Verifying Concurrent Programs
Advanced Critical Section Solutions

Ch 4.1-3, App B [BenA 06]
Ch 5 (no proofs) [BenA 06]

Propositional Calculus
Invariants
Temporal Logic
Automatic Verification

Bakery Algorithm & Variants
Propositional Calculus

- Atomic propositions
 - A, B, C, ...
 - True (T) or False (F)

- Operators
 - not
 - disjunction, or
 - conjunction, and
 - implication
 - equivalence

Boolean algebra

<table>
<thead>
<tr>
<th></th>
<th>$v(A_1)$</th>
<th>$v(A_2)$</th>
<th>$v(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg A_1$</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>$\neg A_1$</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>$A_1 \lor A_2$</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$A_1 \lor A_2$</td>
<td>otherwise</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>$A_1 \land A_2$</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>$A_1 \land A_2$</td>
<td>otherwise</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>$A_1 \rightarrow A_2$</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$A_1 \rightarrow A_2$</td>
<td>otherwise</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>$A_1 \leftrightarrow A_2$</td>
<td>$v(A_1) = v(A_2)$</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>$A_1 \leftrightarrow A_2$</td>
<td>$v(A_1) \neq v(A_2)$</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>
Propositional Calculus

- **Implication**
 \[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B\]

 - Premise or antecedent
 - Conclusion or consequent

- **Formula**
 - Atomic proposition
 - Atomic propositions or formulaes combined with operators

- **Assignment** \(v(f)\) of formula \(f\)
 - Assigned values (T or F) for each atomic proposition in formula
 - Interpretation \(v(f)\) of formula \(f\) computed with operator rules
 - Formula \(f\) is **true** if \(v(f) = T\), **false** if \(v(f) = F\)
Propositional Calculus

- **Formula**
 - Implication
 - Premise or antecedent
 - Conclusion or consequent
 - Formula f is true/false if it’s interpretation v(f) is true/false
 - Given assignment values for each argument
 - Formula is **valid** if it is **tautology**
 - Always true for all interpretations (all atomic propos. values)
 - Formula is **satisfiable** if true in some interpretation
 - Formula is **falsifiable** if sometimes false
 - Formula is **unsatisfiable** if always false

\[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B\]
Methods for Proving Formulae Valid

• Induction proof F(n) for all n=1, 2, 3, ...
 - F(1)
 - F(n) → F(n+1)

• Dual approach: f is valid ↔ ¬f is unsatisfiable
 - Find one interpretation that makes ¬f true
 • Go through (automatically) all interpretations of ¬f
 • If such interpretation found, ¬f is satisfiable, i.e., f is not valid
 • O/w f is valid

• Proof by contradiction
 - Assume: f is not valid
 - Deduce contradiction with propositional calculus
 ¬X ∧ X
Methods for Proving Formulae Valid

• Deductive proof
 - Deduce formula from axioms and existing valid formulae
 - Start from the “beginning”

• Material implication
 - Formula is in the form “\(p \rightarrow q \)"
 - Can show that “\(\neg(p \rightarrow q) \)” cannot be (or cannot become):
 - if \(v(p) = v(q) = T \) and then
 - if \(v(q) \) becomes \(F \), then \(v(p) \) will not stay \(T \)
 - if \(v(p) = v(q) = F \) and then
 - if \(v(p) \) becomes \(T \), then \(v(q) \) will not stay \(F \)
Correctness of Programs

- Program P is partially correct
 - If P halts, then it gives the correct answer
- Program P is totally correct
 - P halts and it gives the correct answer
 - Often very difficult to prove ("halting problem" is difficult)

- Program P can have
 - preconditions $A(x_1, x_2, \ldots)$ for input values (x_1, x_2, \ldots)
 - postconditions $B(y_1, y_2, \ldots)$ for output values (y_1, y_2, \ldots)

- Partial and total correctness with respect to $A(\ldots)$ and $B(\ldots)$

More? Se courses on specification and verification
Verification of Concurrent Programs

- State diagrams can be very large
 - Can do them automatically
- Making conclusions on state diagrams is difficult
 - Mutex, no deadlock, no starvation?
 - Can do automatically with temporal logic based on propositional calculus
 - Model checker programs
 (not covered in this course!)

