) & (x <= 7))

177 Test whether all values in
a logical/boolean vector are
TRUE

all(v) all(v)

178 Test whether any values in
a logical/boolean vector are
TRUE

any(v) any(v)

D. Hiebeler, Matlab / R Reference 20

No. Description Matlab R

179 “while” statements to do iter-
ation (useful when you don’t
know ahead of time how
many iterations you’ll need).
E.g. to add uniform ran-
dom numbers between 0 and
1 (and their squares) until
their sum is greater than 20:

mysum = 0;

mysumsqr = 0;

while (mysum < 20)

r = rand;

mysum = mysum + r;

mysumsqr = mysumsqr + r^2;

end

mysum = 0

mysumsqr = 0

while (mysum < 20) {

r = runif(1)

mysum = mysum + r

mysumsqr = mysumsqr + r^2

}

(As with “if” statements and “for”
loops, the curly brackets are not nec-
essary if there’s only one statement in-
side the “while” loop.)

180 More flow control: these com-
mands exit or move on to the
next iteration of the inner-
most while or for loop, re-
spectively.

break and continue break and next

181 “Switch” statements for inte-
gers

switch (x)

case 10

disp(’ten’)

case {12,13}

disp(’dozen (bakers?)’)

otherwise

disp(’unrecognized’)

end

R doesn’t have a switch statement ca-
pable of doing this. It has a function
which is fairly limited for integers, but
can which do string matching. See
?switch for more. But a basic ex-
ample of what it can do for integers is
below, showing that you can use it to
return different expressions based on
whether a value is 1, 2,

mystr = switch(x, ’one’, ’two’,

’three’); print(mystr)

Note that switch returns NULL if x is
larger than 3 in the above case. Also,
continuous values of x will be trun-
cated to integers.

D. Hiebeler, Matlab / R Reference 21

5 Functions, ODEs

No. Description Matlab R

182 Implement a function
add(x,y)

Put the following in add.m:

function retval=add(x,y)

retval = x+y;

Then you can do e.g. add(2,3)

Enter the following, or put it in a file
and source that file:

add = function(x,y) {

return(x+y)

}

Then you can do e.g. add(2,3).
Note, the curly brackets aren’t needed
if your function only has one line.
Also, the return keyword is optional
in the above example, as the value of
the last expression in a function gets
returned, so just x+y would work
too.

183 Implement a function
f(x,y,z) which returns mul-
tiple values, and store those
return values in variables u
and v

Write function as follows:

function [a,b] = f(x,y,z)

a = x*y+z; b=2*sin(x-z);

Then call the function by doing:
[u,v] = f(2,8,12)

Write function as follows:

f = function(x,y,z) {

a = x*y+z; b=2*sin(x-z)

return(list(a,b))

}

Then call the function by do-
ing: tmp=f(2,8,12); u=tmp[[1]];

v=tmp[[2]]. The above is most gen-
eral, and will work even when u and
v are different types of data. If they
are both scalars, the function could
simply return them packed in a vec-
tor, i.e. return(c(a,b)). If they
are vectors of the same size, the func-
tion could return them packed to-
gether into the columns of a matrix,
i.e. return(cbind(a,b)).

D. Hiebeler, Matlab / R Reference 22

No. Description Matlab R

184 Numerically solve ODE
dx/dt = 5x from t = 3 to
t = 12 with initial condition
x(3) = 7

First implement function

function retval=f(t,x)

retval = 5*x;

Then do ode45(@f,[3,12],7)

to plot solution, or
[t,x]=ode45(@f,[3,12],7) to get
back vector t containing time values
and vector x containing correspond-
ing function values. If you want
function values at specific times,
e.g. 3, 3.1, 3.2, . . . , 11.9, 12, you can
do [t,x]=ode45(@f,3:0.1:12,7).
Note: in older versions of Matlab,
use ’f’ instead of @f.

First implement function

f = function(t,x,parms) {

return(list(5*x))

}

Then do y=lsoda(7, seq(3,12,

0.1), f,NA) to obtain solution
values at times 3, 3.1, 3.2, . . . , 11.9, 12.
The first column of y, namely y[,1]
contains the time values; the second
column y[,2] contains the corre-
sponding function values. Note:
lsoda is part of the deSolve package
(see item 316 for how to install/load
packages).

185 Numerically solve system of
ODEs dw/dt = 5w, dz/dt =
3w + 7z from t = 3 to t = 12
with initial conditions w(3) =
7, z(3) = 8.2

First implement function

function retval=myfunc(t,x)

w = x(1); z = x(2);

retval = zeros(2,1);

retval(1) = 5*w;

retval(2) = 3*w + 7*z;

Then do
ode45(@myfunc,[3,12],[7;

8.2]) to plot solution, or
[t,x]=ode45(@myfunc,[3,12],[7;

8.2]) to get back vector t contain-
ing time values and matrix x, whose
first column containing correspond-
ing w(t) values and second column
contains z(t) values. If you want
function values at specific times, e.g.
3, 3.1, 3.2, . . . , 11.9, 12, you can do
[t,x]=ode45(@myfunc,3:0.1:12,[7;

8.2]). Note: in older versions of
Matlab, use ’f’ instead of @f.

First implement function

myfunc = function(t,x,parms) {

w = x[1]; z = x[2];

return(list(c(5*w, 3*w+7*z)))

}

Then do y=lsoda(c(7,8.2),

seq(3,12, 0.1), myfunc,NA)

to obtain solution values at times
3, 3.1, 3.2, . . . , 11.9, 12. The first
column of y, namely y[,1] contains
the time values; the second column
y[,2] contains the corresponding
values of w(t); and the third column
contains z(t). Note: lsoda is part of
the deSolve package (see item 316
for how to install/load packages).

186 Pass parameters such as r =
1.3 and K = 50 to an ODE
function from the command
line, solving dx/dt = rx(1 −
x/K) from t = 0 to t = 20
with initial condition x(0) =
2.5.

First implement function

function retval=func2(t,x,r,K)

retval = r*x*(1-x/K)

Then do ode45(@func2,[0 20],

2.5, [], 1.3, 50). The empty
matrix is necessary between the ini-
tial condition and the beginning of
your extra parameters.

First implement function

func2=function(t,x,parms) {

r=parms[1]; K=parms[2]

return(list(r*x*(1-x/K)))

}

Then do

y=lsoda(2.5,seq(0,20,0.1),

func2,c(1.3,50))

Note: lsoda is part of the deSolve
package (see item 316 for how to in-
stall/load packages).

D. Hiebeler, Matlab / R Reference 23

6 Probability and random values

No. Description Matlab R

187 Generate a continuous uni-
form random value between 0
and 1

rand runif(1)

188 Generate vector of n uniform
random vals between 0 and 1

rand(n,1) or rand(1,n) runif(n)

189 Generate m×n matrix of uni-
form random values between
0 and 1

rand(m,n) matrix(runif(m*n),m,n) or just
matrix(runif(m*n),m)

190 Generate m×n matrix of con-
tinuous uniform random val-
ues between a and b

a+rand(m,n)*(b-a) or if you
have the Statistics toolbox then
unifrnd(a,b,m,n)

matrix(runif(m*n,a,b),m)

191 Generate a random integer
between 1 and k

floor(k*rand) + 1 floor(k*runif(1)) + 1 Note:
sample(k)[1] would also work, but I
believe in general will be less efficient,
because that actually generates many
random numbers and then just uses
one of them.

192 Generate m×n matrix of dis-
crete uniform random inte-
gers between 1 and k

floor(k*rand(m,n))+1 or if you
have the Statistics toolbox then
unidrnd(k,m,n)

floor(k*matrix(runif(m*n),m))+1

193 Generate m×n matrix where
each entry is 1 with probabil-
ity p, otherwise is 0

(rand(m,n)<p)*1 Note: multiplying
by 1 turns the logical (true/false) re-
sult back into numeric values. You
could also do double(rand(m,n)<p)

(matrix(runif(m,n),m)<p)*1

(Note: multiplying by 1 turns the
logical (true/false) result back into
numeric values; using as.numeric()
to do it would lose the shape of the
matrix.)

194 Generate m×n matrix where
each entry is a with probabil-
ity p, otherwise is b

b + (a-b)*(rand(m,n)<p) b + (a-b)*(matrix(

runif(m,n),m)<p)

195 Generate a random integer
between a and b inclusive

floor((b-a+1)*rand)+a or if you
have the Statistics toolbox then
unidrnd(b-a+1)+a-1

floor((b-a+1)*runif(1))+a

196 Flip a coin which comes up
heads with probability p, and
perform some action if it does
come up heads

if (rand < p)

...some commands...

end

if (runif(1) < p) {

...some commands...

