Verifying Concurrent Programs
Advanced Critical Section Solutions

Ch 4.1-3, App B [BenA 06]
Ch 5 (no proofs) [BenA 06]

Propositional Calculus
Invariants
Temporal Logic
Automatic Verification
Bakery Algorithm & Variants

Propositional Calculus
(App B [BenA 06])

- Atomic propositions
 - A, B, C, ...
 - True (T) or False (F)

- Operators
 - not
 - disjunction, or
 - conjunction, and
 - implication
 - equivalence

<table>
<thead>
<tr>
<th>(A)</th>
<th>(v(A_1))</th>
<th>(v(A_2))</th>
<th>(v(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg A_1)</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>(\neg A_2)</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>(A_1 \lor A_2)</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>(A_1 \lor A_2)</td>
<td>F</td>
<td>otherwise</td>
<td>T</td>
</tr>
<tr>
<td>(A_1 \land A_2)</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>(A_1 \land A_2)</td>
<td>T</td>
<td>otherwise</td>
<td>F</td>
</tr>
<tr>
<td>(A_1 \rightarrow A_2)</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>(A_1 \rightarrow A_2)</td>
<td>T</td>
<td>otherwise</td>
<td>F</td>
</tr>
<tr>
<td>(A_1 \leftrightarrow A_2)</td>
<td>T</td>
<td>(v(A_1) = v(A_2))</td>
<td>T</td>
</tr>
<tr>
<td>(A_1 \leftrightarrow A_2)</td>
<td>T</td>
<td>(v(A_1) \neq v(A_2))</td>
<td>F</td>
</tr>
</tbody>
</table>

Lesson 4

Lecture 4: Verifying Solutions and Turn-Ticket Problem
Propositional Calculus

- Implication
 \[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B\]
 \[A \rightarrow B\]
 - Premise or antecedent
 - Conclusion or consequent

- Formula
 - Atomic proposition
 - Atomic propositions or formulae combined with operators

- Assignment \(v(f)\) of formula \(f\)
 - Assigned values (T or F) for each atomic proposition in formula
 - Interpretation \(v(f)\) of formula \(f\) computed with operator rules
 - Formula \(f\) is **true** if \(v(f) = T\), **false** if \(v(f) = F\)

Propositional Calculus

- Formula
 \[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B\]

- Implication
 - Premise or antecedent
 - Conclusion or consequent

- Formula \(f\) is true/false if it’s interpretation \(v(f)\) is true/false
 - Given assignment values for each argument
 - Formula is **valid** if it is tautology
 - Always true for all interpretations (all atomic propos. values)
 - Formula is **satisfiable** if true in some interpretation
 - Formula is **falseable** if sometimes false
 - Formula is **unsatisfiable** if always false
Methods for Proving Formulae Valid

- Induction proof \(F(n) \) for all \(n=1, 2, 3, \ldots \)
 - \(F(1) \)
 - \(F(n) \rightarrow F(n+1) \)
- Dual approach: \(f \) is valid \(\iff \) \(\neg f \) is unsatisfiable
 - Find one interpretation that makes \(\neg f \) true
 - Go through (automatically) all interpretations of \(\neg f \)
 - If such interpretation found, \(\neg f \) is satisfiable, i.e., \(f \) is not valid
 - Otherwise \(f \) is valid
- Proof by contradiction
 - Assume: \(f \) is not valid
 - Deduce contradiction with propositional calculus

Methods for Proving Formulae Valid

- Deductive proof
 - Deduce formula from axioms and existing valid formulae
 - Start from the “beginning”
- Material implication
 - Formula is in the form “\(p \rightarrow q \)”
 - Can show that “\(\neg (p \rightarrow q) \)” cannot be (or cannot become): \(v(p)=T \) and \(v(q)=F \)
 - \(v(p)=v(q)=T \) and then
 - if \(v(q) \) becomes \(F \), then \(v(p) \) will not stay \(T \)
 - \(v(p)=v(q)=F \) and then
 - if \(v(p) \) becomes \(T \), then \(v(q) \) will not stay \(F \)
Correctness of Programs

- Program P is **partially correct**
 - If P halts, then it gives the correct answer
- Program P is **totally correct**
 - P halts and it gives the correct answer
 - Often **very difficult** to prove ("halting problem" is difficult)
- Program P can have
 - preconditions A(x1, x2, ...) for input values (x1, x2, ...)
 - postconditions B(y1, y2, ...) for output values (y1, y2, ...)
- Partial and total correctness with respect to A(...) and B(...)

