
I/O Management and
Disk Scheduling

I/O types
Buffering, buffering types

Disk performance parameters
FIFO, PRI

Shortest service time first
SCAN, C-SCAN, N-step-SCAN, FSCAN

Linus Elevator

RAID, RAID levels

Disk cache
Least Frequently Used replacement

Frequency-Based replacement

Operating
Systems:
Internals

and Design
Principles

Ch 11

21.11.20191Copyright William Stallings & Teemu Kerola 2020

External devices that engage in I/O with computer
systems can be grouped into three categories:

• suitable for communicating with the computer user
• printers, terminals, video display, keyboard, mouse

Human readable

• suitable for communicating with electronic equipment
• disk drives, USB keys, sensors, controllers

Machine readable

• suitable for communicating with remote devices
• modems, digital line drivers

Communication

21.11.20193Copyright William Stallings & Teemu Kerola 2020

Data Rate
• there may be differences of magnitude between the data transfer rates

Application

• the use to which a device is put has an influence on the software

Complexity of Control
• the effect on the operating system is filtered by the complexity of the I/O module that

controls the device

Unit of Transfer
• data may be transferred as a stream of bytes or characters or in larger blocks

Data Representation
• different data encoding schemes are used by different devices

Error Conditions

• the nature of errors, the way in which they are reported, their
consequences, and the available range of responses differs
from one device to another

21.11.20194Copyright William Stallings & Teemu Kerola 2020

21.11.20195Copyright William Stallings & Teemu Kerola 2020

Techniques for Performing I/O

21.11.20197Copyright William Stallings & Teemu Kerola 2020

suora I/O epäsuora I/O
keskeyttävä I/O

1
• Processor directly controls a peripheral device

2
• A controller or I/O module is added

3
• Same configuration as step 2, but now interrupts are employed

4
• The I/O module is given direct control of memory via DMA

5
• The I/O module is enhanced to become a separate I/O processor, with

a specialized instruction set tailored for I/O

6
• The I/O module has a local memory of its own and is, in fact, a

computer in its own right

21.11.2019

8
Copyright William Stallings & Teemu Kerola 2020

Efficiency
 Major effort in I/O design

 Important because I/O
operations often form a
bottleneck

 Most I/O devices are extremely
slow compared with main
memory and the processor

 The area that has received the
most attention is disk I/O

Generality
 Desirable to handle all devices in a

uniform manner

 Applies to the way processes view
I/O devices and the way the
operating system manages I/O
devices and operations

 Diversity of devices makes it
difficult to achieve true generality

 Use a hierarchical, modular
approach to the design of the I/O
function

21.11.2019

11
Copyright William Stallings & Teemu Kerola 2020

 Functions of the operating system should be separated according to
their complexity, their characteristic time scale, and their level of
abstraction

 Leads to an organization of the operating system into a series of
layers

 Each layer performs a related subset of the functions required of the
operating system

 Layers should be defined so that changes in one layer do not require
changes in other layers

21.11.201912Copyright William Stallings & Teemu Kerola 2020

21.11.201913Copyright William Stallings & Teemu Kerola 2020

Fig. 11.4

Ch 11

Ch 12

 Perform input transfers in advance of requests being made and
perform output transfers some time after the request is made

Block-oriented device

• stores information in
blocks that are usually of
fixed size

• transfers are made one
block at a time

• possible to reference data
by its block number

• disks and USB keys are
examples

Stream-oriented device

• transfers data in and out
as a stream of bytes

• no block structure
• terminals, printers,

communications ports,
and most other devices
that are not secondary
storage are examples

21.11.201914Copyright William Stallings & Teemu Kerola 2020

No Buffer
 Without a buffer, the OS

directly accesses the device
when it needs

21.11.201915Copyright William Stallings & Teemu Kerola 2020

Fig. 11.5

Single Buffer  Operating system assigns a
buffer in (OS) main
memory for an I/O request

21.11.201916Copyright William Stallings & Teemu Kerola 2020
Fig. 11.5

 Input transfers are made to the system buffer

 Reading ahead/anticipated input
 is done in the expectation that the block will eventually be needed
 when the transfer is complete, the process moves the block into user

space and immediately requests another block

 Generally provides a speedup compared to the lack of system
buffering

 Disadvantages:
 complicates the logic in the operating system
 swapping logic is also affected

