Name	Signature	Student Id Nr	Points
_	mini exam 2, 14.2.2018 (1	= ·	ed.
	at is real problem in the Dining Philos		_
Give the basic solution (I	known to be erroneous) to the proble	em, and deadlock scenario to that so	olution.
Give a not deadlocking s	olution to the problem, and explain w	vhy deadlock cannot happen now.	
e.g., in alphabetical orde	eadlocks are prevented by reserving ner "ABCD". Event deadlock in all scenarios?	nultiple resources always in some gi	ven order,
In which case would ord	er "B C D A" be better than order "A I	3 C D"? Explain. Give an example.	

c)	[2 p] Explain what "internal fragmentation" in memory management means. Give a concrete example on a situation where a 1KB memory block is internally fragmented. What type of memory management does your example relate to?
d)	[2 p] Explain what "external fragmentation" in memory management means. Give a concrete example on a situation where a 1KB memory block is externally fragmented. What type of memory management does your example relate to?
e)	[2 p] Assume that you have paged memory management, 16-bit virtual addresses, 16-bit physical main memory addresses and 1KB pages. Which main memory address is referred by program address 0x1234? How do you find it out with page tables?