}

197 Generate a random permuta-
tion of the integers 1, 2, . . . , n

randperm(n) sample(n)

198 Generate a random selection
of k unique integers between
1 and n (i.e. sampling with-
out replacement)

[s,idx]=sort(rand(n,1));

ri=idx(1:k) or another way is
ri=randperm(n); ri=ri(1:k). Or
if you have the Statistics Toolbox,
then randsample(n,k)

ri=sample(n,k)

199 Choose k values (with re-
placement) from the vector v,
storing result in w

L=length(v);

w=v(floor(L*rand(k,1))+1) Or,
if you have the Statistics Toolbox,
w=randsample(v,k,replace=true)

w=sample(v,k,replace=TRUE)

D. Hiebeler, Matlab / R Reference 24

No. Description Matlab R

200 Choose k values (without re-
placement) from the vector v,
storing result in w

L=length(v); ri=randperm(L);

ri=ri(1:k); w=v(ri) Or, if
you have the Statistics Toolbox,
w=randsample(v,k,replace=false)

w=sample(v,k,replace=FALSE)

201 Set the random-number gen-
erator back to a known state
(useful to do at the beginning
of a stochastic simulation
when debugging, so you’ll get
the same sequence of random
numbers each time)

rand(’state’, 12) Note: begin-
ning in Matlab 7.7, use this in-
stead: RandStream(’mt19937ar’,

’Seed’, 12) though the previous
method is still supported for now.

set.seed(12)

Note that the “*rnd,” “*pdf,” and “*cdf” functions described below are all part of the Matlab

Statistics Toolbox, and not part of the core Matlab distribution.
No. Description Matlab R

202 Generate a random value
from the binomial(n, p) dis-
tribution

binornd(n,p) rbinom(1,n,p)

203 Generate a random value
from the Poisson distribution
with parameter λ

poissrnd(lambda) rpois(1,lambda)

204 Generate a random value
from the exponential distri-
bution with mean µ

exprnd(mu) or -mu*log(rand) will
work even without the Statistics
Toolbox.

rexp(1, 1/mu)

205 Generate a random value
from the discrete uniform dis-
tribution on integers 1 . . . k

unidrnd(k) or floor(rand*k)+1

will work even without the Statistics
Toolbox.

sample(k,1)

206 Generate n iid random values
from the discrete uniform dis-
tribution on integers 1 . . . k

unidrnd(k,n,1) or
floor(rand(n,1)*k)+1 will work
even without the Statistics Toolbox.

sample(k,n,replace=TRUE)

207 Generate a random value
from the continuous uniform
distribution on the interval
(a, b)

unifrnd(a,b) or (b-a)*rand + a

will work even without the Statistics
Toolbox.

runif(1,a,b)

208 Generate a random value
from the normal distribution
with mean µ and standard
deviation σ

normrnd(mu,sigma) or
mu + sigma*randn will work
even without the Statistics Toolbox.

rnorm(1,mu,sigma)

209 Generate a random vector
from the multinomial distri-
bution, with n trials and
probability vector p

mnrnd(n,p) rmultinom(1,n,p)

210 Generate j random vectors
from the multinomial distri-
bution, with n trials and
probability vector p

mnrnd(n,p,j)

The vectors are returned as rows of
a matrix

rmultinom(j,n,p)

The vectors are returned as columns
of a matrix

Notes:

• The Matlab “*rnd” functions above can all take additional r,c arguments to build an r× c matrix
of iid random values. E.g. poissrnd(3.5,4,7) for a 4 × 7 matrix of iid values from the Poisson
distribution with mean λ = 3.5. The unidrnd(k,n,1) command above is an example of this, to
generate a k × 1 column vector.

D. Hiebeler, Matlab / R Reference 25

• The first parameter of the R “r*” functions above specifies how many values are desired. E.g. to
generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To
get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No. Description Matlab R

211 Compute probability that
a random variable from the
Binomial(n, p) distribution
has value x (i.e. the density,
or pdf).

binopdf(x,n,p) or
nchoosek(n,x)*p^x*(1-p)^(n-x)

will work even without the Statistics
Toolbox, as long as n and x are
non-negative integers and 0 ≤ p
≤ 1.

dbinom(x,n,p)

212 Compute probability that a
random variable from the
Poisson(λ) distribution has
value x.

poisspdf(x,lambda) or
exp(-lambda)*lambda^x /

factorial(x) will work even
without the Statistics Toolbox, as
long as x is a non-negative integer
and lambda ≥ 0.

dpois(x,lambda)

213 Compute probability density
function at x for a random
variable from the exponential
distribution with mean µ.

exppdf(x,mu) or
(x>=0)*exp(-x/mu)/mu will work
even without the Statistics Toolbox,
as long as mu is positive.

dexp(x,1/mu)

214 Compute probability density
function at x for a random
variable from the Normal dis-
tribution with mean µ and
standard deviation σ.

normpdf(x,mu,sigma) or
exp(-(x-mu)^2/(2*sigma^2))/

(sqrt(2*pi)*sigma) will work even
without the Statistics Toolbox.

dnorm(x,mu,sigma)

215 Compute probability density
function at x for a random
variable from the continuous
uniform distribution on inter-
val (a, b).

unifpdf(x,a,b) or
((x>=a)&&(x<=b))/(b-a) will
work even without the Statistics
Toolbox.

dunif(x,a,b)

216 Compute probability that a
random variable from the dis-
crete uniform distribution on
integers 1 . . . n has value x.

unidpdf(x,n) or ((x==floor(x))

&& (x>=1)&&(x<=n))/n will work
even without the Statistics Toolbox,
as long as n is a positive integer.

((x==round(x)) && (x >= 1) &&

(x <= n))/n

217 Compute probability that
a random vector from the
multinomial distribution
with probability vector ~p has
the value ~x

mnpdf(x,p)

Note: vector p must sum to one.
Also, x and p can be vectors of
length k, or if one or both are m× k
matrices then the computations are
performed for each row.

dmultinom(x,prob=p)

Note: one or more of the parameters in the above “*pdf” (Matlab) or “d*” (R) functions can be
vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

D. Hiebeler, Matlab / R Reference 26

The corresponding CDF functions are below:
No. Description Matlab R

218 Compute probability that a
random variable from the
Binomial(n, p) distribution is
less than or equal to x (i.e.
the cumulative distribution
function, or cdf).

binocdf(x,n,p). Without the
Statistics Toolbox, as long
as n is a non-negative in-
teger, this will work: r =

0:floor(x); sum(factorial(n)./

(factorial(r).*factorial(n-r))

.*p.^r.*(1-p).^(n-r)). (Un-
fortunately, Matlab’s nchoosek
function won’t take a vector argu-
ment for k.)

pbinom(x,n,p)

219 Compute probability that a
random variable from the
Poisson(λ) distribution is less
than or equal to x.

poisscdf(x,lambda). With-
out the Statistics Toolbox, as
long as lambda ≥ 0, this
will work: r = 0:floor(x);

sum(exp(-lambda)*lambda.^r

./factorial(r))

ppois(x,lambda)

220 Compute cumulative distri-
bution function at x for a
random variable from the ex-
ponential distribution with
mean µ.

expcdf(x,mu) or
(x>=0)*(1-exp(-x/mu)) will
work even without the Statistics
Toolbox, as long as mu is positive.

pexp(x,1/mu)

221 Compute cumulative distri-
bution function at x for a ran-
dom variable from the Nor-
mal distribution with mean µ
and standard deviation σ.

normcdf(x,mu,sigma) or 1/2 -

erf(-(x-mu)/(sigma*sqrt(2)))/2

will work even without the Statis-
tics Toolbox, as long as sigma is
positive.

pnorm(x,mu,sigma)

222 Compute cumulative distri-
bution function at x for a ran-
dom variable from the contin-
uous uniform distribution on
interval (a, b).

unifcdf(x,a,b) or
(x>a)*(min(x,b)-a)/(b-a) will
work even without the Statistics
Toolbox, as long as b > a.

punif(x,a,b)

223 Compute probability that a
random variable from the dis-
crete uniform distribution on
integers 1 . . . n is less than or
equal to x.

unidcdf(x,n) or
(x>=1)*min(floor(x),n)/n will
work even without the Statistics
Toolbox, as long as n is a positive
integer.