More? See courses on specification and verification

Verification of Concurrent Programs

- State diagrams can be very large
 - Can do them automatically
- Making conclusions on state diagrams is difficult
 - Mutex, no deadlock, no starvation?
 - Can do automatically with temporal logic based on propositional calculus
 - Model checker programs
 (not covered in this course!)

Spin STeP
Atomic propositions

- Boolean variables
 - Consider them as atomic propositions
 - Proposition `wantp` is true, iff variable `wantp` is true in given state

- Integer variables
 - Comparison result is an atomic proposition
 - Example: proposition “turn ≠ 2” is true, iff variable `turn` value is not 2 in given state

- Control pointers
 - Comparison to given value is an atomic proposition
 - Example: proposition `p1` is true, iff control pointer for `P` is `p1` in given state

Idea: System state described with propositional logic

Formulae

- **Formula: `p1 ∧ q1 ∧ ¬wantp ∧ ¬wantq`**
 - True only in the starting state

- **Formula: `p4 ∧ q4`**
 - True only if mutex is broken
 - Mutex condition can be defined: ¬(p4 ∧ q4)
 - Must be true in all possible states in all possible computations
 - Invariant
Mutex Proof

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3: await wantq = false</td>
<td>q3: await wantp = false</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>

- Invariant \(\neg(p4 \land q4) \)
 - If this is proven correct (true in all states), then mutex is proven
- Inductive proof
 - True for initial state
 - Assuming true for current state, prove that it still applies in next state
 - Consider only statements that affect propositions in invariant

Can now prove original invariant \(\neg(p4 \land q4) \)
- Inductive proof with Lemma 4.3
- Details on next slide

 Mutex Proof

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3: await wantq = false</td>
<td>q3: await wantp = false</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>

- Invariant \(\neg(p4 \land q4) \)
 - Can not prove directly (yet) - too difficult
- Need proven Lemma 4.3
 - Lemma 4.1: \(p3..5 \rightarrow wantp \) is invariant
 - Lemma 4.2: \(wantp \rightarrow p3..5 \) is invariant
 - Lemma 4.3: \(p3..5 \rightarrow wantp \) and \(q3..5 \rightarrow wantq \) are invariants
 - Proof not covered here
- Can now prove original invariant \(\neg(p4 \land q4) \)
 - Inductive proof with Lemma 4.3
 - Details on next slide
Mutex Proof

Lemma 4.3: \(p_3 \land \cdots \land \) wantp and \(q_3 \land \cdots \land \) wantq invariants

Theorem 4.4: \(\neg (p_4 \land q_4) \) is invariant
- Prove \((p_4 \land q_4) \) inductively false in every state
- Initial state: trivial
- Only states \{p3, \ldots \} need to be considered
 - \(p_4 \) may become true only here, i.e., state \{p4, q?, \ldots \}
 - States \{\ldots, q3, \ldots\} similar, symmetrical
- Can execute \{p3, \ldots\} only if wantq=false (i.e., \(\neg \) wantq)
 - Because wantq=false, q4 is also false (Lemma 4.3)
 - Next state can not be \{p4, q4, \ldots\}, i.e., \((p_4 \land q_4) \) is false

Temporal Logic

- Propositional logic with extra temporal operators
- Computation \(\{s_0, s_1, s_2, \ldots\} \)
 - Infinite sequence of states: \(\{s_0, s_1, s_2, \ldots\} \)
- Temporal operators
 - Value (T or F) of given predicate does not necessarily depend only on current state
 - It may depend on also on (some or all) future states
 - Always or box (\(\Box \)) operator
 - \(\Box A \) true in state \(s_i \) if A true in all \(s_j, j \geq i \)
 - E.g., mutex must always be true
 - Eventually or diamond (\(\Diamond \)) operator
 - \(\Diamond A \) true in state \(s_i \) if A true in some \(s_j, j \geq i \)
 - E.g., no starvation means that something eventually will become true
Other Temporal Logic Operators

- True in next state (O) operator
 - \(O_p \) true in state \(s_i \) if \(p \) is true in the state \(s_{i+1} \)

- Until eventually (U) operator
 - \(p U q \) true in state \(s_i \) if \(p \) is true in every state in future until eventually \(q \) becomes true

- ...

