
Unsupervised Machine Learning Projects
Project 3

Clustering and Nonlinear projection methods

Deadline: May 22nd 2015 (midnight the latest).

Exercise 1: Clustering

1. Reproduce Figure 12.5 in the lecture notes by drawing 2000 samples from a Gaussian mixture
with two clusters (see Eq. 12.9 and section 12.4).
In the report: Explain the construction in your own words. Make a scatter plot of the data.
Specify the parameters employed. Explain their relation to the shape of the data using your own
words, equations, and scatter plots proving your claims.
Hints:
Recall from the first exercise that a covariance matrix C can be written as C = V D D VT, being V the
matrix with principal directions as columns and D a diagonal matrix with the standard deviations along the
principal directions.

2. Implement the Expectation-Maximization (EM) algorithm (sections 12.5 and 12.6) for data of
arbitrary dimensionality and number of clusters. The algorithm must return the estimated cluster
probabilities πc, mean values µc, and covariance matrices Cc (Eqs. 12.17–19), as well as the values
of the objective function during the optimization (Eq. 12.21).
In the report: Explain your implementation and its relation to the underlying theory in your own
words. Test the algorithm on the data generated before, make a figure with the objective function,
and compare the estimates of the parameters with their true values. Restart the algorithm with
different initial points and assess the sensitivity of your estimates.
Hints:

(i) The algorithm can “blow up” if it puts a Gaussian onto a single data point. In that case, restart the
algorithm from different initial point.

(ii) To avoid triggering errors, Use u log(u+δ), with δ = 10−20 or less, instead of u log(u) (see Eq. 12.20).

3. Using the estimated parameters, compute the posterior probability that a data point belongs to each
cluster (p(r(t)|x(t)) in Eq. 12.14) and assign each data point x(t) to the cluster r̂(t) that maximizes
it (this operation is known as MAP estimate).
In the report: Explain what you did in your own words. Make a scatter plot where the color of
each data point indicates the cluster it belongs to according to the MAP estimate.

4. Implement the K-means algorithm (section 12.2) for data of arbitrary dimensionality and number
of clusters. The algorithm must return the centre points wc of each cluster c (Eq. 12.2), the closest
centre point to each data point, and the value of the objective function during the optimization (Eq.
12.3).
In the report: Explain your implementation and its relation to the underlying theory in your own
words. Test the algorithm on the data generated before, make a figure with the objective function,
and compare the estimates of the parameters with their true values and with the estimates of the

1



EM algorithm. Restart the algorithm with different initial points and assess the sensitivity of your
estimates.
Hints:

(i) The code for computing Gaussian mixtures using Expectation Maximization can be reused for K-
means as well.

(ii) Initialize the centre points so that they are preferably inside the data cloud. Otherwise, they may not
be assigned to any data point, thereby becoming "dead units".

(iii) Should dead units occur, reassign them randomly somewhere inside the data cloud while still running
the algorithm, thereby ensuring that you obtain the number of clusters you specified.

5. Create a mixture of 4 Gaussian distributions with the following means µc, covariance matrices Cc,
and cluster probabilities πc:

µ1 = [3, 0] µ2 = [−1, 4] µ3 = [−3,−3] µ4 = [0, 0] (1)

C1 =

[
0.09 0

0 3

]
C2 =

[
5 −2
−2 1

]
C3 =

[
2 1.9

1.9 2

]
C4 =

[
4 0
0 0.25

]
(2)

π1 = 0.1 π2 = 0.2 π3 = 0.3 π4 = 0.4 (3)

Run both the EM and the K-means algorithms from 5 different starting points. Set the cluster
probabilities to be equal and repeat the estimation. Now set the covariances to be their average and
repeat the analysis. In the report: Visualize the MAP estimates and the objective functions for
both algorithm in all runs for the three cases. Compare the estimates between different algorithms
and with the original values. Discuss how effective are the algorithms in each case.

2



Exercise 2: Multidimensional scaling

1. Generate two data sets YA and YB of 5000 samples each according to the following equations:

yA =


√

2 + 2 x1 cos (2 π
√

2 + 2 x1)
√

2 + 2 x1 sin (2 π
√

2 + 2 x1)
2 x2

 yB =

[
(10 + x4) cos (πx3)
(10 + x4) sin (πx3)

]
(4)

where x1, x2 and x3 are uniformly distributed in the interval [−1, 1], x4 follows a Gaussian distri-
bution with zero mean and unit variance.
In the report: Make scatter plots of the two data sets.

2. Implement an algorithm that calculates the squared Euclidean distance matrix (Eq. 13.3) and the
kernel-PCA distance matrix (Eq. 13.8), taking as input the data set and the type of distance to
calculate. In the report: Describe the algorithm and its relation to the underlying theory. Make
a figure with four separate histograms showing the distribution of each distance in each data set.
Compare and discuss the results.

3. Implement the multidimensional scaling (section 13.1) taking as inputs the distance matrix D and
the number of projections N as follows:

(i) Normalise D (Eq. 13.2) to obtain the double-centred distance matrix D̃.