(x>=1)*min(floor(x),n)/n

D. Hiebeler, Matlab / R Reference 27

7 Graphics

7.1 Various types of plotting

No. Description Matlab R

224 Create a new figure window figure dev.new() Notes: internally, on Win-
dows this calls windows(), on MacOS
it calls quartz(), and on Linux it
calls x11(). x11() is also available
on MacOS. In R sometime after 2.7.0,
X11 graphics started doing antialising
by default, which makes plots look
smoother but takes longer to draw.
If you are using R on Linux (which
uses X11 graphics by default) or
X11 graphics on MacOS and notice
that figure plotting is extremely slow
(especially if making many plots),
do this before calling dev.new():
X11.options(type=’Xlib’) or
X11.options(antialias=’none’).
Or just use e.g. x11(type=’Xlib’)

to make new figure windows. They
are uglier (lines are more jagged), but
render much more quickly.

225 Select figure number n figure(n) (will create the figure if it
doesn’t exist)

dev.set(n) (returns the actual de-
vice selected; will be different from n
if there is no figure device with num-
ber n)

226 Determine which figure win-
dow is currently active

gcf dev.cur()

227 List open figure windows get(0,’children’) (The 0 handle
refers to the root graphics object.)

dev.list()

228 Close figure window(s) close to close the current figure win-
dow, close(n) to close a specified
figure, and close all to close all fig-
ures

dev.off() to close the currently ac-
tive figure device, dev.off(n) to close
a specified one, and graphics.off()

to close all figure devices.
229 Plot points using open circles plot(x,y,’o’) plot(x,y)

230 Plot points using solid lines plot(x,y) plot(x,y,type=’l’) (Note: that’s a
lower-case ’L’, not the number 1)

231 Plotting: color, point mark-
ers, linestyle

plot(x,y,str) where str is a
string specifying color, point marker,
and/or linestyle (see table below)
(e.g. ’gs--’ for green squares with
dashed line)

plot(x,y,type=str1,

pch=arg2,col=str3,

lty=arg4)

See tables below for possible values of
the 4 parameters

232 Plotting with logarithmic
axes

semilogx, semilogy, and loglog

functions take arguments like plot,
and plot with logarithmic scales for
x, y, and both axes, respectively

plot(..., log=’x’), plot(...,

log=’y’), and plot(...,

log=’xy’) plot with logarithmic
scales for x, y, and both axes,
respectively

D. Hiebeler, Matlab / R Reference 28

No. Description Matlab R

233 Make bar graph where the x
coordinates of the bars are in
x, and their heights are in y

bar(x,y) Or just bar(y) if you only
want to specify heights. Note: if A
is a matrix, bar(A) interprets each
column as a separate set of observa-
tions, and each row as a different ob-
servation within a set. So a 20 × 2
matrix is plotted as 2 sets of 20 ob-
servations, while a 2 × 20 matrix is
plotted as 20 sets of 2 observations.

Can’t do this in R; but barplot(y)

makes a bar graph where you specify
the heights, barplot(y,w) also spec-
ifies the widths of the bars, and hist

can make plots like this too.

234 Make histogram of values in
x

hist(x) hist(x)

235 Given vector x containing
integer values, make a bar
graph where the x coordi-
nates of bars are the values,
and heights are the counts of
how many times the values
appear in x

v=unique(x); c=hist(x,v);

bar(v,c)

barplot(table(x))

236 Given vector x containing
continuous values, lump the
data into k bins and make a
histogram / bar graph of the
binned data

[c,m] = hist(x,k); bar(m,c) or
for slightly different plot style use
hist(x,k)

hist(x,seq(min(x), max(x),

length.out=k+1))

237 Make a plot containing error-
bars of height s above and be-
low (x, y) points

errorbar(x,y,s) errbar(x,y,y+s,y-s) Note: errbar
is part of the Hmisc package (see
item 316 for how to install/load pack-
ages).

238 Make a plot containing error-
bars of height a above and b
below (x, y) points

errorbar(x,y,b,a) errbar(x,y,y+a,y-b) Note: errbar
is part of the Hmisc package (see
item 316 for how to install/load pack-
ages).

239 Other types of 2-D plots stem(x,y) and stairs(x,y)

for other types of 2-D plots.
polar(theta,r) to use polar
coordinates for plotting.

pie(v)

D. Hiebeler, Matlab / R Reference 29

No. Description Matlab R

240 Make a 3-D plot of some data
points with given x, y, z co-
ordinates in the vectors x, y,
and z.

plot3(x,y,z) This works much like
plot, as far as plotting symbols, line-
types, and colors.

cloud(z~x*y) You can also use
arguments pch and col as with
plot. To make a 3-D plot with
lines, do cloud(z~x*y,type=’l’,

panel.cloud=panel.3dwire)

241 Surface plot of data in matrix
A

surf(A)

You can then click on the small
curved arrow in the figure window
(or choose “Rotate 3D” from the
“Tools” menu), and then click and
drag the mouse in the figure to ro-
tate it in three dimensions.

persp(A)

You can include shading in the im-
age via e.g. persp(A,shade=0.5).
There are two viewing angles you
can also specify, among other pa-
rameters, e.g. persp(A, shade=0.5,

theta=50, phi=35).
242 Surface plot of f(x, y) =

sin(x + y)
√

y for 100 values
of x between 0 and 10, and
90 values of y between 2 and
8

x = linspace(0,10,100);

y = linspace(2,8,90);

[X,Y] = meshgrid(x,y);

Z = sin(X+Y).*sqrt(Y);

surf(X,Y,Z)

shading flat

x = seq(0,10,len=100)

y = seq(2,8,len=90)

f = function(x,y)

return(sin(x+y)*sqrt(y))

z = outer(x,y,f)

persp(x,y,z)

243 Other ways of plotting the
data from the previous com-
mand

mesh(X,Y,Z), surfc(X,Y,Z),
surfl(X,Y,Z), contour(X,Y,Z),
pcolor(X,Y,Z),
waterfall(X,Y,Z). Also see the
slice command.

contour(x,y,z) Or do
s=expand.grid(x=x,y=y), and
then wireframe(z~x*y,s) or
wireframe(z~x*y,s,shade=TRUE)

(Note: wireframe is part of the
lattice package; see item 316 for how
to load packages). If you have vectors
x, y, and z all the same length, you
can also do symbols(x,y,z).

244 Set axis ranges in a figure
window

axis([x1 x2 y1 y2]) You have to do this when
you make the plot, e.g.
plot(x,y,xlim=c(x1,x2),

ylim=c(y1,y2))

245 Add title to plot title(’somestring’) title(main=’somestring’)

adds a main title,
title(sub=’somestring’) adds
a subtitle. You can also include
main= and sub= arguments in a
plot command.

246 Add axis labels to plot xlabel(’somestring’) and
ylabel(’somestring’)

title(xlab=’somestring’,

ylab=’anotherstr’). You can
also include xlab= and ylab=
arguments in a plot command.

D. Hiebeler, Matlab / R Reference 30

No. Description Matlab R

247 Include Greek letters or sym-
bols in plot axis labels

You can use basic TeX com-
mands, e.g. plot(x,y);

xlabel(’\phi^2 + \mu_{i,j}’)

or xlabel(’fecundity \phi’)

See also help tex and parts of
doc text props for more about
building labels using general LaTeX
commands

plot(x,y,xlab=

expression(phi^2 + mu[’i,j’]))

or plot(x,y,xlab=expression(

paste(’fecundity ’, phi)))

See also help(plotmath) and p.
98 of the R Graphics book by Paul
Murrell for more.

248 Change font size to 16 in plot
labels

For the legends and numerical axis
labels, use set(gca, ’FontSize’,

16), and for text labels on axes
do e.g. xlabel(’my x var’,

’FontSize’, 16)

For on-screen graphics, do
par(ps=16) followed by e.g. a plot

command. For PostScript or PDF
plots, add a pointsize=16 argument,
e.g. pdf(’myfile.pdf’, width=8,

height=8, pointsize=16) (see
items 264 and 265)

249 Add grid lines to plot grid on (and grid off to turn off) grid() Note that if you’ll be
printing the plot, the default style
for grid-lines is to use gray dot-
ted lines, which are almost invis-
ible on some printers. You may
want to do e.g. grid(lty=’dashed’,
col=’black’) to use black dashed
lines which are easier to see.

