
UML2015
Solutions and other comments

to some exercises from sets 1, 2 and 3

Set 1 Exercise 2:
The given task was simple, but also notice that induction implies the formula

d

dt

(
A(t)B(t) · · ·Y (t)Z(t)

)
=
dA(t)

dt
B(t) · · ·Y (t)Z(t)

+ A(t)
dB(t)

dt
· · ·Y (t)Z(t)

+ · · ·+

+ A(t)B(t) · · · dY (t)

dt
Z(t)

+ A(t)B(t) · · ·Y (t)
dZ(t)

dt

(1)

(this symbolizes an arbitrary number of matrices, not the precise amount letters
in our alphabet. . . ) Simply write the product as

A(t)
(
B(t) · · ·Y (t)Z(t)

)
(2)

and assume the result known for a smaller amount of matrices.
Also notice that the same idea will work when computing a partial derivative

∂
∂Aij

. For example, suppose we want to compute ∂f(A)
∂Aij

for some f . Fix matrix A

and indices i, j, denote A(0) = A, and then define A(t) for all t with formula{
A(t)i′j′ = Ai′j′ (i′, j′) 6= (i, j)
A(t)i′j′ = Aij + t (i′, j′) = (i, j)

(3)

Now we have
df(A(t))

dt

∣∣∣
t=0

=
∂f(A)

∂Aij
(4)

and we can use the product rule of differentiation if needed.

Set 1 Exercise 3:

∂f(A)

∂Aij
=

d

dAij
(vTATCAv) = vT

dAT

dAij
CAv + vTATC

dA

dAij
v

= vj(CAv)i + (vTATC)ivj

= 2(CAv)ivj

(5)
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The result can also be written in the form

∇Af(A) = 2CAvvT (6)

since (2CAvvT )ij = 2(CAv)ivj.

Set 1 Exercise 5:
The answers are

xn = αn−1x1 and yn = α2n−1−1y2n−1

1 (7)

xn → 0 obviously holds iff |α| < 1
yn → 0 is slightly more complicated. We can write yn = 1

α
(αy1)2n−1

, and now
we see that yn → 0 holds iff |αy1| < 1. Hence the value of α alone does not
determine the convergence, but the starting point y1 plays a role too.

Set 2 Exercise 1:
1.1

f1(x, y) = (x2 − y)2 ∂f1(x, y)

∂x
= 4(x2 − y)x (8)

xn+1 = xn − 4µ(x2
n − y)xn (9)

We substitute xn =
√
y + εn

√
y + εn+1 =

√
y + εn − 4µ

(
(
√
y + εn)2 − y)(

√
y + εn)

=⇒ εn+1 = (1− 8µy)εn +O(ε2
n)

(10)

We see that εn+1 ≈ (1−8µy)εn holds with small εn, so we can decide (avoiding
all rigor) that the convergence is exponential if 0 < |1− 8µy| < 1.

1.2

f2(x, y) = x2 − y ∂f2(x, y)

∂x
= 2x (11)

xn+1 = xn −
x2
n − y
2xn

(12)

We substitute xn =
√
y + εn

√
y + εn+1 =

√
y + εn −

(
√
y + εn)2 − y

2(
√
y + εn)

=⇒ εn+1 =
1

2
√
y
ε2
n +O(ε3

n)

(13)
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We see that εn+1 ≈ 1
2
√
y
ε2
n holds with small εn, so we can decide that the

convergence is faster than exponential.
If we set µ = 1

8y
in 1.1, we can make it faster than exponential too.

Set 2 Exercise 2:
2.1
We fix index i, then use the definition of the partial derivative (Equation (4)

in the exercise sheet), and then use the given assumption (Equation (5) in the
exercise sheet) with a vector h = ei.

∂J(x)

∂xi
= lim

ε→0

=J(x)+εv·ei+o(ε)︷ ︸︸ ︷
J(x + εei) −J(x)

ε
= lim

ε→0

(
v · ei + o(1)

)
= vi (14)

Hence ∇J(x) = v.
2.2
We fix indices i, j, then use the definition of the partial derivative (Equation

(6) in the exercise sheet), and then use the given assumption (Equation (7) in the
exercise sheet) with vectors h = ei and w = ej.

∂J(A)

∂Aij
= lim

ε→0

=J(A)+εeTi Bej+o(ε)︷ ︸︸ ︷
J(A+ εeie

T
j ) −J(A)

ε
= lim

ε→0

(
eTi Bej + o(1)

)
= Bij (15)

Hence ∇f(A) = B.
2.3

A =

 A11 · · · A1N
...