- Not used (needed) in this course...

Some Laws of Temporal Logic

- deMorgan
 - \(\neg(A \land B) \iff (\neg A \lor \neg B) \)
 - \(\neg(A \lor B) \iff (\neg A \land \neg B) \)

- Distributive Laws
 - \(\Box(A \land B) \iff (\Box A \land \Box B) \)
 - \(\Diamond(A \lor B) \iff (\Diamond A \lor \Diamond B) \)

- Duality
 - Not always is equivalent to eventually not
 - \(\neg \Box A \iff \Diamond \neg A \)
 - Not eventually is equivalent to always not
 - \(\neg \Diamond A \iff \Box \neg A \)

Lecture 4: Verifying Solutions and Turn-Ticket Problem
Sequence

- Eventually always ◊ □
 - Will come true and then stays true forever
- Always eventually □ ◊
 - Always will become true some times in future (again)

More Complex Proofs

- State diagrams become easily too large for manual analysis
- Use model checkers
 - Spin for Promela programs (algorithms)
 - Java PathFinder for Java programs
- More details?
 - Course
 An Introduction to Specification and Verification
Advanced Critical Section Solutions

Ch 5 [BenA 06] (no proofs)

Bakery Algorithm
Bakery for N processes
Fast for N processes
Bakery Algorithm

- **Environment**
 - Shared memory, atomic read/write
 - No HW support needed
 - Short exclusive access code segments
 - Wait in busy loop (no process switch)

- **Goal**
 - Mutex and customers served in request order
 - Independent (distributed) decision making

- **Solution idea**
 - Get queue number, service requests in ascending order

- **Possible problems**
 - Shared, distributed queuing machine, will it work?
 - Get same queue number as someone else? Problem?
 - Some number skipped? Problem or not?
 - Will numbers grow indefinitely (overflow)?

Bakery Algorithm (2 processes)

Algorithm 5.1: Bakery algorithm (two processes)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1:</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p2:</td>
<td>np ← q + 1</td>
</tr>
<tr>
<td>p3:</td>
<td>wait np = 0 or np ≥ q</td>
</tr>
<tr>
<td>p4:</td>
<td>critical section</td>
</tr>
<tr>
<td>p5:</td>
<td>np ← 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q in non-critical section</th>
</tr>
</thead>
<tbody>
<tr>
<td>q in q3 or q4</td>
</tr>
</tbody>
</table>

- Can enter CS, if ticket (np or nq) is “smaller” than that of the other process
- Priority: if equal tickets, both compete, but P wins
 - Fixed priority not so good, but acceptable (rare occurrence)
Correctness Proof for 2-process Bakery Algorithm

- Mutex?
- No deadlock?
- No starvation?
- No counter overflow?

- What else, if any?

- How?
 - Temporal logic

Bakery for n Processes

Algorithm 5.2: Bakery algorithm (N processes)

```
integer array[1..n] number ← [0, ..., 0]

loop forever
  p1: non-critical section
  p2: number[i] ← 1 + max(number)
  p3: for all other processes j
       await (number[j] = 0) or (number[i] <= number[j])
  p4: critical section
  p5: number[i] ← 0
```

- No write competition to shared variables
 - Load/store assumed atomic
- Ticket numbers increase continuously while critical section is taken – danger?
- All other processes polled
 - Not so good!

Spesioin ja verifioin perusteet
(Slides Conc.Progr. 2006)
(for those who really like temporal logic…)
Bakery for n Processes

- Mutex OK?
 - Yes, because of priorities at competition time

- Deadlock OK?
 - Yes, because of priorities at competition time

- Starvation OK?
 - Yes, because
 - Your (i) turn will come eventually
 - Others (j) will progress and leave CS
 - Next time their number[j] will be bigger than yours

- Overflow
 - Not good. Numbers grow unbounded if some process always in CS
 - Must have other information/methods to guarantee that this does not happen.

\[\text{e.g., max 100 processes, CS less than 0.01\% of executed code ??} \]

