
UML2015
Solutions and other comments

to some exercises from sets 4 and 6

Set 4 Exercise 1:
1.1

E(Y1Y2) ≈ 1

K

K∑
k=1

(y1)k(y2)k =
1

K
y1 · y2 (1)

Assume thatA is some real random variable, and then assume that (A1, A2, . . . , AK)
is iid each Ak having the same distribution as A. If (a1, a2, . . . , aK) is a sample
draw, an approximation

E(A) ≈ 1

K

K∑
k=1

ak (2)

holds. This is true for all random variables for which the mean exist, and in
particular for A = Y1Y2 too.

If Y1 and Y2 are uncorrelated, then E(Y1Y2) = 0. This will not imply that that
the vectors y1 and y2 would be orthogonal, but since it does imply 1

K
y1 · y2 ≈ 0,

we can say that the vectors are approximately orthogonal in this sense. The point
of the exercise is to understand that theoretical uncorrelatedness of Y1 and Y2

implies approximate orthogonality for y1 and y2.
1.2

1

K
XX

T
=

1

K
(UTX)(XTU) = UT

( 1

K
XXT

)
U︸ ︷︷ ︸

=UΛ

= UTU︸ ︷︷ ︸
=id

Λ = Λ (3)

where Λ is an M ×M diagonal matrix containing the most significant eigenvalues
of 1

K
XXT on its diagonal.

=⇒ Xm∗ ·Xm′∗ = (XX
T

)mm′ = 0 ∀m 6= m′ (4)

Here we used the knowledge that eigenvectors (here U∗m) of a symmetric matrix
(here 1

K
XXT ) can always be assumed to be orthogonal. Notice that we did not

assume that U would have fully diagonalized the 1
K
XXT (which is N ×N). The

calculation works under the assumption that some of the eigenvectors were placed
into the rows of U .

A little mistake: Eigenvectors of a symmetric matrix are always orthogonal
if the corresponding eigenvalues are distinct. The eigenvectors are not necessarily
orthogonal, if some of the eigenvalues appear multiple times (some eigenvalues
have degree greater than 1). The eigenvectors are never unique, and even if some
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eigenvalues appear multiple times, the eigenvectors can be chosen so that they are
orthogonal. In this exercise, it was not mentioned that the eigenvalues of 1

K
XXT

would be distinct, and also it was not mentioned that the columns of U would
be assumed orthogonal. This can be seen as a mistake in the exercise, and it
should have been clarified that the columns are assumed to be orthogonal so that
UTU = id.

If X was a real data sample, it would be extremely unlikely that some of the
eigenvalues of 1

K
XXT would be the same, so in this sense the mistake was very

small.

Further comments to the explanation request in 1.1. If X was a zero mean
N × 1 random vector, whose elements X1, . . . , XN were not uncorrelated, it would
be nice, if we could find a matrix U with orthogonal columns such that a new
random vector X = UTX did have uncorrelated elements so that E(XmXm′) = 0
for all m 6= m′. It is not possible to find this kind of U based on any N × K
sample X due to the randomness of the sample points. However, we learned that
it is possible to find U such that the rows of UTX were precisely orthogonal. In
doing this, we found U such that the elements of X = UTX are approximately
uncorrelated so that E(XmXm′) ≈ 0 for all m 6= m′. So the relationship of
uncorrelatedness and orthogonality works in this direction too.

Set 4 Exercise 2:
2.1 This exercise deals with basics of linear algebra. We assume that A is a real

N ×M matrix and M < N , and that the columns of A are linearly independent.
The given task is to prove that AAT has M positive eigenvalues, and zero appears
as the eigenvalues N −M times. The trick to this is that we don’t attempt to
solve the non-zero eigenvalues, and also don’t solve any eigenvectors either, but we
seek to prove that dim(ker(AAT )) = N−M , which will be sufficient to accomplish
the given task. Notice the obvious: x ∈ ker(AAT ) is equivalent with AATx = 0,
which is equivalent with AATx = λx for λ = 0. Hence the kernel contains the
eigenvectors corresponding to the eigenvalue zero and nothing else (ignoring the
origin). By considering the diagonalization of AAT we see that the order of the
eigenvalue zero (how many times it appears on the diagonal after diagonalization)
is the same as the dimension of the kernel.