250 Add a text label to a plot text(x,y,’hello’) text(x,y,’hello’)

251 Add set of text labels to a
plot. xv and yv are vectors.

s={’hi’, ’there’};

text(xv,yv,s)

s=c(’hi’, ’there’);

text(xv,yv,s)

252 Add an arrow to current plot,
with tail at (xt, yt) and head
at (xh, yh)

annotation(’arrow’, [xt xh],

[yt yh]) Note: coordinates should
be normalized figure coordinates, not
coordinates within your displayed
axes. Find and download from The
Mathworks the file dsxy2figxy.m
which converts for you, then do this:
[fx,fy]=dsxy2figxy([xt xh],

[yt yh]); annotation(’arrow’,

fx, fy)

arrows(xt, yt, xh, yh)

253 Add a double-headed arrow
to current plot, with coordi-
nates (x0, y0) and (x1, y1)

annotation(’doublearrow’, [x0

x1], [y0 y1]) See note in previ-
ous item about normalized figure
coordinates.

arrows(x0, y0, x1, y1, code=3)

254 Add figure legend to top-left
corner of plot

legend(’first’, ’second’,

’Location’, ’NorthWest’)

legend(’topleft’,

legend=c(’first’, ’second’),

col=c(’red’, ’blue’),

pch=c(’*’,’o’))

Matlab note: sometimes you build a graph piece-by-piece, and then want to manually add a legend
which doesn’t correspond with the order you put things in the plot. You can manually construct a legend
by plotting “invisible” things, then building the legend using them. E.g. to make a legend with black stars
and solid lines, and red circles and dashed lines: h1=plot(0,0,’k*-’); set(h1,’Visible’, ’off’);

h2=plot(0,0,’k*-’); set(h2,’Visible’, ’off’); legend([h1 h2], ’blah, ’whoa’). Just be sure
to choose coordinates for your “invisible” points within the current figure’s axis ranges.

D. Hiebeler, Matlab / R Reference 31

No. Description Matlab R

255 Adding more things to a fig-
ure

hold on means everything plotted
from now on in that figure window is
added to what’s already there. hold
off turns it off. clf clears the figure
and turns off hold.

points(...) and lines(...) work
like plot, but add to what’s already
in the figure rather than clearing the
figure first. points and lines are
basically identical, just with different
default plotting styles. Note: axes
are not recalculated/redrawn when
adding more things to a figure.

256 Plot multiple data sets at
once

plot(x,y) where x and y are 2-D
matrices. Each column of x is plot-
ted against the corresponding col-
umn of y. If x has only one column,
it will be re-used.

matplot(x,y) where x and y are 2-D
matrices. Each column of x is plotted
against the corresponding column of
y. If x has only one column, it will be
re-used.

257 Plot sin(2x) for x between 7
and 18

fplot(’sin(2*x)’, [7 18]) curve(sin(2*x), 7, 18, 200)

makes the plot, by sampling the
value of the function at 200 values
between 7 and 18 (if you don’t
specify the number of points, 101
is the default). You could do this
manually yourself via commands
like tmpx=seq(7,18,len=200);

plot(tmpx, sin(2*tmpx)).
258 Plot color image of integer

values in matrix A
image(A) to use array values as
raw indices into colormap, or
imagesc(A) to automatically scale
values first (these both draw row
1 of the matrix at the top of the
image); or pcolor(A) (draws row
1 of the matrix at the bottom of
the image). After using pcolor,
try the commands shading flat or
shading interp.

image(A) (it rotates the matrix 90 de-
grees counterclockwise: it draws row
1 of A as the left column of the im-
age, and column 1 of A as the bottom
row of the image, so the row number
is the x coord and column number is
the y coord). It also rescales colors. If
you are using a colormap with k en-
tries, but the value k does not appear
in A, use image(A,zlim=c(1,k))

to avoid rescaling of colors. Or
e.g. image(A,zlim=c(0,k-1)) if you
want values 0 through k−1 to be plot-
ted using the k colors.

259 Add colorbar legend to image
plot

colorbar, after using image or
pcolor.

Use filled.contour(A) rather
than image(A), although it “blurs”
the data via interpolation, or
use levelplot(A) from the lat-
tice package (see item 316 for
how to load packages). To use
a colormap with the latter, do
e.g. levelplot(A,col.regions=

terrain.colors(100)).
260 Set colormap in image colormap(hot). Instead of hot, you

can also use gray, flag, jet (the
default), cool, bone, copper, pink,
hsv, prism. By default, the length
of the new colormap is the same as
the currently-installed one; use e.g.
colormap(hot(256)) to specify the
number of entries.

image(A,col=terrain.colors(100)).
The parameter 100 specifies the
length of the colormap. Other
colormaps are heat.colors(),
topo.colors(), and cm.colors().

D. Hiebeler, Matlab / R Reference 32

No. Description Matlab R

261 Build your own colormap us-
ing Red/Green/Blue triplets

Use an n × 3 matrix; each row
gives R,G,B intensities between 0
and 1. Can use as argument with
colormap. E.g. for 2 colors: mycmap
= [0.5 0.8 0.2 ; 0.2 0.2 0.7]

Use a vector of hexadecimal strings,
each beginning with ’#’ and giving
R,G,B intensities between 00 and FF.
E.g. c(’#80CC33’,’#3333B3’); can
use as argument to col= parameter
to image. You can build such a
vector of strings from vectors of Red,
Green, and Blue intensities (each
between 0 and 1) as follows (for a
2-color example): r=c(0.5,0.2);

g=c(0.8,0.2); b=c(0.2,0.7);

mycolors=rgb(r,g,b).

Matlab plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:
Symbol Color Symbol Marker Symbol Linestyle

b blue . point (.) - solid line
g green o circle (◦) : dotted line
r red x cross (×) -. dash-dot line
c cyan + plus sign (+) -- dashed line
m magenta * asterisk (∗)
y yellow s square (¤)
k black d diamond (♦)
w white v triangle (down) (▽)

^ triangle (up) (△)
< triangle (left) (⊳)
> triangle (right) (⊲)
p pentragram star
h hexagram star

R plotting specifications for col (color), pch (plotting character), and type arguments, for use with plot,
matplot, points, and lines:

col Description pch Description type Description
’blue’ Blue ’a’ a (similarly for other

characters, but see ’.’
below for an exception

p points

’green’ Green 19 solid circle l lines
’red’ Red 20 bullet (smaller circle) b both
’cyan’ Cyan 21 open circle c lines part only of “b”

’magenta’ Magenta 22 square o lines, points overplotted
’yellow’ Yellow 23 diamond h histogram-like lines
’black’ Black 24 triangle point-up s steps
’#RRGGBB’ hexadecimal specifica-

tion of Red, Green,
Blue

25 triangle point-down S another kind of steps

(Other names) See colors() for list of
available color names.

’.’ rectangle of size 0.01
inch, 1 pixel, or 1 point
(1/72 inch) depending
on device

n no plotting

(See table on next page
for more)

D. Hiebeler, Matlab / R Reference 33

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:
lty Description
0 blank
1 solid
2 dashed
3 dotted
4 dotdash
5 longdash
6 twodash

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 AA bb . ##

R plotting characters, i.e. values for pch argument (from the book R Graphics, by Paul Murrell,
Chapman & Hall / CRC, 2006)

D. Hiebeler, Matlab / R Reference 34

No. Description Matlab R

262 Divide up a figure window
into smaller sub-figures

subplot(m,n,k) divides the current
figure window into an m × n ar-
ray of subplots, and draws in sub-
plot number k as numbered in “read-
ing order,” i.e. left-to-right, top-to-
bottom. E.g. subplot(2,3,4) se-
lects the first sub-figure in the second
row of a 2 × 3 array of sub-figures.
You can do more complex things,
e.g. subplot(5,5,[1 2 6 7]) se-
lects the first two subplots in the first
row, and first two subplots in the
second row, i.e. gives you a bigger
subplot within a 5 × 5 array of sub-
plots. (If you that command followed
by e.g. subplot(5,5,3) you’ll see
what’s meant by that.)

There are several ways to do this, e.g.
using layout or split.screen, al-
though they aren’t quite as friendly
as Matlab ’s. E.g. if you let A =




1 1 2
1 1 3
4 5 6



, then layout(A) will

divide the figure into 6 sub-figures:
you can imagine the figure divide into
a 3 × 3 matrix of smaller blocks; sub-
figure 1 will take up the upper-left
2×2 portion, and sub-figures 2–6 will
take up smaller portions, according to
the positions of those numbers in the
matrix A. Consecutive plotting com-
mands will draw into successive sub-
figures; there doesn’t seem to be a way
to explicitly specify which sub-figure
to draw into next.
To use split.screen, you can
do e.g. split.screen(c(2,1)) to
split into a 2 × 1 matrix of sub-
figures (numbered 1 and 2). Then
split.screen(c(1,3),2) splits sub-
figure 2 into a 1× 3 matrix of smaller
sub-figures (numbered 3, 4, and 5).
screen(4) will then select sub-figure
number 4, and subsequent plotting
commands will draw into it.
A third way to accomplish this is
via the commands par(mfrow=) or
par(mfcol=) to split the figure win-
dow, and par(mfg=) to select which
sub-figure to draw into.
Note that the above methods are all
incompatible with each other.