21.11.201917Copyright William Stallings & Teemu Kerola 2020

 Line-at-a-time operation
 appropriate for scroll-

mode terminals (dumb
terminals)

 user input is one line at
a time with a carriage
return signaling the end
of a line

 output to the terminal
is similarly one line at a
time

 Byte-at-a-time operation
 used on forms-mode

terminals
 when each keystroke

is significant
 other peripherals such

as
sensors
and controllers

21.11.201918Copyright William Stallings & Teemu Kerola 2020

Double Buffer

 Use two system buffers instead
of one

 A process can transfer data to or
from one buffer while the
operating system empties or fills
the other buffer

 Also known as buffer swapping

21.11.201919Copyright William Stallings & Teemu Kerola 2020
Fig. 11.5

Circular Buffer

 Two or more buffers are used

 Each individual buffer is one
unit in a circular buffer

 Used when I/O operation
must keep up with process

21.11.201920Copyright William Stallings & Teemu Kerola 2020
Fig. 11.5Producer-Consumer problem!

 Technique that smoothes out peaks in I/O demand
 with enough demand eventually all buffers become full and their advantage

is lost

 When there is a variety of I/O and process activities to service,
buffering can increase the efficiency of the OS and the performance of
individual processes

 Buffering balances communication between devices or processes of
(very) different speed

21.11.201921Copyright William Stallings & Teemu Kerola 2020

Discuss

Disk
Performance
Parameters

 The actual details of disk I/O
operation depend on the:

 computer system

 operating system

 nature of the I/O
channel and disk
controller hardware

21.11.201922Copyright William Stallings & Teemu Kerola 2020

Access time

 When the disk drive is operating, the disk is rotating at constant speed

 To read or write the head must be positioned at the desired track and
at the beginning of the desired sector on that track

 Track selection involves moving the head in a movable-head system or
electronically selecting one head on a fixed-head system

 On a movable-head system the time it takes to position the head at the
track is known as seek time

 The time it takes for the beginning of the sector to reach the head is
known as rotational delay

 The sum of the seek time and the rotational delay equals the access
time

21.11.201923Copyright William Stallings & Teemu Kerola 2020

 Processes I/O requests in sequential (arrival) order

 Fair to all processes

 Approximates random scheduling in performance if
there are many processes competing for the disk

Disk Scheduling:
First-In, First-Out (FIFO)

21.11.201926Copyright William Stallings & Teemu Kerola 2020

Tracks: 55, 58, 39 18, 90, 160,150, 38, 184

Fig. 11.7

Disk Scheduling
Problem
When many disk requests
are waiting, in which order
are they serviced?

Why random?

What is good disk
scheduling?

(Already in queue, arrived in this order)

Disk Scheduling:

 Control of the scheduling is outside the control of disk management
software

 Goal is not to optimize disk utilization but to meet other objectives

 Short batch jobs and interactive jobs are given higher priority

 Provides good interactive response time

 Longer jobs may have to wait an excessively long time

 A poor policy for database systems

21.11.201927Copyright William Stallings & Teemu Kerola 2020

Disk Scheduling:
Shortest Service Time First (SSTF)
 Select the disk I/O request that requires the least movement of the

disk arm from its current position

 Always choose the minimum seek time

 Favors innermost tracks. Far away track may starve.

21.11.201928Copyright William Stallings & Teemu Kerola 2020

Tracks: 55, 58, 39, 18, 90, 160,150, 38, 184

Fig. 11.7

Why?

Disk Scheduling: SCAN
 Also known as the elevator algorithm

 Arm moves up until all tracks serviced that direction, then down, etc.
 satisfies all outstanding requests until it reaches the last track in that direction

then the direction is reversed (sometimes called “LOOK” variant)

 Favors jobs whose requests are for tracks clustered nearest to
both innermost and outermost tracks, and latest arriving jobs

21.11.201929Copyright William Stallings & Teemu Kerola 2020

Tracks: 55, 58, 39 18, 90, 160,150, 38, 184

Fig. 11.7

Why?

hissi-algoritmi

Disk Scheduling:

C-SCAN
(Circular SCAN)

 Restricts scanning to one direction only
(up or down)

 When the last track has been visited in
one direction, the arm is returned to the
opposite end of the disk and the scan
begins again

 Reduces maximum delay

21.11.201930Copyright William Stallings & Teemu Kerola 2020

Tracks: 55, 58, 39 18, 90, 160,150, 38, 184

Fig. 11.7

Why?