First we seek to prove that

ker(AAT ) = ker(AT ) (5)

One possibility to (5): First we prove that ker(A) = {0}. So we want to
prove

Ay = 0 ⇐⇒ y = 0. (6)
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Notice that Ay is the same thing as
M∑
m=1

A∗mym, which is a linear combination of

the columns of A with real coefficients ym. By definition of the linear indepen-
dence, this kind of linear combination cannot be zero with non-zero coefficients,
so ker(A) = {0} is clear. Now we know that

(AAT )x = 0 ⇐⇒ A(ATx) = 0 ⇐⇒ ATx = 0. (7)

which is the same thing as (5).
Second possibility to (5): The direction

AATx = 0 ⇐= ATx = 0 (8)

is obvious, so it sufficies to prove the other direction. We assume AATx = 0. Then
also 0 = xT (AATx) = (xTA)(ATx) = ‖ATx‖2, which implies ATx = 0.

Once (5) has been proven, we seek to prove

dim ker(AT ) = N −M (9)

next. By the rank-nullity theorem equation

N = dim im(AT ) + dim ker(AT ) (10)

holds. Therefore it will be sufficient to prove

dim im(AT ) = M. (11)

We make an anti-thesis that dim im(AT ) < M would hold. Another basic result is
that if V ⊂ RM is some vector space, V +V ⊥ = RM holds where V ⊥ is the orthog-
onal complement of V , and the sum of the dimensions of V and V ⊥ equals the M .
The anti-thesis dim im(AT ) < M will then imply that the orthogonal complement
of the image must have a dimension greater than or equal to 1: dim(im(AT ))⊥ ≥ 1.
This implies that in particular (im(AT ))⊥ 6= {0}, and at least one non-zero vector
x ∈ (im(AT ))⊥ can be found. In other words, the anti-thesis implies that there
exists a vector x ∈ RM \ {0} with the property, that it is orthogonal to all vectors
in the im(AT ). Then, in particular it will be orthogonal to the columns of AT

(which belong to the image), and

0 = x · (AT )∗n ∀1 ≤ n ≤ N =⇒ 0 = xTAT =⇒ 0 = Ax (12)

and this contradicts the assumption that the columns ofA are linearly independent.
We have now proven both equations (5) and (9), and together they imply

dim ker(AAT ) = N −M. (13)
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This in turn implies that the matrix AAT has M non-zero eigenvalues. The ex-
ercise requested a proof for a claim that AAT has M positive eigenvalues. To
accomplish this, we must prove that negative eigenvalues cannot exists. Assume
x is a normalized eigenvector of AAT with an eigenvalue λ. Then

λ = λ‖x‖2 = xT (λx) = xTAATx = ‖ATx‖2 ≥ 0, (14)

so we see that the eigenvalues of AAT can never be negative.

2.2 The answer is 2N .

2.3
A = A(ATA)−

1
2 (15)

A
T
A =

(
(ATA)−

1
2AT

)(
A(ATA)−

1
2

)
= (ATA)−

1
2 ATA(ATA)−

1
2︸ ︷︷ ︸

=(ATA)
1
2

= id (16)

Set 6 Exercise 1:
1.1: We first check the case M = 2.