Spin STeP

callin tarkastin
Atomic propositions

- **Boolean variables**
 - Consider them as atomic propositions
 - *Proposition* \(\text{wantp} \) is true, iff *variable* \(\text{wantp} \) is true in given state

- **Integer variables**
 - Comparison result is an atomic proposition
 - Example: proposition “turn ≠ 2” is true, iff *variable* turn value is not 2 in given state

- **Control pointers**
 - Comparison to given value is an atomic proposition
 - Example: proposition \(p1 \) is true, iff *control pointer for* \(P \) is \(p1 \) in given state

Idea: system state described with propositional logic
Formulae

- **Formula**: $p_1 \land q_1 \land \neg \text{wantp} \land \neg \text{wantq}$
 - True only in the starting state
- **Formula**: $p_4 \land q_4$
 - True only if mutex is broken
 - Mutex condition can be defined: $\neg(p_4 \land q_4)$
 - Must be true in all possible states in all possible computations
 - **Invariant**
Mutex Proof

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3: await wantq = false</td>
<td>q3: await wantp = false</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>

- **Invariant** \(\neg(p4 \land q4) \)
 - If this is proven correct (true in all states), then mutex is proven
- **Inductive proof**
 - True for *initial state*
 - Assuming true for *current state*, prove that it still applies in *next state*
 - Consider only statements that affect propositions in invariant
Mutex Proof

- Invariant \(\neg (p_4 \land q_4) \)
 - Can not prove directly (yet) - too difficult
- Need proven Lemma 4.3
 - Lemma 4.1: \(p_{3..5} \rightarrow wantp \) is invariant
 - Lemma 4.2: \(wantp \rightarrow p_{3..5} \) is invariant
 - Lemma 4.3: \(p_{3..5} \leftrightarrow wantp \) and \(q_{3..5} \leftrightarrow wantq \) are invariants
 - Proof not covered here
- Can now prove original invariant \(\neg (p_4 \land q_4) \)
 - Inductive proof with Lemma 4.3
 - Details on next slide
** Lemma 4.3: ** \(p_{3..5} \leftrightarrow \text{wantp} \) and \(q_{3..5} \leftrightarrow \text{wantq} \) invariants

** Theorem 4.4: ** \(\neg(p4 \land q4) \) is invariant

- Prove \((p4 \land q4) \) inductively false in every state
- Initial state: trivial
- Only states \(\{p3, \ldots\} \) need to be considered
 - \(p4 \) may become true only here, i.e., state \(\{p4, q?, \ldots\} \)
 - States \(\{\ldots, q3, \ldots\} \) similar, symmetrical
- Can execute \(\{p3, \ldots\} \) only if wantq=false (i.e., \(\neg\text{wantq} \))
 - Because wantq=false, q4 is also false (Lemma 4.3)
 - Next state can not be \(\{p4, q4, \ldots\} \), i.e., \((p4 \land q4) \) is false

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3: await wantq = false</td>
<td>q3: await wantp = false</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>
Temporal Logic

- Propositional logic with **extra temporal operators**
- Computation
 - **Infinite** sequence of states: \{s_0, s_1, s_2, ... \}
- Temporal operators
 - Value (T or F) of given predicate does not necessarily depend only on current state
 - It may depend on also on (some or all) future states
 - **Always** or box (\(\square\)) operator
 - \(\square A\) true in state \(s_i\) if A true in all \(s_j\), \(j \geq i\)
 - E.g., mutex must always be true
 - **Eventually** or diamond (\(\Diamond\)) operator
 - \(\Diamond A\) true in state \(s_i\) if A true in some \(s_j\), \(j \geq i\)
 - E.g., no starvation means that something eventually will become true
Other Temporal Logic Operators

- True in next state (O) operator
 - $O p$ true in state s_i, if p is true in the state s_{i+1}

- Until eventually (U) operator
 - $p U q$ true in state s_i, if p is true in every state in future until eventually q becomes true

- ...

- Not used (needed) in this course...