263 Force graphics windows to
update

drawnow (Matlab normally only
updates figure windows when a
script/function finishes and returns
control to the Matlab prompt, or
under a couple of other circum-
stances. This forces it to update
figure windows to reflect any recent
plotting commands.)

R automatically updates graphics
windows even before functions/scripts
finish executing, so it’s not neces-
sary to explictly request it. But note
that some graphics functions (partic-
ularly those in the lattice package)
don’t display their results when called
from scripts or functions; e.g. rather
than levelplot(...) you need to do
print(levelplot(...)). Such func-
tions will automatically display their
plots when called interactively from
the command prompt.

D. Hiebeler, Matlab / R Reference 35

7.2 Printing/saving graphics

No. Description Matlab R

264 To print/save to a PDF file
named fname.pdf

print -dpdf fname saves the con-
tents of currently active figure win-
dow

First do pdf(’fname.pdf’). Then,
do various plotting commands
to make your image, as if you
were plotting in a window. Fi-
nally, do dev.off() to close/save
the PDF file. To print the con-
tents of the active figure win-
dow, do dev.copy(device=pdf,

file=’fname.pdf’); dev.off().
(But this will not work if you’ve
turned off the display list via
dev.control(displaylist=

’inhibit’).)
265 To print/save to a PostScript

file fname.ps or fname.eps
print -dps fname for black &
white PostScript; print -dpsc

fname for color PostScript; print

-deps fname for black & white
Encapsulated PostScript; print

-depsc fname for color Encapsu-
lated PostScript. The first two save
to fname.ps, while the latter two
save to fname.eps.

postscript(’fname.eps’), followed
by your plotting commands, fol-
lowed by dev.off() to close/save
the file. Note: you may want to
use postscript(’fname.eps’,

horizontal=FALSE) to save your fig-
ure in portrait mode rather than the
default landscape mode. To print the
contents of the active figure window,
do dev.copy(device=postscript,

file=’fname.eps’); dev.off().
(But this will not work if you’ve
turned off the display list via
dev.control(displaylist=

’inhibit’).) You can also include
the horizontal=FALSE argument
with dev.copy().

266 To print/save to a JPEG file
fname.jpg with jpeg qual-
ity = 90 (higher quality looks
better but makes the file
larger)

print -djpeg90 fname jpeg(’fname.jpg’,quality=90),
followed by your plotting commands,
followed by dev.off() to close/save
the file.

D. Hiebeler, Matlab / R Reference 36

7.3 Animating cellular automata / lattice simulations

No. Description Matlab R

267 To display images of cellu-
lar automata or other lattice
simulations while running in
real time

Repeatedly use either pcolor or
image to display the data. Don’t
forget to call drawnow as well, oth-
erwise the figure window will not be
updated with each image.

If you simply call image repeatedly,
there is a great deal of flicker-
ing/flashing. To avoid this, after
drawing the image for the first time
using e.g. image(A), from then
on only use image(A,add=TRUE),
which avoids redrawing the entire
image (and the associated flicker).
However, this will soon consume a
great deal of memory, as all drawn
images are saved in the image buffer.
There are two solutions to that
problem: (1) every k time steps,
leave off the “add=TRUE” argument
to flush the image buffer (and get
occasional flickering), where you
choose k to balance the flickering
vs. memory-usage tradeoff; or
(2) after drawing the first image,
do dev.control(displaylist=

’inhibit’) to prohibit retaining the
data. However, the latter solution
means that after the simulation is
done, the figure window will not be
redrawn if it is resized, or temporarily
obscured by another window. (A
call to dev.control(displaylist=

’enable’) and then one final
image(A) at the end of the sim-
ulation will re-enable re-drawing
after resizing or obscuring, without
consuming extra memory.)

D. Hiebeler, Matlab / R Reference 37

8 Working with files

No. Description Matlab R

268 Create a folder (also known
as a “directory”)

mkdir dirname dir.create(’dirname’)

269 Set/change working directory cd dirname setwd(’dirname’)

270 See list of files in current
working directory

dir dir()

271 Run commands in file ‘foo.m’
or ‘foo.R’ respectively

foo source(’foo.R’)

272 Read data from text file
“data.txt” into matrix A

A=load(’data.txt’) or
A=importdata(’data.txt’) Note
that both routines will ignore com-
ments (anything on a line following
a “%” character)

A=as.matrix(read.table(

’data.txt’)) This will ignore
comments (anything on a line
following a “#” character). To ig-
nore comments indicated by “%”,
do A=as.matrix(read.table(

’data.txt’, comment.char=’%’))

273 Write data from matrix A
into text file “data.txt”

save data.txt A -ascii write(A, file=’data.txt’,

ncolumn=dim(A)[2])

D. Hiebeler, Matlab / R Reference 38

9 Miscellaneous

9.1 Variables

No. Description Matlab R

274 Assigning to variables x = 5 x <- 5 or x = 5 Note: for compati-
bility with S-plus, many people prefer
the first form.

275 From within a function, as-
sign a value to variable y
in the base environment (i.e.
the command prompt envi-
ronment)

assignin(’base’, ’y’, 7) y <<- 7

276 From within a function, ac-
cess the value of variable y
in the base environment (i.e.
the command prompt envi-
ronment)

evalin(’base’, ’y’) get(’y’, envir=globalenv())

Though note that inside a function,
if there isn’t a local variable y, then
just the expression y will look for one
in the base environment, but if there
is a local y then that one will be used
instead.

277 Short list of defined variables who ls()

278 Long list of defined variables whos ls.str()

279 See detailed info about the
variable ab

whos ab str(ab)

280 See detailed info about all
variables with “ab” in their
name

whos *ab* ls.str(pattern=’ab’)

281 Open graphical data editor,
to edit the value of variable
A (useful for editing values in
a matrix, though it works for
non-matrix variables as well)

openvar(A), or double-click on the
variable in the Workspace pane (if
it’s being displayed) of your Mat-

labdesktop

fix(A)

282 Clear one variable clear x rm(x)

283 Clear two variables clear x y rm(x,y)

284 Clear all variables clear all rm(list=ls())

285 See what type of object x is class(x) class(x)

286 (Variable names) Variable names must begin with a
letter, but after that they may con-
tain any combination of letters, dig-
its, and the underscore character.
Names are case-sensitive.

Variable names may contain letters,
digits, the period, and the underscore
character. They cannot begin with a
digit or underscore, or with a period
followed by a digit. Names are case-
sensitive.

287 Result of last command ans contains the result of the last
command which did not assign its
value to a variable. E.g. after 2+5;

x=3, then ans will contain 7.

.Last.value contains the result of
the last command, whether or not its
value was assigned to a variable. E.g.
after 2+5; x=3, then .Last.value will
contain 3.

D. Hiebeler, Matlab / R Reference 39

9.2 Strings and Misc.

No. Description Matlab R

288 Line continuation If you want to break up a Matlab

command over more than one line,
end all but the last line with three
periods: “...”. E.g.:
x = 3 + ...

4

or
x = 3 ...

+ 4

In R, you can spread commands out
over multiple lines, and nothing ex-
tra is necessary. R will continue read-
ing input until the command is com-
plete. However, this only works when
the syntax makes it clear that the first
line was not complete. E.g.:
x = 3 +

4

works, but
x = 3

+ 4

does not treat the second line as a con-
tinuation of the first.

289 Controlling formatting of
output

format short g and
format long g are handy; see
help format

options(digits=6) tells R you’d like
to use 6 digits of precision in values it
displays (it is only a suggestion, not
strictly followed)

290 Exit the program quit or exit q() or quit()
291 Comments % this is a comment # this is a comment

292 Display a string disp(’hi there’) or to
omit trailing newline use
fprintf(’hi there’)

print(’hi there’)

293 Display a string containing
single quotes

disp(’It’’s nice’) or
to omit trailing newline
fprintf(’It’’s nice’)

print(’It\’s nice’) or
print("It’s nice")

294 Give prompt and read numer-
ical input from user

x = input(’Enter data:’) print(’Enter data:’); x=scan()

But note: if in a script and you use
the Edit → Execute menu item to
run it, the selected text after the
scan statement will be used as source
for the input, rather than keyboard.