( 2∏
m=1

D∑
am=1

)( 2∏
m′=1

fm′(am′)
)

=
D∑

a2=1

D∑
a1=1

(
f1(a1)f2(a2)

)
=

D∑
a2=1

( D∑
a1=1

(
f1(a1)f2(a2)

))
=

D∑
a2=1

(
f2(a2)

D∑
a1=1

f1(a1)
)

=
( D∑
a1=1

f1(a1)
)( D∑

a2=1

f2(a2)
)

=
2∏

m=1

( D∑
am=1

fm(am)
)

(17)

We write the sum as an iterated sum so that the sum over a1 is inside, and sum
over a2 is outside. In the inner sum we see that f2(a2) is a constant with respect
to the sum over a1, and hence it can be taken in front of the sum. Then the entire

sum
D∑

a1=1

f1(a1) is a constant with respect to the outer sum over a2, and hence this

can be taken in front as a constant too.
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For arbitrary M the result can be proven with an induction step.

( M∏
m=1

D∑
am=1

)( M∏
m′=1

fm′(am′)
)

=
D∑

aM=1

· · ·
D∑

a1=1

(
f1(a1) · · · fM(aM)

)
=

D∑
aM=1

· · ·
D∑

a2=1

( D∑
a1=1

(
f1(a1)f2(a2) · · · fM(aM)

))
=

D∑
aM=1

· · ·
D∑

a2=1

(
f2(a2) · · · fM(aM)

D∑
a1=1

f1(a1)
)

=
( D∑
a1=1

f1(a1)
)( D∑

aM=1

· · ·
D∑

a2=1

f2(a2) · · · fM(aM)
)

=
( D∑
a1=1

f1(a1)
)(( M∏

m=2

D∑
am=1

)( M∏
m′=2

fm′(am′)
))

=
( D∑
a1=1

f1(a1)
)( M∏

m=2

( D∑
am=1

fm(am)
))

=
M∏
m=1

( D∑
am=1

fm(am)
)

(18)

We write the sum as an iterated sum, placing the sum with respect to a1 inside.
Then f2(a2) · · · fM(aM) is a constant with respect to the sum, and can be taken in

front. Then the sum
D∑

a1=1

f1(a1) is a constant with respect to all other sums, so it

can be taken in front too. Then we use the induction assumption, that the result
is known for M − 1 dimensional sum, and finally compose the product into one
product over m.

Set 6 Exercise 2:
2.3: The obvious answer is

`(θ; a, b) = log
(
p(A = a,B = b; θ)

)
(19)

where the p(A = a,B = b; θ) is probability density with respect to a, and
probability with respect to b. To the second request the intended answer is

`(θ; a, b) = log
(
pA(a|B = b; θ)

)
+ log

(
P (B = b; θ)

)
(20)

Here pA(a|B = b; θ) is probability density, and P (B = b; θ) is probability, so
there are no mixed probability quantities present.
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Set 6 Exercise 4:
4.1 The answer is:

`full(θ;x, r) = −1

2

T∑
t=1

(
log det Cr(t) + (x(t)− µr(t))

TC−1
r(t)(x(t)− µr(t))

)
+

T∑
t=1

log πr(t) + const.

(21)

4.3

`estim.(θ;x, θi) =
∑

r∈{1,2,...,K}T
`full(θ;x, r)p(R = r|X = x; θi)

=
T∑
t=1

∑
r∈{1,2,...,K}T

log
(
p(x(t), r(t); θ)

)
p(R = r|X = x; θi)

=
T∑
t=1

( T∏
t′=1

K∑
r(t′)=1

)
log
(
p(x(t), r(t); θ)

)( T∏
t′′=1

p(r(t′′)|x(t′′); θi)
)

=
T∑
t=1

( K∑
r(t)=1

log
(
p(x(t), r(t); θ)

)
p(r(t)|x(t); θi)

)
( T∏
t′′=1
t′′ 6=t

( K∑
r(t′′)=1

p(r(t′′)|x(t′′); θi)︸ ︷︷ ︸
=1

))

=
T∑
t=1

K∑
r(t)=1

log
(
p(x(t), r(t); θ)

)
p(r(t)|x(t); θi)

(22)