Disk Scheduling:

 Segments the disk request queue into subqueues of length N

 Subqueues are processed one at a time, using SCAN

 While a queue is being processed new requests must be added to
some other queue

 If fewer than N requests are available at the end of a scan, all of
them are processed with the next scan

21.11.201931Copyright William Stallings & Teemu Kerola 2020

More predictable service time?

“fixed size FIFO batches with SCAN”?

Disk Scheduling:

 Uses two subqueues

 When a scan begins, all of the requests are in one of the queues,
with the other empty

 During scan, all new requests are put into the other queue

 Service of new requests is deferred until all of the old requests have
been processed

21.11.201932Copyright William Stallings & Teemu Kerola 2020

More predictable service time?

“two FIFO batches with SCAN”?

Table 11.2 Comparison of Disk Scheduling Algorithms

21.11.201933Copyright William Stallings & Teemu Kerola 2020

(~random)

!?

Table 11.3 Disk Scheduling Algorithms

21.11.201934Copyright William Stallings & Teemu Kerola 2020

Discuss

 Very similar to other UNIX implementation

 Associates a special file with each I/O device driver

 Block, character, and network devices are recognized

 Default disk scheduler in Linux 2.4
 Same or adjacent sector of pending request?  merge

 Some request already old?  new request put last

 Do not slow down pending requests too much

 Good location on this direction  place it there

 o/w  new request put last

 Optimizations: deadline & anticipatory scheduling

21.11.201935Copyright William Stallings & Teemu Kerola 2020

Linux
Deadline
Scheduler
 Uses three queues:

 incoming requests
 read requests go

also to the tail of a
Read FIFO queue

 write requests go
also to the tail of a
Write FIFO queue

 Each request has an
expiration time
 Get priority if time

expires

21.11.201937Copyright William Stallings & Teemu Kerola 2020

> 0.5s?

> 5s?

If request delayed long, it gets
priority even though overall
performance suffers!

Fig 11.14 [Sta 15]

 Elevator and deadline scheduling can be counterproductive if there are
numerous synchronous read requests

 Is superimposed on the deadline scheduler

 When a read request is dispatched, the anticipatory scheduler causes the
scheduling system to delay (e.g. 6 ms)
 there is a good chance that the application that issued the last read request

will issue another read request to the same region of the disk

 that request will be serviced immediately

 otherwise the scheduler resumes using the deadline scheduling
algorithm

 8x speedup for large file reads?

21.11.201938Copyright William Stallings & Teemu Kerola 2020

 Redundant Array of
Independent Disks
(Redundant Array of
Inexpensive Disks)

 Consists of seven levels,
zero through six

Design
architectures
share three

characteristics:

RAID is a set of physical
disk drives viewed by the

operating system as a
single logical drive

data are
distributed
across the

physical drives
of an array in a
scheme known

as striping

redundant disk capacity is used to
store parity information, which
guarantees data recoverability in

case of a disk failure

21.11.201941Copyright William Stallings & Teemu Kerola 2020

RAID
Level 0

 Not a true RAID because it has
no redundancy to improve performance or
provide data protection

 User and system data are distributed across all
of the disks in the array

 Concurrency gives speed

 Logical disk is divided into (large) strips

21.11.201943Copyright William Stallings & Teemu Kerola 2020

Fig. 11.8USED

RAID
Level 1

 Redundancy is achieved by the simple
expedient of duplicating all the data

 There is no “write penalty”

 When a drive fails the data may still be
accessed from the second drive

 Principal disadvantage is the cost

 Data recovery cost/time?