(ii) Compute the first N smallest eigenvalues λn and their eigenvectors Un (1 ≤ n ≤ N).

(iii) Compute X̂ = 1/
√

2 U (−λ)1/2, being U a matrix with eigenvectors in its columns and λ a
diagonal matrix sorted in the same order as the eigenvectors.

(iv) The output of the algorithm is X̂, constituting the projections of the data set.

Perform Euclidean MDS and kernel-PCA by feeding the algorithm with the appropriate distance
matrix to project the two data sets onto the one-dimensional feature that best represents x1 or x3.
Use the distance histograms to aid the choice of the width of the Gaussian kernel.
In the report: Describe the algorithm and its relation to the underlying theory. Make a figure
with four separate panels showing the data sets in their original spaces, each point with a colour
given by its projection onto a one dimensional space (top panels in Figure 1 below). Compare the
projections with the values of x1 and x3.

4. Implement Laplacian eigenmaps (section 13.2.2) taking as inputs the kernel-PCA distance matrix
DkPCA and the number of projections N as follows:

(i) Construct the diagonal matrix ∆ with elements given by ∆ii =
(
−

∑M
j=1 DkPCA

i j

)−1/2
(M being

the number of samples).

(ii) Compute DLE = ∆DkPCA ∆ + 1 where 1 represents the identity matrix.

(iii) Compute the first N + 1 smallest eigenvalues of DLE and their corresponding eigenvectors U.

(iv) Discard the smallest eigenvalue, and its eigenvector, as it is trivially zero.

(v) Estimate the projection of the data as X̂ = ∆U.

Apply the algorithm to the two data sets analogously to the previous task. Use the distance his-
tograms to aid the choice of the width of the Gaussian kernel.
In the report: Make a figure with two separate panels showing the data sets in their original
spaces, each point with a colour given by its projection onto a one dimensional space (top panels

3



in Figure 1 below). Compare the projections with the values of x1 and x3 and with the previous
results using Euclidean MDS and kernel-PCA.

−2
−1

0
1

2

−2

0

2
−2

0

2

Swiss roll with colours indicating the original values of x
1

−2
−1

0
1

2

−2

0

2
−2

0

2

Swiss roll with colours indicating the estimated values of x

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Original x
1

O
ri
g
in

a
l 
x

2

−4
−2

0
2

4
6

x 10
−3

−5

0

5

x 10
−3

−5

0

5

x 10
−3

Estimation of x
1

Estimation of x
2

A
d
d
it
io

n
a
l 
d
im

e
n
s
io

n

Figure 1: Application of Laplacian eigenmaps to yA. Original data set with colours indicating the value
of x1 (top left) and indicating the value of the estimation of x1 obtained using Laplacian eigenmaps (top
right). The estimation represents an approximately scaled version of x1, but does not completely capture
the intrinsic dimension of the underlying manifold. The bottom left panel shows the 2D space in which
the underlying manifold is defined, whereas the bottom right panel shows that Laplacian eigenmaps
actually projects the data into a 3-dimensional space.

5. Load the data from the file flightnet.txt, each row representing a different flight connection.
The data contains 8 columns: the first four corresponding to the city of departure and the last four to
the city of arrival. In each group, the first and second columns represent cities and their countries,
with the third and forth columns being their longitudes and latitudes. Cities and countries are
represented by different integer numbers. Construct a vector with the longitudes and latitudes of
all cities in the data. Compute two great-circle distance matrices, one for all cities and another for
cities connected by flights, using the Haversine formula given below:

di j = 12742 arcsin
(√

sin2
(φ j − φi

2

)
+ cos(φi) cos(φ j) sin2

(λ j − λi

2

))
, (5)

where λ and φ represent the longitude and latitude of the cities. Apply Euclidean MDS to both
matrices and extract three main components.
In the report: Make three scatter plots giving different colors for cities in different countries. The
first one should use the latitudes and longitudes as the coordinates of the cities. It should look just
like Figure 2. The second and third should employ as coordinates the projections calculated before.
Compare the plots, discussing the effect of city density and flight connections. Make scatter plots
in which the data is projected into a 3D space, and discuss the result.

4



−200 −150 −100 −50 0 50 100 150 200
−60

−40

−20

0

20

40

60

80

Longitude (degrees)

L
a
ti
tu

d
e
 (

d
e
g
re

e
s
)

Figure 2: Fight connections data from 2010 - http://www.visualizing.org/datasets/global-flights-network.

5



Exercise 3: Isomap and Kohonen’s self-organizing map

1. Implement an algorithm for computing the neighbours of each data sample. The algorithm must
take as input the Euclidean distance matrix and the type of rule for computing the neighbours,
described below:

(i) K-rule: Each sample is a neighbour of the K-nearest data samples.

(ii) ε-rule: Each sample is a neighbour of all other samples lying at a distance shorter than ε.