...
AN1 · · · ANN

 , B =

 B11 · · · B1N
...

...
BN1 · · · BNN

 (16)

x =

 x1
...

xN2

 , y =

 y1
...
yN2

 , (17)

A =


x1 · · · xN
xN+1 · · · x2N

...
...

xN2−N · · · xN2

 , B =


y1 · · · yN
yN+1 · · · y2N

...
...

yN2−N · · · yN2

 (18)

The requested result comes with simple calculation:
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Tr(BTA) =
∗

N∑
n=1

(BTA)nn =
∗∗

N∑
n,n′=1

Bn′nAn′n =
∗∗∗

N2∑
k=1

ykxk = yTx (19)

In step * we use the definition of trace. In step ** we use the definition of
the matrix multiplication and the transpose, and then write the two sums over
indices n and n′ as a one sum over the index pair (n, n′). In the critical step ***
we recognize that in the sum the index pair (n, n′) goes through the all N2 values
from the set {1, 2, . . . , N} × {1, 2, . . . , N}, and therefore the sum must result in
the same value as the sum over all N2 products ykxk. Here it is obvious that it
doesn’t matter which way the matrix elements have been ordered into the vector
form, because the sum goes over all the same elements anyway. It is important
though that the elements have been ordered in the same way in both A and B.

2.4
First we have a function J : RN×N → R. We can define a new function

f : RN2 → R which produces the same values once the input parameters have
been identified with some ordering. In other words J(A) = f(x) when A ∼ x in
the same spirit as above in 2.3. Let W be a fixed N × N matrix. We choose a
vector w so that W ∼ w in the same way as A ∼ x. From vector calculus we
know

f(x + εw) = f(x) + εw · ∇f(x) + o(ε). (20)

Next we need to justify that also ∇J(A) ∼ ∇f(x). Then, by the previous exercise,
we have

w · ∇f(x) = Tr(W T∇J(A)) (21)

and the claimed result

J(A+ εW ) = J(A) + εTr(W T∇J(A)) + o(ε) (22)

is done. Justifying ∇J(A) ∼ ∇f(x) is clear, because in the definition of the partial
derivatives, a matrix eie

T
j with some 1 ≤ i, j,≤ N is equivalent with a vector ek

with some 1 ≤ k ≤ N2. The elements of ∇J(A) become ordered into a vector
∇f(x) just like the elements of A are ordered into a vector x.

If we substitute W = hwT , we get

Tr(W T∇J(A)) = Tr(whT∇J(A)) = Tr(hT∇J(A)w) = hT∇J(A)w (23)

so the previous results are compatible with each other.
Some lessons to consider: The point is that an N ×K matrix can always

be seen as an NK component vector, in other words as an NK × 1 matrix. This
alone looks simple, but the implications are not necessarily obvious to all at first
sight. For example, suppose we want to find some complex matrix A ∈ CN×N .
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Then suppose that we have succeeded in defining a twice differentiable function
f : CN×N → R such that the seeked A is its maximum. Then we define a sequence
of complex matrices (A(k))k=0,1,2,... by the recursion formulas

Re(A(k + 1)nn′) = Re(A(k)nn′) + µ
∂f(A(k))

∂Re(Ann′)

Im(A(k + 1)nn′) = Im(A(k)nn′) + µ
∂f(A(k))

∂Im(Ann′)

(24)

In the end the complex matrix is an N2 × 1 complex vector, and that in turn
is a 2N2 × 1 real vector, so the graph of the function f near the maximum is
roughly a paraboloid in 2N2 + 1 dimensions. Since it is a paraboloid, with proper
µ the matrix sequence will convergence to A. Hence, even complex matrices can
be computed like this.

Set 2 Exercise 4:
4.2
We must prove AU = UΛ, when the columns of U are linearly independent

eigenvectors of A, i.e. U∗i = ui, Uji = (ui)j and Aui = λiui, and Λ is a diagonal
matrix with diagonal elements Λii = λi.

