
UML2015
Exercise set 6

Solutions to be presented in the 30.4.2015 session

Exercise 1:
The sum and product notations are

M∑
m=1

am = a1 + a2 + · · ·+ aM and
M∏
m=1

am = a1a2 · · · aM (1)

Suppose you want to sum up values f(a) where a = (a1, a2, . . . , aM) is a vector, and
each element am is supposed to run through all the values from the set {1, 2, . . . , D}
with some D ∈ N. We assume that the function has the form f : {1, 2, . . . , D}M →
R. In the sum the number of terms will be DM . According to Fubini’s Theorem
the sum can be written as an iterated sum:

∑
a∈{1,2,...,D}M

f(a) =
D∑

aM=1

(
· · ·
( D∑
a2=1

( D∑
a1=1

f(a)
))
· · ·
)

(2)

It is common to leave the parentheses out, and we can also define a notation

( M∏
m=1

D∑
am=1

)
f(a) =

D∑
aM=1

· · ·
D∑

a2=1

D∑
a1=1

f(a), (3)

which is justified since in the iterated sum it looks as if the sum signs are being
multiplied. The formula works for all f , and this can be emphasized by writing
the Fubini’s Theorem as ∑

a∈{1,2,...,D}M
=

M∏
m=1

D∑
am=1

(4)

1.1 Suppose we have M different functions fm : {1, 2, . . . , D} → R, and the f
has been defined by a formula

f(a) =
M∏
m=1

fm(am) (5)

Prove the formula( M∏
m=1

D∑
am=1

)( M∏
m′=1

fm′(am′)
)

=
M∏
m=1

( D∑
am=1

fm(am)
)

(6)
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1.2 Suppose we have functions fm : R→ R, and have then defined f : RM → R
as

f(x) =
M∏
m=1

fm(xm) (7)

In this context, explain the formulas∫
RM

dx =
M∏
m=1

∞∫
−∞

dxm (8)

and ( M∏
m=1

∞∫
−∞

dxm

)( M∏
m′=1

fm′(xm′)
)

=
M∏
m=1

( ∞∫
−∞

fm(xm)dxm

)
(9)

Exercise 2:
If A is a discrete random variable, its probabilities are often denoted as

P (A = a). If A instead is a continuous random variable, its probability density is
often denoted as pA(a). In both cases, the probability that A is in some set A is
often denoted as P (A ∈ A). However, we can also denote densities as p(A = a),
since this is only a matter notation. Also, we can denote probabilities with small
“p” as p(A ∈ A). If A is an N -dimensional random vector, its probability den-
sity (assuming the density exists and is continuous) can be written in terms of
probabilities as

p(A = a) = lim
ε→0

p(A ∈ a+ εA)

εNm(A)
(10)

where A is some small set (such as a ball) containing the origin and m(A) is its
N -dimensional measure (generalized length, area or volume). The notation a+εA
means the set {a+ εx|x ∈ A} (or equivalently {y|y−a

ε
∈ A}).

2.1 Assume that A is a continuous random variable (N -dimensional vector),
while B can be either continuous or discrete. We can define probability quantities
such as

p(A = a,B ∈ B) = lim
ε→0

p(A ∈ a+ εA, B ∈ B)

εNm(A)
(11)

which are probability density with respect to one variable, and probability with
respect to the other variable. Assume that the conditional probability formula

p(A ∈ A|B ∈ B) =
p(A ∈ A, B ∈ B)

p(B ∈ B)
(12)
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is known and prove the formula

p(A = a|B ∈ B) =
p(A = a,B ∈ B)

p(B ∈ B)
(13)

where the conditional density has been defined with a limit ε → 0 similarly as in
Equation (10).

2.2 Assume that B is a continuous random variable, while A can be either con-
tinuous or discrete. Singular conditions are defined without normalization factors:

p(A ∈ A|B = b) = lim
ε→0

p(A ∈ A|B ∈ b+ εB) (14)

where B is again some small set (such as a ball) containing the origin. Prove the
formula

p(A ∈ A|B = b) =
p(A ∈ A, B = b)

p(B = b)
. (15)

Advice: The essential is that you get the normalization factors right. The
point of the exercise is not to focus on convergence issues or real analysis.

2.3 Assume that A is a continuous random variable, and B a discrete random
variable, and that their distributions depend on some variable θ. Then suppose
some observations a and b are available. How would you define the log-likelihood
`(θ; a, b)? (There is no strictly correct answer to this, since there are at least
two possible definitions.) (In any case) Write the log-likelihood (also) so that
its formula does not involve quantities which are simultaneously probability and
probability density.

Exercise 3:
The EM-algorithm is a method to estimate parameters θ when you can only

observe a subgroup x of all the variables (x, s) in the model. In other words, given
the statistical model pX,S(x, s; θ) you want to estimate θ from the observations
x(1), . . . ,x(T ), while not having any observations s(1), . . . , s(T ) available. The si
in the vector s are called latent variables.