295 Give prompt and read char-
acter (string) input from user

x = input(’Enter string:’,’s’) x = readline(’Enter string:’)

296 Concatenate strings [’two hal’ ’ves’] paste(’two hal’, ’ves’, sep=’’)

297 Concatenate strings stored in
a vector

v={’two ’, ’halves’};

strcat(v{:}) But note that
this drops trailing spaces on
strings. To avoid that, instead do
strcat([v{:}])

v=c(’two ’, ’halves’);

paste(v, collapse=’’)

298 Extract substring of a string text1=’hi there’;

text2=text(2:6)

text1=’hi there’;

text2=substr(text1,2,6)

299 Determine whether elements
of a vector are in a set, and
give positions of correspond-
ing elements in the set.

x = {’a’, ’aa’, ’bc’, ’c’}; y

= {’da’, ’a’, ’bc’, ’a’, ’bc’,

’aa’}; [tf, loc]=ismember(x,y)

Then loc contains the locations of
last occurrences of elements of x
in the set y, and 0 for unmatched
elements.

x = c(’a’, ’aa’, ’bc’, ’c’); y

= c(’da’, ’a’, ’bc’, ’a’, ’bc’,

’aa’); loc=match(x,y) Then loc
contains the locations of first oc-
curences of elements of x in the set
y, and NA for unmatched elements.

D. Hiebeler, Matlab / R Reference 40

No. Description Matlab R

300 Convert number to string num2str(x) as.character(x)

301 Use sprintf to create a
formatted string. Use %d for
integers (“d” stands for “dec-
imal”, i.e. base 10), %f for
floating-point numbers, %e
for scientific-notation floating
point, %g to automatically
choose %e or %f based on
the value. You can spec-
ify field-widths/precisions,
e.g. %5d for integers with
padding to 5 spaces, or %.7f
for floating-point with 7
digits of precision. There are
many other options too; see
the docs.

x=2; y=3.5;

s=sprintf(’x is %d, y=%g’, ...

x, y)

x=2; y=3.5

s=sprintf(’x is %d, y is %g’,

x, y)

302 Machine epsilon ǫmach, i.e.
difference between 1 and the
next largest double-precision
floating-point number

eps (See help eps for various other
things eps can give.)

.Machine$double.eps

303 Pause for x seconds pause(x) Sys.sleep(x)

304 Wait for user to press any key pause Don’t know of a way to do this in R,
but scan(quiet=TRUE) will wait until
the user presses the Enter key

305 Measure CPU time used to
do some commands

t1=cputime; ...commands... ;

cputime-t1

t1=proc.time(); ...commands...

; (proc.time()-t1)[1]

306 Measure elapsed (“wall-
clock”) time used to do some
commands

tic; ...commands... ; toc or
t1=clock; ...commands... ;

etime(clock,t1)

t1=proc.time(); ...commands...

; (proc.time()-t1)[3]

307 Print an error message an in-
terrupt execution

error(’Problem!’) stop(’Problem!’)

308 Print a warning message warning(’Smaller problem!’) warning(’Smaller problem!’)

309 Putting multiple statements
on one line

Separate statements by commas or
semicolons. A semicolon at the end
of a statement suppresses display of
the results (also useful even with just
a single statement on a line), while a
comma does not.

Separate statements by semicolons.

310 Evaluate contents of a string
s as command(s).

eval(s) eval(parse(text=s))

311 Get a command prompt for
debugging, while executing a
script or function. While at
that prompt, you can type ex-
pressions to see the values of
variables, etc.

Insert the command keyboard in
your file. Note that your prompt will
change to K>>. When you are done
debugging and want to continue ex-
ecuting the file, type return.

Insert the command browser() in
your file. Note that your prompt will
change to Browse[1]>. When you are
done debugging and want to continue
executing the file, either type c or just
press return (i.e. enter a blank line).
Note, if you type n, you enter the step
debugger.

D. Hiebeler, Matlab / R Reference 41

No. Description Matlab R

312 Show where a command is which sqrt shows you where the file
defining the sqrt function is (but
note that many basic functions are
“built in,” so the Matlab func-
tion file is really just a stub con-
taining documentation). This is use-
ful if a command is doing something
strange, e.g. sqrt isn’t working. If
you’ve accidentally defined a variable

called sqrt, then which sqrt will
tell you, so you can clear sqrt to
erase it so that you can go back to
using the function sqrt.

R does not execute commands directly
from files, so there is no equivalent
command.

313 Query/set the search path. path displays the current search path
(the list of places Matlab searches
for commands you enter). To add a
directory ~/foo to the beginning of
the search path, do

addpath ~/foo -begin

or to add it to the end of the path,
do addpath ~/foo -end (Note: you
should generally add the full path
of a directory, i.e. in Linux or Mac
OS-X something like ~/foo as above
or of the form /usr/local/lib/foo,
while under Windows it would be
something like C:/foo)

R does not use a search path to look
for files.

314 Startup sequence If a file startup.m exists in the
startup directory for Matlab, its
contents are executed. (See the
Matlab docs for how to change the
startup directory.)

If a file .Rprofile exists in the cur-
rent directory or the user’s home di-
rectory (in that order), its contents
are sourced; saved data from the file
.RData (if it exists) are then loaded.
If a function .First() has been de-
fined, it is then called (so the obvious
place to define this function is in your
.Rprofile file).

315 Shutdown sequence Upon typing quit or exit, Matlab

will run the script finish.m if present
somewhere in the search path.

Upon typing q() or quit(), R will call
the function .Last() if it has been de-
fined (one obvious place to define it
would be in the .Rprofile file)

D. Hiebeler, Matlab / R Reference 42

No. Description Matlab R

316 Install and load a package. Matlab does not have packages. It
has toolboxes, which you can pur-
chase and install. “Contributed”
code (written by end users) can sim-
ply be downloaded and put in a di-
rectory which you then add to Mat-

lab’s path (see item 313 for how to
add things to Matlab’s path).

To install e.g. the deSolve pack-
age, you can use the command
install.packages(’deSolve’).
You then need to load the package
in order to use it, via the command
library(’deSolve’). When running
R again later you’ll need to load the
package again to use it, but you
should not need to re-install it. Note
that the lattice package is typically
included with binary distributions of
R, so it only needs to be loaded, not
installed.

10 Spatial Modeling

No. Description Matlab R

317 Take an L×L matrix A of
0s and 1s, and “seed” frac-
tion p of the 0s (turn them
into 1s), not changing entries
which are already 1.

A = (A | (rand(L) < p))*1; A = (A | (matrix(runif(L^2),L)

< p))*1

318 Take an L×L matrix A of 0s
and 1s, and “kill” fraction p
of the 1s (turn them into 0s),
not changing the rest of the
entries

A = (A & (rand(L) < 1-p))*1; A = (A & (matrix(runif(L^2),L)

< 1-p))*1

319 Do “wraparound” on a coor-
dinate newx that you’ve al-
ready calculated. You can
replace newx with x+dx if
you want to do wraparound
on an offset x coordinate.

mod(newx-1,L)+1 Note: for porta-
bility with other languages such as
C which handle MOD of negative
values differently, you may want to
get in the habit of instead doing
mod(newx-1+L,L)+1

((newx-1) %% L) + 1 Note: for
portability with other languages such
as C which handle MOD of nega-
tive values differently, you may want
to get in the habit of instead doing
((newx-1+L)%%L) + 1

320 Randomly initialize a portion
of an array: set fraction p of
sites in rows iy1 through iy2
and columns ix1 through ix2
equal to 1 (and set the rest of
the sites in that block equal
to zero). Note: this assume
iy1 < iy2 and ix1 < ix2.

dx=ix2-ix1+1; dy=iy2-iy1+1;

A(iy1:iy2,ix1:ix2) = ...