21.11.201944Copyright William Stallings & Teemu Kerola 2020
Fig. 11.8

USED

Usually:
RAID 1: No stripes, mirroring
RAID 10: Stripes, mirroring

RAID
Level 2

 Makes use of a parallel access technique

 Data striping is used (byte or word size)

 Typically a Hamming code is used

 Effective choice in an environment in
which many disk errors occur

21.11.201945Copyright William Stallings & Teemu Kerola 2020

Fig. 11.8
NOT USED

RAID
Level 3

 Requires only a single redundant disk, no
matter how large the disk array

 Uses just one parity bit

 Employs parallel access, with data
distributed in small strips

 Can achieve very high data transfer rates

21.11.201946Copyright William Stallings & Teemu Kerola 2020

Fig. 11.8NOT USED
bottleneck

RAID
Level 4

 Makes use of an independent access
technique (large block size strips)

 A bit-by-bit parity strip is calculated across
corresponding strips on each data disk,
and the parity bits are stored in the
corresponding strip on the parity disk

 Involves a write penalty when an I/O write
request of small size is performed

21.11.201947Copyright William Stallings & Teemu Kerola 2020

NOT USED bottleneck

RAID
Level 5

 Similar to RAID-4 but distributes the parity
bits (blocks) across all disks

 Typical allocation is a round-robin scheme

 Has the characteristic that the loss of any
one disk does not result in data loss

 High data recovery cost

21.11.201948Copyright William Stallings & Teemu Kerola 2020

USED Fig. 11.8

RAID
Level 6

 Two different parity calculations are carried
out and stored in separate blocks on different
disks

 Provides extremely high data availability

 Can sustain 2 disk failures at a time

 Incurs a substantial write penalty because
each write affects also two parity blocks

 High data recovery cost

21.11.201949Copyright William Stallings & Teemu Kerola 2020

Fig. 11.8USED

Table 11.4 RAID Levels

21.11.201950Copyright William Stallings & Teemu Kerola 2020 Discuss

 Windows supports two sorts of RAID configurations:

Hardware
RAID

separate physical
disks combined

into one or more
logical disks by the
disk controller or

disk storage cabinet
hardware

Software RAID

noncontiguous disk
space combined
into one or more
logical partitions

by the fault-tolerant
software disk

driver, FTDISK

21.11.201951Copyright William Stallings & Teemu Kerola 2020

 Cache memory is HW memory that is smaller and faster than main
memory and that is interposed between main memory and the
processor

 Disk cache is a buffer in main memory for disk sectors

 Contains a copy of some of the sectors on the disk

 Disk buffer is buffer on hard disk controller
(for the same purpose as disk cache)

when an I/O request
is made for a

particular sector, a
check is made to
determine if the

sector is in the disk
cache

if YES, …
the request is

satisfied via the
disk cache

if NO, …
the requested sector is

read into the disk
cache from the disk

21.11.201952Copyright William Stallings & Teemu Kerola 2020

levyvälimuisti

levypuskuri

levyvälimuisti

 Most commonly used algorithm that deals with the design issue of
replacement strategy

 The block that has been in the cache the longest with no reference
to it is replaced

 A stack of pointers reference the cache
 most recently referenced block is on the top of the stack

 when a block is referenced or brought into the cache, it is placed on the
top of the stack

21.11.201953Copyright William Stallings & Teemu Kerola 2020

 The block that has experienced the fewest references is replaced

 A counter is associated with each block

 Counter is incremented each time block is accessed

 When replacement is required, the block with the smallest count is
selected

21.11.201954Copyright William Stallings & Teemu Kerola 2020

Frequency-Based Replacement

21.11.201955Copyright William Stallings & Teemu Kerola 2020

Fig. 11.9

Replace from
here
(using smallest
reference count)

Disk Cache
Performance

LRU

Frequency-Based
Replacement

21.11.201956Copyright William Stallings & Teemu Kerola 2020

Note: different data sets

Discuss

Now
100 GB?
2 TB?

 I/O architecture is the computer system’s interface to the outside world

 I/O functions are generally broken up into a number of layers

 A key aspect of I/O is the use of buffers that are controlled by I/O utilities rather
than by application processes

 Buffering smoothes out the differences between the speeds

 The use of buffers also decouples the actual I/O transfer from the address space of
the application process

 Disk I/O has the greatest impact on overall system performance

 Two of the most widely used approaches are disk scheduling and the disk cache

 A disk cache is a buffer, usually kept in main memory, that functions as a cache of
disk block between disk memory and the rest of main memory

21.11.201969Copyright William Stallings & Teemu Kerola 2020