The formula AU = UΛ is so obvious that it can be justified in many roughly
equivalent ways, and there is no one right solution. We go through a reasonably
detailed proof next, and first ask that how do we prove

(AU)∗i = A(U∗i)? (25)

Here (AU)∗i means that we first multiply two matrices, and then take a restriction
to the column i. The notation A(U∗i) instead means that we first form a vector
U∗i by a restriction to one column of U , and then apply the multiplication of a
matrix and a vector. Two vectors are the same if their elements are the same, so
we examine the j:th element of left and right side separately. The left side is

(AU)ji =
n∑
k=1

AjkUki (26)

by the definition of multiplication of two matrices, and the right side is

(
A(U∗i)

)
j

=
N∑
k=1

Ajk
(
U∗i
)
k

=
n∑
k=1

AjkUki (27)

by the definition of multiplication of matrix and a vector. The left and right side
had the same elements, so (AU)∗i = A(U∗i) is right. Then

(AU)∗i = A(U∗i) = Aui = λiui = ΛiiU∗i (28)
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=⇒ (AU)ji = ΛiiUji (29)

From the other direction

(UΛ)ji =
n∑
k=1

Ujk Λki︸︷︷︸
=δkiΛii

= UjiΛii (30)

The elements of the matrices AU and UΛ are the same, so the matrices are the
same.

4.3 (half) We know AU = UΛ, and we denote V = (U−1)T . The formula

A = UΛV T (31)

is obtained by simply multiplying the both sides of AU = UΛ with V T from right,
and using UV T = id. The the columns of V are denoted as vi, i.e. V∗i = vi and
Vji = (vi)j, and we are asked to prove

A =
n∑
i=1

λiuiv
T
i . (32)

We examine an arbitrary element Ajk by using the formula A = UΛV T .

Ajk = (UΛV T )jk =
n∑

i,i′=1

Uji Λii′︸︷︷︸
=δii′Λii

(V T )i′k =
n∑
i=1

UjiΛiiVki

=
n∑
i=1

λi(ui)j(vi)k =
n∑
i=1

λi
(
uiv

T
j

)
jk

=
( n∑
i=1

λiuiv
T
j

)
jk

(33)

The following lemma should be proven separately, if not known in advance.
Suppose x,y ∈ Rn are some vectors. How do you prove xjyk = (xyT )jk? This
should be seen as a consequence of the matrix multiplication. x can be seen as an
n× 1 matrix, and yT as a 1× n matrix, so their multiplication is

(xyT )jk =
1∑
`=1

xj`(y
T )`k = xj,1(yT )1,k = xj,1yk,1. (34)

Then we denote xj,1 = xj and yk,1 = yk.

Set 3 Exercise 1:
1.3
g = f ◦ I, so by the ordinary chain rule:

∂g(A)

∂Aij
=

N∑
n,n′=1

∂f(I(A))

∂Inn′

∂Inn′(A)

∂Aij
(35)
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From 1.2 we know
∂Inn′(A)

∂Aij
= −(A−1)ni(A

−1)jn′ (36)

By substituting this, we get a formula which only involves the gradient of f and
the matrix A−1, which we can assume to be available. The end result can also be
written as

∇g(A) = −(A−1)T∇f(A−1)(A−1)T (37)

With this kind of results always check that the result simplifies to a known result
in the special case N = 1. If f : R→ R is some differentiable function,

d

da
f
(1

a

)
= − 1

a2
f ′
(1

a

)
(38)

looks right. Some confusion can arise from the problem that it is perhaps not
obvious if we should denote the partial derivatives of f as

∂f

∂Inm
,

∂f

∂Anm
, or

∂f

∂(A−1)nm
. (39)

These are all supposed to be notation for the same functions (assuming we know
what we are doing). A standard convention is that the partial derivative is written
with respect to that variable which we “usually” substitute into f , or which we
used in some “original” definition of f .

Set 3 Exercise 2:
2.2
The calculation required the following trick:

∂

∂Wij

(vTnWun) =
( ∂

∂Wij

vTn

)
Wun︸ ︷︷ ︸
=λnun

+vTn

( ∂

∂Wij

W︸ ︷︷ ︸
=eieTj

)
un + vTnW︸ ︷︷ ︸

=λnvT
n

( ∂

∂Wij

un

)

= λn

(( ∂

∂Wij

vTn

)
un + vTn

( ∂

∂Wij

un

)
︸ ︷︷ ︸

= ∂
∂Wij

(vT
nun)=0

)
+ (vn)i(un)j

= (vnu
T
n )ij

(40)

Set 3 Exercise 3:
3.1

`(µ,Σ) = −K
2

log
(
det(Σ)

)
− 1

2

K∑
k=1

(xk − µ)TΣ−1(xk − µ) + const. (41)
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3.2

∂`

∂µn
= −1

2

K∑
k=1

(( ∂

∂µn
(xk − µ)T

)
Σ−1(xk − µ) + (xk − µ)TΣ−1

( ∂

∂µn
(xk − µ)