(rand(dy,dx) < p0)*1;

dx=ix2-ix1+1; dy=iy2-iy1+1;

A[iy1:iy2,ix1:ix2] =

(matrix(runif(dy*dx),dy) <

p0)*1

INDEX OF MATLAB COMMANDS AND CONCEPTS 43

Index of MATLAB commands and concepts

’, 77
,, 309
.*, 76
..., 288
./, 82
.^, 86
/, 81
:, 12–14
;, 309
=, 274
[, 6–8
%, 291
&, 175, 176
^, 50, 84, 85
\, 78, 83
{ 45

abs, 51, 70
acos, 56
acosh, 58
addpath, 313
all, 177
angle, 71
annotation, 252, 253
ans, 287
any, 178
arrows in plots, 252, 253
asin, 56
asinh, 58
assignin, 275
atan, 56
atanh, 58
average, see mean
axis, 244

bar, 233, 235, 236
binocdf, 218
binopdf, 211
binornd, 202
boolean tests

scalar, 175
vector, 176–178

break, 180

cd, 269
ceil, 62
cell, 44
cell arrays, 44

extracting elements of, 45
cellular automata animation, 267
chol, 92

class, 285
clear, 282–284
clf, 255
clock, 306
close, 228
colon, see :
colorbar, 259
colormap

building your own, 261
colormap, 260, 261
column vector, 7
comments, 291
complex numbers, 69–74
cond, 96–98
conj, 72
continue, 180
contour, 243
conv, 154
corr, 110–115
cos, 55
cosh, 57
cov, 108, 109
cputime, 305
csape, 167, 169, 170
cubic splines, 168, 169

natural, 167
not-a-knot, 171
periodic, 170

cumprod, 124
cumsum, 120–123
cumulative distribution functions

binomial, 218
continuous uniform on interval (a, b), 222
discrete uniform from 1..n, 223
exponential, 220
normal, 221
Poisson, 219

debugging, 311
diag, 22, 23
diff, 126
differential equations, see ode45

dir, 270
disp, 292, 293
doc, 4
drawnow, 263, 267

echelon form, see matrix
eig, 88

INDEX OF MATLAB COMMANDS AND CONCEPTS 44

element-by-element matrix operations, see ma-
trix

else, 174
elseif, 174
end, 36
eps, 302
erf, 64
erfc, 65
erfcinv, 67
erfinv, 66
error, 307
errorbar, 237, 238
etime, 306
eval, 310
evalin, 276
exit, 290
exp, 52
expcdf, 220
expm, 119
exppdf, 213
exprnd, 204
eye, 21

figure, 224, 225
file

reading data from, 273
running commands in, 271
text

reading data from, 272
saving data to, 273

find, 149–151
finish.m, 315
floor, 61
fminbnd, 157, 158
fminsearch, 159, 160
font size in plots, 248
for, 172
format, 289
fplot, 257
fprintf, 292, 293
function

multi-variable
minimization, 159
minimization over first parameter only, 158
minimization over only some parameters,

160
single-variable

minimization, 157
user-written, 182

returning multiple values, 183
fzero, 156

gca, 248

gcf, 226
get, 227
Greek letters

in plot labels, 247
grid, 249

help, 1–3
helpbrowser, 4
helpdesk, 4
hilb, 42
hist, 152, 153, 234, 235
hold, 255

identity, see matrix
if, 173–175
imag, 74
image, 258, 267
imagesc, 258
importdata, 272
ind2sub, 32
indexing

matrix, 10
with a single index, 11

vector, 9
input, 294, 295
inv, 80
inverse, see matrix
ismember, 299

keyboard, 311

legend, 254
length, 139, 141
linspace, 15
load, 272, 273
log, 53
log10, 54
log2, 54
loglog, 232
logspace, 16
lookfor, 5
lu, 89

matrix, 8
boolean operations on, 150, 151
changing shape of, 39
Cholesky factorization, 92
condition number, 96–98
containing all indentical entries, 20
containing all zeros, 19
converting row, column to single index, 33
converting single-index to row, column, 32
cumulative sums of all elements of, 123
cumulative sums of columns, 121

INDEX OF MATLAB COMMANDS AND CONCEPTS 45

cumulative sums of rows, 122
diagonal, 22
echelon form, 79
eigenvalues and eigenvectors of, 88
equation

solving, 78
exponential of, 119
extracting a column of, 27
extracting a rectangular piece of, 30
extracting a row of, 28
extracting specified rows and columns of, 31
“gluing” together, 24, 25
identity, 21
inverse, 80
lower-triangular portion of, 40
LU factorization, 89
minimum of values of, 129
minimum value of each column of, 130
minimum value of each row of, 131
modifying elements given lists of rows and

columns, 34
multiplication, 75

element-by-element, 76
N -dimensional, 43
norm, 95
powers of, 85
QR factorization, 93
rank, 87
re-shaping its elements into a vector, 29
Schur decomposition, 91
singular value decomposition, 90
size of, 136–138, 140, 141
sum

of all elements, 116
of columns of, 117
of rows of, 118

transpose, 77
upper-triangular portion of, 41

max, see min

mean, 99–101
mesh, 243
meshgrid, 110, 242
min, 128–131, 133–135
mind, 132
mkdir, 268
mnpdf, 217
mnrnd, 209, 210
mod, 59, 319
modulo arithmetic, 59, 319
multiple statements on one line, 309

nchoosek, 68
norm, 94, 95

normcdf, 221
normpdf, 214
normrnd, 208
num2str, 300
numel, 140

ode45, 184–186
ones, 18, 20
openvar, 281
optimization, 157–160

path, 313
pause, 303, 304
pcolor, 243, 258, 267
perform some commands with probability p, 196
permutation of integers 1..n, 197
plot, 229–231, 256

Greek letters in axis labels, 247
plot3, 240
poisscdf, 219
poisspdf, 212
poissrnd, 203
polar, 239
polyfit, 163–165
polynomial

least-squares fitted, 164–166
multiplication, 154
roots of, 155

ppval, 167, 169, 170
print, 264–266
probability density functions

binomial, 211
continuous uniform on interval (a, b), 215
discrete uniform from 1..n, 216
exponential, 213
multinomial, 217
normal, 214
Poisson, 212

qr, 93
quad, 161
quit, 290

rand, 187–195, 201
random values

Bernoulli, 193
binomial, 202
continuous uniform distribution on interval

(a, b), 190, 207
continuous uniform distribution on interval

(0,1), 187–189
discrete uniform distribution from a..b, 195
discrete uniform distribution from 1..k, 192,

205, 206

INDEX OF MATLAB COMMANDS AND CONCEPTS 46

discrete uniform distribution, 191
exponential, 204
k unique values sampled from integers 1..n,

198
multinomial, 209, 210
normal, 208
Poisson, 203
setting the seed, 201

randperm, 197, 198
randsample, 198–200
rank, 87
rcond, 96
real, 73
reshape, 39, 43
roots

of general single-variable function, 156
polynomial, 155

roots, 155
round, 60
row vector, 6
rref, 79

sampling values from a vector, 199, 200
save, 273
schur, 91
semilogx, 232
semilogy, 232
set, 248
shading, 258
sign, 63
sin, 55
sinh, 57
size, 136–138
slice, 243
sort, 142, 143, 198
sortrows, 144–147
spline, 171
splines, see cubic splines
sprintf, 301
sqrt, 49
stairs, 239
standard deviation, see std

startup.m, 314
std, 102–104
stem, 239
stop, 307
strcat, 297
string

concatenation, 296
converting number to, 300
substrings, 298

struct, 47
sub2ind, 33, 34

subplot, 262
sum, 116–118, 176
surf, 241, 242
surfc, 243
surfl, 243
svd, 90
switch, 181

tan, 55
tanh, 57
text, 250, 251
tic, 306
title, 245
toc, 306
transpose, see matrix
trapz, 162
tril, 40
triu, 41

unidcdf, 223
unidpdf, 216
unidrnd, 205, 206
unifcdf, 222
unifpdf, 215
unifrnd, 207
unique, 152, 235

var, 105–107
variables

assigning, 274
assigning in base environment from func-

tion, 275
evaluating from base environment within func-

tion, 276
names, 286

variance, see var

vector
boolean operations on, 148, 149
containing all indentical entries, 18
containing all zeros, 17
counts of binned values in, 153
counts of discrete values in, 152
cumulative sum of elements of, 120
differences between consecutive elements of,

126
minimum of values of, 128
norm, 94
position of first occurance of minimum value

in, 135
reversing order of elements in, 26
size of, 139
sum of all elements, 116
truncating, 35

