UML2015

Exercise set 1

Solutions to be presented in the 20.3.2015 session (The date has been changed from the previously mentioned one)

Exercise 1:

Understand and be able to explain the formula

$$\frac{\partial}{\partial A_{ij}} A_{nm} = \delta_{in} \delta_{jm},\tag{1}$$

where A is a matrix.

Advice: Compare to the formula $\frac{\partial}{\partial x_i} x_j = \delta_{ij}$ for vectors.

Exercise 2:

Suppose $t \mapsto A(t)$ and $t \mapsto B(t)$ are some differentiable mappings of form $\mathbb{R} \to \mathbb{R}^{N \times M}$ and $\mathbb{R} \to \mathbb{R}^{M \times K}$. So for each fixed $t \in \mathbb{R}$, A(t) and B(t) are some matrices. Let's define the derivatives of the matrices componentwisely, so that $\frac{dA(t)}{dt}$ and $\frac{dB(t)}{dt}$ are also matrices, defined by formulas

$$\left(\frac{dA(t)}{dt}\right)_{nm} := \frac{d}{dt}\left(A(t)_{nm}\right), \qquad \left(\frac{dB(t)}{dt}\right)_{mk} := \frac{d}{dt}\left(B(t)_{mk}\right). \tag{2}$$

Prove the formula

$$\frac{d}{dt}\Big(A(t)B(t)\Big) = \frac{dA(t)}{dt}B(t) + A(t)\frac{dB(t)}{dt}.$$
 (3)

Advice: You can assume that the formula

$$\frac{d}{dt}\Big(f(t)g(t)\Big) = f'(t)g(t) + f(t)g'(t) \tag{4}$$

is already known for real valued functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Notice that this is not the same thing as Equation (3), since (3) involves matrix multiplications.

Exercise 3:

Solve some useful formula for the partial derivative

$$\frac{\partial}{\partial A_{ij}} f(A), \tag{5}$$

when the function is defined by a formula

$$f(A) = \mathbf{v}^T A^T C A \mathbf{v} \tag{6}$$

where $\mathbf{v} \in \mathbb{R}^{N \times 1}$ is some constant vertical vector, $C \in \mathbb{R}^{N \times N}$ is some constant symmetric matrix.

Advice: One of the most primitive ways to obtain some result would be to first expand all matrix multiplications as

$$f(A) = \sum_{n,n',n'',n'''=1}^{N} v_n A_{n'n} C_{n'n''} A_{n''n'''} v_{n'''}, \tag{7}$$

and use the result from the first exercise, but this is not the most efficient way. We recommend you to contemplate on ways to avoid some unnecessary index work.

Exercise 4:

Solve simple formulas for partial derivatives

$$\frac{\partial}{\partial \operatorname{Re}(v_i)} f(\mathbf{v}) \quad \text{and} \quad \frac{\partial}{\partial \operatorname{Im}(v_i)} f(\mathbf{v})$$
 (8)

when a function $f: \mathbb{C}^N \to \mathbb{R}$ has been defined by a formula $f(\mathbf{v}) = \mathbf{v}^{\dagger}\mathbf{v}$. Here \mathbf{v} is a $N \times 1$ vertical vector with complex elements, and \mathbf{v}^{\dagger} is a $1 \times N$ conjugate transpose, whose elements are the complex conjugates of the elements of \mathbf{v} .

Advice: For a complex variable $z \in \mathbb{C}$ we denote its real and imaginary parts as Re(z) and Im(z), so that always z = Re(z) + i Im(z). Computing partial derivatives with respect to Re(z) and Im(z) works the same way as computing partial derivatives with respect to x_1 and x_2 with a two dimensional vector $\mathbf{x} \in \mathbb{R}^2$.

Exercise 5:

Assume that x_1 , y_1 and α are some known real constants, and define the sequences x_2, x_3, x_4, \ldots and y_2, y_3, y_4, \ldots by the formulas

$$x_{n+1} = \alpha x_n \quad \text{and} \quad y_{n+1} = \alpha y_n^2 \tag{9}$$

Solve formulas for x_n and y_n for arbitrary n = 1, 2, 3, ... in such form, that the formulas only involve x_1, y_1, α and n.

Advice: Solve first few terms with finite amount of work, and then "see" the pattern.

If $x_n \to 0$ holds, the convergence of x_1, x_2, x_3, \ldots is exponential, and if $y_n \to 0$ holds, the convergence of y_1, y_2, y_3, \ldots is faster than exponential.