We denote as X(t) and S(t) the random variables (random vectors), and as
x(t) and s(t) some sample points. X and S are random matrices, whose columns
are the random vectors X(t) and S(t), while x and s are ordinary matrices, whose
columns contain the sample points.

If we were able to observe both x and s, our full log-likelihood would be

`full(θ;x, s) = log
(
pX,S(x, s; θ)

)
(16)

which we would maximize to find θ.
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Since s are not known now, one solution for this problem would be to integrate
out the latent variables to obtain pX(x; θ) and then to maximize the marginal
likelihood

`marg.(θ;x) = log
(
pX(x; θ)

)
= log

(∫
pX,S(x, s; θ)ds

)
(17)

in order to find θ. The EM-algorithm offers an alternative solution.
Assume that we have an initial estimate of θ available, call it θ0. Then we can

calculate a posterior

pS(s|X = x; θ0) =
pX,S(x, s; θ0)

pX(x; θ0)
(18)

Even though we don’t know the s precisely, we know something through this poste-
rior distribution. Next, we replace the full likelihood with an expected (estimated)
likelihood

`estim.(θ;x, θ0) =

∫
`full(θ;x, s)pS(s|X = x; θ0)ds (19)

This can be interpreted as an expectation value

`estim.(θ;x, θ0) = E
(
`full(θ;x,S)

)
(20)

if the expectation is defined with respect to the posterior distribution of S with
the condition X = x and the parameter θ0.

This is called the E-step in the EM-algorithm. Maximization of `estim.(θ;x, θ0),
which is called the M-step, yields then a new estimate θ1 for θ. We can then
proceed iteratively and use a new posterior pS(s|X = x, θ1) to obtain a new es-
timated log-likelihood and so on. The goal of this exercise is to show that the
EM-iteration described above leads to estimate sequence θ1, θ2, θ3, . . . with the
property `marg.(θk;x) ≤ `marg.(θk+1;x) for all k.

3.1 The estimate θk+1 is defined as a maximum of the mapping θ 7→ `estim.(θ;x, θk).
Explain why in particular `estim.(θk;x, θk) ≤ `estim.(θk+1;x, θk).

3.2 We assume that the data (x(1), s(1)), . . . , (x(T ), s(T )) is iid. This means
that with fixed indices t and t′ such that t 6= t′ the sample points (x(t), s(t)) and
(x(t′), s(t′)) are independent and from identical distributions. We don’t assume
that that x(t) and s(t) would be independent though. Use this iid assumption to
show that the estimated likelihood can be written as

`estim.(θ;x, θk)

=
T∑
t=1

∫
log
(
pX(t),S(t)(x(t), s(t); θ)

)
pS(t)(s(t)|X(t) = x(t); θk)ds(t)

(21)
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(
Or with simplified notation:

`estim.(θ;x, θk) =
T∑
t=1

∫
log
(
p(x(t), s(t); θ)

)
p(s(t)|x(t); θk)ds(t)

)
(22)

3.3 The Kullback-Leibler divergence of two functions is defined as

DKL(f, g) =

∫
log

(
f(x)

g(x)

)
f(x)dx (23)

Prove that

`estim.(θk+1;x, θk)− `estim.(θk;x, θk)

= −
T∑
t=1

DKL

(
pS(t)(·|x(t); θk), pS(t)(·|x(t), θk+1)

)
+ `marg.(θk+1;x)− `marg.(θk;x)

(24)

3.4 Use the known fact that the Kullback-Leibler divergence is always non-
negative to arrive at the conclusion:

`marg.(θ0|x) ≤ `marg.(θ1|x) ≤ `marg.(θ2|x) ≤ · · · (25)

Advice: Exercise 3.2 is related to Exercise 1, and it shouldn’t be possible to
accomplish the given task without using the knowledge that∫

p(s(t)|x(t); θk)ds(t) = 1 (26)

in intermediate steps. It is recommended that you also take a closer look at the
quantities p(s(t)|x; θk) and p(s(t)|x(t); θk). In 3.3 you must begin from the left
side of the equation, substitute the known formulas into estimated likelihoods,
and simplify the expression with properties of logarithm. Then use the definition
of conditional density p(x(t), s(t); θk) = p(s(t)|x(t); θk)p(x(t); θk) (and same for
θk+1) to proceed further.

Exercise 4:
In this exercise, we first set up a statistical model to do clustering and then

use the EM-algorithm to estimate the parameters in the model. This material is
treated in Section 12.7.