INDEX OF MATLAB COMMANDS AND CONCEPTS 47

warning, 308
waterfall, 243
which, 312
while, 179
who, 277
whos, 278–280

xlabel, 246–248

ylabel, 246, 247

zeros, 17, 19

INDEX OF R COMMANDS AND CONCEPTS 48

Index of R commands and concepts

*, 84
/, 82
:, 12, 13
;, 309
<-, 274
<<-, 275
=, 274
?, 1, 2
[[, 45
#, 291
%%, 59, 319
&, 175, 176
^, 50, 86

abs, 51, 70
acos, 56
acosh, 58
all, 177
any, 178
apply, 104, 106, 107, 130, 131
Arg, 71
array, 43
arrows, 252, 253
as.character, 300
as.numeric, 152
asin, 56
asinh, 58
atan, 56
atanh, 58
average, see mean

barplot, 233, 235
boolean tests

scalar, 175
vector, 176–178

break, 180
browser, 311

c, 6, 7
cbind, 24, 34
ceiling, 62
cellular automata animation, 267
chol, 92
choose, 68
class, 285
cloud, 240
coef, 163, 164, 166
colMeans, 100
colon, see :
colormap

building your own, 261

for image, 260
colSums, 117
column vector, 7
comments, 291
complex numbers, 69–74
Conj, 72
contour, 243
convolve, 154
cor, 111–115
cos, 55
cosh, 57
cov, 108–110
cubic splines, 168, 169, 171

natural, 167
periodic, 170

cummax, 125
cummin, 125
cumprod, 124
cumsum, 120–123
cumulative distribution functions

binomial, 218
continuous uniform on interval (a, b), 222
discrete uniform from 1..n, 223
exponential, 220
normal, 221
Poisson, 219

curve, 257

data.frame, 47
dbinom, 211
debugging, 311
dev.control, 264, 265, 267
dev.copy, 264, 265
dev.cur(), 226
dev.list, 227
dev.new, 224
dev.off, 228, 264–266
dev.set, 225
dexp, 213
diag, 21–23
diff, 126
differential equations, see lsoda

dim, 39, 138, 141
dir, 270
dir.create, 268
dmultinom, 217
dnorm, 214
dpois, 212
dunif, 215

INDEX OF R COMMANDS AND CONCEPTS 49

echelon form, see matrix
eig, 88
element-by-element matrix operations, see ma-

trix
else, 174
errbar, 237, 238
eval, 310
exp, 52
expand, 89
expand.grid, 243
expm, 119

file
reading data from, 273
running commands in, 271
text

reading data from, 272
saving data to, 273

filled.contour, 259
.First, 314
fix, 281
floor, 61
font size in plots, 248
for, 172
function

multi-variable
minimization, 159
minimization over first parameter only, 158
minimization over only some parameters,

160
single-variable

minimization, 157
user-written, 182

returning multiple values, 183

get, 276
globalenv, 276
graphics

not being displayed from scripts/functions,
263

Greek letters
in plot labels, 247

grid, 249

help, 1, 2
help.search, 5
help.start, 4
Hilbert, 42
hist, 153, 233, 234, 236

identity, see matrix
if, 173–175
ifelse, 127
Im, 74

image, 258, 267
indexing

matrix, 10
with a single index, 11

vector, 9
install.packages, 316
integrate, 161
inverse, see matrix

jpeg, 266

kappa, 97

.Last, 315

.Last.value, 287
lattice package, 243, 259, 263, 316
layout, 262
legend, 254
length, 35, 36, 139, 140
levelplot, 259, 263
library, 3, 316
lines, 255
lists, 44

extracting elements of, 45
lm, 163, 164, 166
log, 53
log10, 54
log2, 54
lower.tri, 41
ls, 277
ls.str, 278, 280
lsoda, 184–186

.Machine$double.eps, 302
match, 299
matplot, 256
matrix, 8

boolean operations on, 150, 151
changing shape of, 39
Cholesky factorization, 92
condition number, 96–98
containing all indentical entries, 20
containing all zeros, 19
converting row, column to single index, 33
converting single-index to row, column, 32
cumulative sums of all elements of, 123
cumulative sums of columns, 121
cumulative sums of rows, 122
diagonal, 22
echelon form, 79
eigenvalues and eigenvectors of, 88
equation

solving, 78
exponential of, 119

INDEX OF R COMMANDS AND CONCEPTS 50

extracting a column of, 27
extracting a rectangular piece of, 30
extracting a row of, 28
extracting specified rows and columns of, 31
“gluing” together, 24, 25
identity, 21
inverse, 80
lower-triangular portion of, 40
LU factorization, 89
minimum of values of, 129
minimum value of each column of, 130
minimum value of each row of, 131
modifying elements given lists of rows and

columns, 34
multiplication, 75

element-by-element, 76
N -dimensional, 43
norm, 95
powers of, 85
QR factorization, 93
rank, 87
re-shaping its elements into a vector, 29
Schur decomposition, 91
singular value decomposition, 90
size of, 136–138, 140, 141
sum

of all elements, 116
of columns of, 117
of rows of, 118

transpose, 77
upper-triangular portion of, 41

matrix, 8, 19, 20
max, see min

mean, 99
min, 128–131, 134
Mod, 70
modulo arithmetic, 59, 319
multiple statements on one line, 309

names, 46, 152
ncol, 137
next, 180
norm, 94, 95
nrow, 136

optim, 159, 160
optimization, 157–160
optimize, 157, 158
options

digits=, 289
order, 144–147
outer, 242

packages

installing, 316
loading, 316

par, 248
par

mfcol=, 262
mfrow=, 262

parse, 310
paste, 296, 297
pbinom, 218
pdf, 248, 264
perform some commands with probability p, 196
permutation of integers 1..n, 197
persp, 241, 242
pexp, 220
pie, 239
plot, 229–232

Greek letters in axis labels, 247
main=, 245
sub=, 245
xlab=, 246, 247
xlim=, 244
ylab=, 246, 247
ylim=, 244

pmin, 132, 133
pnorm, 64, 65, 221
points, 255
polynomial

least-squares fitted, 164–166
multiplication, 154
roots of, 155

polyreg, 165
polyroot, 155
postscript, 265
ppois, 219
print, 263, 292, 293
probability density functions

binomial, 211
continuous uniform on interval (a, b), 215
discrete uniform from 1..n, 216
exponential, 213
multinomial, 217
normal, 214
Poisson, 212

proc.time, 305, 306
punif, 222

q, 290
qnorm, 66, 67
qr, 87, 93
quartz, 224
quit, 290

rand, 194

INDEX OF R COMMANDS AND CONCEPTS 51

random values
Bernoulli, 193
binomial, 202
continuous uniform distribution on interval

(a, b), 190, 207
continuous uniform distribution on interval

(0,1), 187, 189
continuous uniform distribution on inteval

(0,1), 188
discrete uniform distribution from a..b, 195
discrete uniform distribution from 1..k, 192,

205, 206
discrete uniform distribution, 191
exponential, 204
k unique values sampled from integers 1..n,

198
multinomial, 209, 210
normal, 208
Poisson, 203
setting the seed, 201

rbind, 25
rbinom, 202
rcond, 96, 98
.RData, 314
Re, 73
read.table, 272, 273
readline, 295
rep, 17, 18
rev, 26
rexp, 204
rgb, 261
rm, 282–284
rmultinom, 209, 210
rnorm, 208
roots

of general single-variable function, 156
polynomial, 155

round, 60
row vector, 6
rowMeans, 101
rpois, 203
.Rprofile, 314
runif, 187–193, 195, 207

sample, 197–200, 205, 206
sampling values from a vector, 199, 200
scan, 294, 304
Schur, 91
sd, 102–104
seq, 14–16
set.seed, 201
setwd, 269
sign, 63

sin, 55
sinh, 57
solve, 78, 80, 81, 83
sort, 142, 143
source, 271
spline, 167, 168, 170
splines, see cubic splines
split.screen, 262
sprintf, 301
sqrt, 49
standard deviation, see sd

str, 279
string

concatenation, 296
converting number to, 300
substrings, 298

substr, 298
sum, 116, 118, 176
svd, 90
switch, 181
symbols, 243
Sys.sleep, 303

t, 77
table, 152, 235
tan, 55
tanh, 57
text, 250, 251
title, 245, 246
transpose, see matrix

uniroot, 156
upper.tri, 40

var, 105–107, 109
variables

assigning, 274
assigning in base environment from func-

tion, 275
evaluating from base environment within func-

tion, 276
names, 286

variance, see var

vector
boolean operations on, 148, 149
containing all indentical entries, 18
containing all zeros, 17
counts of binned values in, 153
counts of discrete values in, 152
cumulative sum of elements of, 120
differences between consecutive elements of,

126
minimum of values of, 128
norm, 94

INDEX OF R COMMANDS AND CONCEPTS 52

position of first occurance of minimum value
in, 135

reversing order of elements in, 26
size of, 139
sum of all elements, 116
truncating, 35

vector, 44

warning, 308
which, 149–151
which.max, see which.min

which.min, 135
while, 179
windows, 224
wireframe, 243
write, 273

x11, 224