More? See courses on specification and verification.
Some Laws of Temporal Logic

- **deMorgan**
 \[\neg(A \land B) \iff (\neg A \lor \neg B) \]
 \[\neg(A \lor B) \iff (\neg A \land \neg B) \]

- **Distributive Laws**
 \[\Box(A \land B) \iff (\Box A \land \Box B) \]
 \[\Diamond(A \lor B) \iff (\Diamond A \lor \Diamond B) \]

- **Duality**
 - Not always is equivalent to eventually not
 \[\neg \Box A \iff \Diamond \neg A \]
 - Not eventually is equivalent to always not
 \[\neg \Diamond A \iff \Box \neg A \]
Sequence

- Eventually always
 - Will come true and then stays true forever

- Always eventually
 - Always will become true some times in future (again)
More Complex Proofs

- State diagrams become easily too large for manual analysis
- Use model checkers
 - Spin for Promela programs (algorithms)
 - Java PathFinder for Java programs
- More details?
 - Course
 An Introduction to Specification and Verification

Spesifioinnin ja verifioinnin perusteet
Advanced Critical Section Solutions

Ch 5 [BenA 06] (no proofs)

Bakery Algorithm

Bakery for N processes

Fast for N processes
Bakery Algorithm

- Environment
 - Shared memory, atomic read/write
 - No HW support needed
 - Short exclusive access code segments
 - Wait in busy loop (no process switch)

- Goal
 - Mutex and Customers served in request order
 - Independent (distributed) decision making

- Solution idea
 - Get queue number, service requests in ascending order

- Possible problems
 - Shared, distributed queuing machine, will it work?
 - Get same queue number as someone else? Problem?
 - Some number skipped? Problem or not?
 - Will numbers grow indefinitely (overflow)?
Bakery Algorithm (2 processes)

Algorithm 5.1: Bakery algorithm (two processes)

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer np ← 0, nq ← 0</td>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1:</td>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p2:</td>
<td>np ← nq + 1</td>
<td>nq ← np + 1</td>
</tr>
<tr>
<td>p3:</td>
<td>await nq = 0 or np ≤ nq</td>
<td>await np = 0 or nq < np</td>
</tr>
<tr>
<td>p4:</td>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>p5:</td>
<td>np ← 0</td>
<td>nq ← 0</td>
</tr>
</tbody>
</table>

In real life usually not atomic!

- q in non-critical section
- q in q3 or q4

- Can enter CS, if ticket (np or nq) is “smaller” than that of the other process
- Priority: if equal tickets, both compete, but P wins
 - Fixed priority not so good, but acceptable (rare occurrence)
Correctness Proof for 2-process Bakery Algorithm

• Mutex?
• No deadlock?
• No starvation?
• No counter overflow?

• What else, if any?

• How?
 - Temporal logic

Alg. 5.1

Spesifioinnin ja verifioinnin perusteet
(Slides Conc.Progr. 2006)
(for those who really like temporal logic…)

24.1.2011
Bakery for n Processes

Algorithm 5.2: Bakery algorithm (N processes)

<table>
<thead>
<tr>
<th>integer array[1..n] number ← [0, \ldots, 0]</th>
</tr>
</thead>
</table>

loop forever

- **p1:** non-critical section
- **p2:** $\text{number}[i] \leftarrow 1 + \max(\text{number})$
- **p3:** for all other processes j
- **p4:** await ($\text{number}[j] = 0$) or ($\text{number}[i] \ll \text{number}[j]$)
- **p5:** critical section
- **p6:** $\text{number}[i] \leftarrow 0$

- No write competition to shared variables
 - Load/store assumed atomic
- Ticket numbers increase continuously while critical section is taken – danger?
- All other processes polled
 - Not so good!

not atomic!? when equality, give priority to smaller number[x]
in non-critical section? in q3..q6?
Bakery for n Processes

- **Mutex OK?**
 - Yes, because of priorities at competition time

- **Deadlock OK?**
 - Yes, because of priorities at competition time

- **Starvation OK?**
 - Yes, because
 - Your (i) turn will come eventually
 - Others (j) will progress and leave CS
 - Next time their number[j] will be bigger than yours

- **Overflow**
 - Not good. Numbers grow unbounded if some process always in CS
 - Must have other information/methods to guarantee that this does not happen.

 e.q., max 100 processes, CS less than 0.01% of executed code??
Concurrent read & write may result to bad read
Lamport, 1974
- Correct behaviour in p7 even if number[j] value read wrong!
 - Assuming that await is in busy loop