))
= −1

2

K∑
k=1

(
− (Σ−1)n∗(xk − µ)− (xk − µ)T (Σ−1)∗n

)
=

K∑
k=1

(
Σ−1(xk − µ)

)
n

=
(

Σ−1
( K∑
k=1

xk −Kµ
))

n

(42)

∇µ` = Σ−1
( K∑
k=1

xk −Kµ
)

(43)

∂`

∂Σnn′
= −K

2
(Σ−1)nn′ −

1

2

K∑
k=1

(xk − µ)T (−1)(Σ−1)∗n(Σ−1)n′∗(xk − µ)︸ ︷︷ ︸
=−
(

Σ−1(xk−µ)
)
n∗

(
(xk−µ)T Σ−1

)
∗n′

= −K
2

(Σ−1)nn′ +
1

2

(
Σ−1

( K∑
k=1

(xk − µ)(xk − µ)T
)

Σ−1
)
nn′

(44)

∇Σ` = −K
2

Σ−1 +
1

2
Σ−1

( K∑
k=1

(xk − µ)(xk − µ)T
)

Σ−1 (45)

Set 3 Exercise 4:
4.1
The function J(w) essentially involves the sum of squared elements of the

N ×K matrix X − X̂, and therefore it can be written as

J(w) =
1

K
Tr
(
(XT − X̂T )(X − X̂)

)
(46)

X̂ = wZ and Z = wTX, so X̂ = wwTX, and then X − X̂ = (id −wwT )X.
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By using the properties of trace and wTw = 1, we get

J(w) =
1

K
Tr
(
XT (id−wwT )(id−wwT )︸ ︷︷ ︸

=id−wwT

X
)

=
1

K
Tr
(
(id−wwT )XXT

)
=

1

K
Tr(XXT )− 1

K
wTXXTw

(47)

4.2
One possibility:
We are interested in maximizing

λ1m1 + · · ·+ λNmN (48)

with respect to (m1, . . . ,mN) under the constraints 0 ≤ mn for all 1 ≤ n ≤ N and
m1 + · · ·+mN = 1. By substituting m1 = 1−m2 − · · · −mN we can equivalently
study maximizing

λ1 + (λ2 − λ1)m2 + · · · (λN − λ1)mN (49)

with respect to (m2, . . . ,mN) under the constraints 0 ≤ mn for all 2 ≤ n ≤ N and
m2 + · · · + mN ≤ 1. We see that the point (m2, . . . ,mN) = (0, . . . , 0) is in the
allowed domain, and there the objective quantity assumes the value λ1. On the
other hand (λn − λ1)mn ≤ 0 for all 2 ≤ n ≤ N , and therefore it is not possible
for the objective quantity to assume values greater than λ1. Also, if mn 6= 0 with
some 2 ≤ n ≤ N , then the objective quantity necessarily assumes a value less than
λ1.

Second possibility:
We want to prove that

λ1m1 + · · ·+ λNmN < λ1 (50)

holds if (m1,m2, . . . ,mN) 6= (1, 0, . . . , 0) (under the other assumptions mentioned
in the exercise sheet). So we assume m1 6= 0. Then

m2

1−m1

+ · · ·+ mN

1−m1

= 1 (51)

We can make an induction assumption that the result is already known with N−1
coefficients. Therefore we know that necessarily

λ2m2

1−m1

+ · · ·+ λNmN

1−m1

≤ λ2 (52)
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On the other hand λ2 < λ1, so we now know

λ2m2

1−m1

+ · · ·+ λNmN

1−m1

< λ1

=⇒ λ2m2 + · · ·+ λNmN < (1−m1)λ1

=⇒ λ1m1 + · · ·+ λNmN < λ1

(53)

4.3
We assume that A has the size N ×N . Then let U be a matrix whose columns

U∗n are independent eigenvectors of A, ordered so that the largest eigenvalues λn
correspond to smallest n. We relate vectors w and v by relation w = Uv (and
v = UTw). ‖w‖ = ‖v‖ because U is orthogonal.

wTAw = vTUTAUv =
N∑
n=1

λnv
2
n (54)

From the previous exercise we know that this will be maximized with respect
to v by the choice (v2

1, v
2
2, . . . , v

2
N) = (1, 0 . . . , 0) under the constraint ‖v‖ = 1.

In other words v1 = ±1. Then w = Uv = ±U∗1, so we see that w must be an
eigenvector corresponding to the largest eigenvalue.

10