Algorithm 5.3: Bakery algorithm without atomic assignment (3)

```
boolean array[1..n] choosing ← [false, ..., false]
integer array[1..n] number ← [0, ..., 0]
loop forever
  p1:     non-critical section
  p2:    choosing[i] ← true
  p3:    number[i] ← 1 + max(number)
  p4:    choosing[i] ← false
  p5:    for all other processes j,
  p6:      await choosing[j] = false
  p7:      await (number[j] = 0) or (number[i] = number[j])
  p8:    critical section
  p9:    number[i] ← 0
```

- Concurrent read & write may result to bad read
- Lamport, 1974
 - Correct behaviour in p7 even if number[j] value read wrong!
 - Assuming that await is in busy loop

Performance Problems with Bakery Algorithm

- Problem
 - Lots of overhead work, if many concurrent processes
 - Check status for all possibly competing other processes
 - Other processes (not in CS) slow down the one process trying to get into CS – not good
 - Most of the time wasted work
 - Usually not much competition for CS
- How to do it better?
 - Check competition in fixed time
 - In a way not dependent on the number of possible competitors
 - Suffer overhead only when competition occurs

Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer gate1 ← 0, gate2 ← 0</td>
<td></td>
</tr>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- Assume atomic read/write
- 2 shared variables, both read/written by P and Q
- Block at gate1, if contention
 - Last one to get there waits
- Access to CS, if success in writing own id to both gates
Algorithm 5.4: Fast algorithm for two processes (outline)

\[
\begin{array}{l}
\text{integer} \ gate_1 \leftarrow 0, \ gate_2 \leftarrow 0 \\
\hline
p & q \\
\text{loop forever} & \text{loop forever} \\
\quad \text{non-critical section} & \quad \text{non-critical section} \\
\text{p1:} & \text{q1:} \\
\quad \text{gate}_1 \leftarrow p & \quad \text{gate}_1 \leftarrow q \\
\text{p2:} & \text{q2:} \\
\quad \text{if} \ gate_2 \neq 0 \ \text{goto} \ p1 & \quad \text{if} \ gate_2 \neq 0 \ \text{goto} \ q1 \\
\text{p3:} & \text{q3:} \\
\quad \text{gate}_2 \leftarrow p & \quad \text{gate}_2 \leftarrow q \\
\text{p4:} & \text{q4:} \\
\quad \text{if} \ gate_1 \neq p & \quad \text{if} \ gate_1 \neq q \\
\text{p5:} & \text{q5:} \\
\quad \text{if} \ gate_2 \neq p \ \text{goto} \ p1 & \quad \text{if} \ gate_2 \neq q \ \text{goto} \ q1 \\
\quad \text{critical section} & \quad \text{critical section} \\
\text{p6:} & \text{q6:} \\
\quad \text{gate}_2 \leftarrow 0 & \quad \text{gate}_2 \leftarrow 0 \\
\end{array}
\]

- No contention for P, if P alone (i.e., gate2 = 0)
 - Little overhead in entry
 - 2 assignments and 2 comparisons

- Q pass gate2 (q3), when P tries to get in
 - P blocks at p2, until Q releases gate2
 - Q will advance even if P gets to p1 before q4 executed
Lecture 4: Verifying Solutions and Turn-Ticket Problem

Algorithm 5.4: Fast algorithm for two processes (outline) (2)

```
text here
```

- Q arrives at the same time with P
 - Competition on who wrote to gate1 and gate2 last
 - P & P: P advances, Q blocks at q5
 - P & Q: P advances, Q advances, i.e., no mutex (ouch!)

Algorithm 5.6: Fast algorithm for two processes (2)

```
text here
```

Discuss
Fast N Process Baker

- Expand Alg. 5.6
 - Still with just 2 gates

 \[P: \text{await want} = \text{false} \quad \Rightarrow \quad P_i: \text{For all other } j \quad \text{await want}[j] = \text{false} \]

- Still fast, even with “for all other”
 - Fast when no contention (gate2 = 0)
 - Entry: 3 assignments, 2 if’s
 - Awaits done only when contention
 - p4: if gate1 \(\neq i\)

Summary

- How to verify concurrent programs with Propositional Calculus and Temporal Logic
- Use of invariants in correctness proofs
 - E.g., mutual exclusion (mutex) proofs with invariants
 - Can often use in practice, when no formal proofs used
- Bakery algorithm
 - Shared memory
 - No HW support for concurrency control
 - 2 or N processes
 - Overflow problem, performance problem