First we write the definition of the estimated log-likelihood, which is otherwise
the same as definition in Equation (19) in the original exercise sheet, except that
the integral over s has been replaced with a sum over r. In the sum r goes over all
possible vectors r = (r(1), r(2), . . . , r(T )), where each r(t) can obtain values from
the set {1, 2, . . . , K}. The total amount of terms in this sum is KT . We don’t
immediately substitute the full formula of `full, because it would make the equations
unnecessarily complicated. Instead we only substitute the iid assumption, and take
the product out of the logarithm, making it a sum. Then the order of sums can
be changed. Then we use the iid assumption to p(R = r|X = x; θi) and denote
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the sum over r in the same way as in the first exercise of set 6. Then with fixed t
the product is arranged like(

log
(
p(x(t), r(t); θ)

)
p(r(t)|x(t); θi)

)( T∏
t′′=1
t′′ 6=t

p(r(t′′)|x(t′′); θi)
)

(23)

and the result from first exercise is used to change the order of sums and products.
In the end we can substitute the known formula for log(p(x(t), r(t); θ)) and get

`estim.(θ;x, θi) =
T∑
t=1

K∑
r(t)=1

(
− 1

2
log det Cr(t) −

1

2
(x(t)− µr(t))

TC−1
r(t)(x(t)− µr(t))

+ log πr(t)

)
p(r(t)|x(t); θi) + const.

(24)

This is precisely the same thing as

`estim.(θ;x, θi) =
T∑
t=1

K∑
k=1

(
− 1

2
log det Ck −

1

2
(x(t)− µk)

TC−1
k (x(t)− µk)

+ log πk

)
p(R(t) = k|x(t); θi) + const.

(25)

which is perhaps clearer.

4.4 The most difficult part of exercise 4 of set 6 was probably getting the sums
right in 4.3. Once the correct formula has been found for `estim., its gradient can
be computed with the same formulas that were used earlier in the exercise set 3.
The final place where to avoid mistakes is to remember, that if the expression of
`estim. contains a sum over k, then you must not use the same index for partial
derivatives. So if you want to apply ∇µk

and ∇Ck
on `estim., then the sum must

be replaced into a sum over k′ for example (or keep r(t) which was the original
index). The Kronecker delta δkk′ (or δk,r(t)) will appear in very trivial manner in
4.4, but in 4.5 it is not so trivial.

4.5

πk =
eγk

K∑
k′=1

eγk′
(26)

`estim.(θ;x, θi) =
T∑
t=1

K∑
k=1

log
( eγk

K∑
k′=1

eγk′

)
p
(
R(t) = k | x(t); θi

)
+ const. (27)
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Here we have denoted as constants all terms not depending on π1, . . . , πK .

∂`estim.(θ;x, θi)

∂γm
=

T∑
t=1

K∑
k=1

( ∂

∂γm
log
( eγk

K∑
k′=1

eγk′

))
p
(
R(t) = k | x(t); θi

)
(28)

We take a closer look at the derivative inside:

∂

∂γm
log
( eγk

K∑
k′=1

eγk′

)
=

1

πk

∂

∂γm

eγk

K∑
k′=1

eγk′

=
1

πk

( eγkδkm
K∑
k′=1

eγk′
− eγkeγm( K∑

k′=1

eγk′
)2

)

= δkm − πm

(29)

Here the relation (26) was used multiple times. We set the partial derivative as
zero:

0 =
∂`estim.(θ;x, θi)

∂γm
=

T∑
t=1

K∑
k=1

(δkm − πm)p
(
R(t) = k | x(t); θi

)

=
T∑
t=1

p
(
R(t) = m | x(t); θi

)
− πm

T∑
t=1

=1︷ ︸︸ ︷
K∑
k=1

p
(
R(t) = k | x(t); θi

)
︸ ︷︷ ︸

=T

(30)

The πm can be solved out of this, and this is how the iteration formula is found.
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