(iii) Data-rule: For each sample yi, determine the set of neighbours c1, . . . , cM using one of the
previous rules, and determine whether each pair of samples cu and cv fulfil the following
three conditions:

‖yi − cu‖ + ‖yi − cv‖ < C1 ‖cv − cu‖ (6a)
‖yi − cu‖ < C2 ‖yi − cv‖ (6b)
‖yi − cv‖ < C2 ‖yi − cu‖ (6c)

where C1 =
√

S 2 + 1 and C2 =
1 + S
1 − S

, being S a value chosen by you. The effect of S is
shown in Figure 3. If so, those samples are neighbours.

The algorithm must return a matrix in which only the distance between neighbours is preserved,
usually called adjacency matrix. Make sure that samples are not connected with themselves, and
that the matrix is symmetric. Test your implementation with the data set yA generated in the pre-
vious exercise. To that end, preprocess the data using the K-means clustering algorithm developed
in the first exercise to reduce the number of points from 5000 to 500.
In the report: Make a figure with four panels showing the number of connections: in the first
panel, as a function of the number of neighbours using the K-rule; in the second panel, as a func-
tion of the distance ε using the ε-rule (second panel); in the third panel, as a function of the number
of neighbours for each value of S shown in Figure 3 using the Data-rule; and in the forth panel,
as a function of ε for each value of S shown in Figure 3 using the Data-rule. Compare the results
obtained with the different methods and with the radius of the spiral.

2. Implement the Isomap algorithm as follows:

(i) Take the adjacency matrix as input and compute the geodesic distances, for example, using
Dijkstra’s algorithm, which you need not code yourself.

(ii) Square the distances and plug them into the MDS algorithm developed in the previous exer-
cise.

(iii) The output is the embedding of the data set provided by Isomap.

Test your implementation on both data sets created in the previous exercise. To that end, prepro-
cess the data using the K-means clustering algorithm developed in the first exercise to reduce the
number of points from 5000 to 500. Set up the parameters taking into account the typical distances
between neighbours and points far away determined in the previous exercise.
In the report: Make scatter plots of the results showing the data points with colours proportional
to the estimations of x1 and x3, defined in the previous exercise. Compare the results with the one
obtained in the previous exercise. Discuss the performance of the algorithm and its sensitivity to
the parameters.

3. Implement the Kohonen’s self-organizing map algorithm (SOM, section 13.3) and apply it to the
preprocessed data. Define the neighbourhood of node i as node i − 1 and node i + 1. In the case

6



of the circle, make the nodes periodic, that is, make the last node a neighbour of the first. This
neighbourhood relation establishes a kind of ordering of the model vectors (cluster means) wi.
In the report: Run the algorithm for various numbers of model vectors (about 10 to 100), various
initializations and make figures similar to Figure 13.8 in the lecture notes. Increase the size of the
neighbourhood to include the second and the third nearest neighbour, respectively.Compare the
results. Discuss their performance in capturing the variation of x1 and x3. .

4. Load the data from the files prion.txt and prioncn.txt. The former contains the positions
of all atoms of the prion protein and the latter only contains the positions of carbon and nitrogen
atoms. The prion protein (Figure 4) is thought to be responsible for what are known as transmissi-
ble spongiform encephalopaties, of which the most well-known example is perhaps the mad-cow
disease. The function of the proteins is not only given by the sequence of amino acids they are
composed of (which is known as primary structure) but also by how nearby amino acids interact
with each other, twisting the sequence (secondary structure) and folding it (tertiary structure, top
right panel of Figure 4). The disease is caused by an appropriate unfolding of the protein which
drives other proteins to fold in similar ways, and from there, to form aggregates of proteins. The
files provided here contain data providing the positions of the atoms in the tertiary structure. Using
the information provided in prioncn.txt, apply both Isomap and SOM to uncover the trace of
the tertiary structure (top right panel in Figure 4). To that end, use either the ε-rule or the data-rule
in Isomap and between 50 and 100 nodes in SOM, and search for the best set of parameters that
could reproduce the bottom panel in Figure 4.
In the report: For Isomap, make a scatter plot with each point corresponding to the average of the
positions of 10 consecutive atoms (you can do that by using a sliding window, for example, using
conv(atompositions,ones(10,1),’same’) in Matlab), and the colour given by the value of
the first component extracted by Isomap. For SOM, plot the atoms with colours given by their
position in the sequence, and the nodes connecting them with lines, with colours given by their
position too. Apply both methods to the data in prion.txt using the optimal parameters found
before (do not search for optimal parameters here). Compare your results with the figures pro-
vided. Did you manage to obtain a good match? Explain the possible reasons for your success or
failure in terms of the neighbourhoods defined, the distances between neighbouring atoms, and the
distance between atoms in different parts of the trace of the protein.

Figure 3: Effect of the value of S on the shape of the neighbourhood using the data-rule. Extracted from
the book Nonlinear Dimensionality Reduction, John A Lee and Michel Verleysen.

7



Figure 4: Description of the prion protein. (top left) Positions of atoms constituting the prion protein.
(top right) Trace of the prion protein, which indicates the way the sequence of amino acids is twisted
and folded. (bottom) Approximation of the trace of the prion protein using the data provided here and
averaging the positions of the atoms with a sliding window of length 10. The colour map chosen was
hsv.

8


	Clustering
	Multidimensional scaling
	Isomap and Kohonen's self-organizing map