Performance Problems with Bakery Algorithm

• Problem
 – Lots of overhead work, if many concurrent processes
 – Check status for all possibly competing other processes
 • Other processes (not in CS) slow down the one process trying to get into CS – not good
 – Most of the time wasted work
 • Usually not much competition for CS

• How to do it better?
 – Check competition in fixed time
 – In a way not dependent on the number of possible competitors
 – Suffer overhead only when competition occurs
Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer gate1 ← 0, gate2 ← 0</td>
<td>loop forever</td>
</tr>
<tr>
<td></td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td></td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- Assume atomic read/write
- 2 shared variables, both read/written by P and Q
- Block at gate1, if contention
 - Last one to get there waits
- Access to CS, if success in writing own id to both gates
Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer gate1 (\leftarrow 0), gate2 (\leftarrow 0)</td>
<td>loop forever</td>
</tr>
<tr>
<td></td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 (\leftarrow p)</td>
<td>q1: gate1 (\leftarrow q)</td>
</tr>
<tr>
<td>p2: if gate2 (\neq 0) goto p1</td>
<td>q2: if gate2 (\neq 0) goto q1</td>
</tr>
<tr>
<td>p3: gate2 (\leftarrow p)</td>
<td>q3: gate2 (\leftarrow q)</td>
</tr>
<tr>
<td>p4: if gate1 (\neq p)</td>
<td>q4: if gate1 (\neq q)</td>
</tr>
<tr>
<td>p5: if gate2 (\neq p) goto p1</td>
<td>q5: if gate2 (\neq q) goto q1</td>
</tr>
<tr>
<td></td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 (\leftarrow 0)</td>
<td>q6: gate2 (\leftarrow 0)</td>
</tr>
</tbody>
</table>

- No contention for P, if P alone (i.e., gate2 = 0)
 - Little overhead in entry
 - 2 assignments and 2 comparisons
Algorithm 5.4: Fast algorithm for two processes (outline)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- **Q** pass gate2 (q3), when **P** tries to get in
 - **P** blocks at p2, until **Q** releases gate2
 - **Q** will advance even if **P** gets to p1 before q4 executed
Q arrives at the same time with P
- Competition on who wrote to gate1 and gate2 last
- P & P: P advances, Q blocks at q5
- P & Q: P advances, Q advances, i.e., no mutex (ouch!)
Algorithm 5.6: Fast algorithm for two processes (2)

```plaintext
integer gate1 ← 0, gate2 ← 0

boolean wantp ← false, wantq ← false
```

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wantq ← false</td>
</tr>
<tr>
<td></td>
<td>goto p1</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0</td>
<td>q2: if gate2 ≠ 0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wantq ← false</td>
</tr>
<tr>
<td></td>
<td>goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wantq ← false</td>
</tr>
<tr>
<td></td>
<td>goto q1</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td></td>
</tr>
<tr>
<td>else wantp ← true</td>
<td></td>
</tr>
<tr>
<td></td>
<td>await wantq = false</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td></td>
<td>else wantq ← true</td>
</tr>
<tr>
<td></td>
<td>critical section</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>q6: gate2 ← 0</td>
</tr>
<tr>
<td></td>
<td>wantq ← false</td>
</tr>
</tbody>
</table>
```

- **P** last at gate1
- **Q** last at gate 2

Q blocks here

24.1.2011

Copyright Teemu Kerola 2011
Fast N Process Baker

- Expand Alg. 5.6
  - Still with just 2 gates

P: `await wantq=false`  ➞  Pi: For all other j, `await want[j]=false`

- Still fast, even with “for all other”
  - Fast when no contention (gate2 = 0)
    - Entry: 3 assignments, 2 if’s
  - Awaits done only when contention
    - p4: if gate1 ≠ i

24.1.2011
Copyright Teemu Kerola 2011
Summary

- How to verify concurrent programs with Propositional Calculus and Temporal Logic
- Use of invariants in correctness proofs
  - E.g., mutual exclusion (mutex) proofs with invariants
  - Can often use in practice, when no formal proofs used
- Bakery algorithm
  - Shared memory
  - No HW support for concurrency control
  - 2 or N processes
  - Overflow problem, performance problem