The random variables are X(1), . . . ,X(T ) and R(1), . . . , R(T ). We denote the
possible values by x(1), . . . ,x(T ) ∈ RN and r(1), . . . , r(T ) ∈ {1, 2, . . . , K}, where
K ∈ N is the number of clusters. The random variables (X(1), R(1)), (X(2), R(2)),

5



. . . , (X(T ), R(T )) are iid. This means that the variable (X(t), R(t)) is independent
from the variable (X(t′), R(t′)) when t 6= t′. Variables X(t) and R(t) are not
independent. X without t-index should be interpreted as an (N × T )-matrix and
R as a (1 × T )-vector. (Random matrix and random vector.) The probabilities
are given by

pX(t)

(
x(t)|R(t) = r(t); θ

)
=

1

(2π)N/2det(Cr(t))1/2
exp

(
− 1

2
(x(t)− µr(t))

TC−1r(t)(x(t)− µr(t))
) (27)

and
P
(
R(t) = r(t); θ

)
= πr(t). (28)

The parameter θ is a parameter containing the other parameters as
θ = (π1, . . . , πK ,µ1, . . . ,µK , C1, . . . , CK). Here πk ∈ R are numbers such that

πk ≥ 0 for all k, and
K∑
k=1

πk = 1, µk ∈ RN are vectors, and Ck ∈ RN×N are

covariance matrices (symmetric and positive definite). We also denote

p(X(t) = x(t), R(t) = r(t); θ)

= pX(t)

(
x(t)|R(t) = r(t); θ

)
P
(
R(t) = r(t); θ

)
=

πr(t)
(2π)N/2det(Cr(t))1/2

exp
(
− 1

2
(x(t)− µr(t))

TC−1r(t)(x(t)− µr(t))
) (29)

By the iid assumption we have

p
(
X = x, R = r; θ

)
=

T∏
t=1

p
(
X(t) = x(t), R(t) = r(t); θ

)
(30)

The locations of the sample points x are known observations, while the cluster
indices r are unknown latent variables (like s in the previous exercise). Next, our
goal is to estimate θ using the observations x.

4.1 Given data (x(1) . . .x(T )) and (r(1) . . . r(T )) write a formula for the full
log-likelihood `full(θ;x, r).

4.2 Show that the posterior p(R(t) = k|X(t) = x(t); θ) is given by

p(R(t) = k|X(t) = x(t); θ)

=

πk√
det(Ck)

exp
(
− 1

2
(x(t)− µk)

TC−1k (x(t)− µk)
)

K∑
k′=1

πk′√
det(Ck′ )

exp
(
− 1

2
(x(t)− µk′)

TC−1k′ (x(t)− µk′)
) (31)
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Advice: In a sense we only need the definition of a conditional probability,
but this might be a good point to recall the point of exercise 2.2 and Equation
(15).

4.3 Given an estimate θi, find a formula for the estimated log-likelihood
`estim.(θ;x, θi).

Advice: Recall the definition of the estimated log-likelihood from the exercise
3, and replace the old parameter s with r. To find the correct modification to the
old integral

∫
ds, recall summing notation from the exercise 1. A recommended

possibility is that first the parameter r goes through all of its values when it is
summed out, and that means in total KT different terms. Then, the expression can
be simplified by summing away some part. Alternatively, you can attempt to skip
to a simplified result by using a result from the exercise 3. The answer will involve
the expression p(R(t) = r(t)|X(t) = x(t); θi). Into this do not substitute the
known formula, because it turns out that its details are not immediately needed.

4.4 Calculate the gradients ∇µk
`estim.(θ;x; θi) and ∇Ck

`estim.(θ;x; θi). Set the
gradients to zero and obtain the following EM-update rules for µk and Ck, k =
1, . . . , K:

µk(i+ 1) =

T∑
t=1

P (R(t) = k|X(t) = x(t); θi)x(t)

T∑
t′=1

P (R(t′) = k|X(t′) = x(t′); θi)

(32)

Ck(i+ 1) =

T∑
t=1

P (R(t) = k|X(t) = x(t); θi)(x(t)− µk(i+ 1))(x(t)− µk(i+ 1))T

T∑
t′=1

P (R(t′) = k|X(t′) = x(t′); θi)

(33)
Advice: Notice that you must compute gradients with respect to quantities

that are found in the parameter θ, while the quantities in the parameter θi are
constants during this procedure. The results obtained in Set 3 (10.4.2015) Ex 1
and 2 (and possibly 3) can be reused here. Some Kronecker deltas between k and
r(t) might turn out useful too.

4.5 The optimization of `estim.(θ;x, θi) with respect to the distribution of R,
i.e. the weights πk, is trickier because it is a constrained optimization problem:
πk ≥ 0 and

∑K
k=1 πk = 1. There is a trick to convert the constrained optimization

problem into an unconstrained one: Write πk as

πk =
exp(γk)∑K
k′=1 exp(γk′)

, (34)

where γk ∈ R. First, verify that the trick works, i.e. that πk as defined above
satisfies the constraints for all γi. Then, find the derivative ∂γk`estim.(θ;x, θi), and
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set it to zero to find the EM-update rule for πk:

πk(i+ 1) =
1

T

T∑
t=1

P (R(t) = k|X(t) = x(t); θi) (35)
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