Propositional Calculus

- Atomic propositions
 - A, B, C, …
 - True (T) or False (F)

- Operators
 - not
 - disjunction, or
 - conjunction, and
 - implication
 - equivalence

Boolean algebra

<table>
<thead>
<tr>
<th>A</th>
<th>v(A₁)</th>
<th>v(A₂)</th>
<th>v(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬A₁</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>¬A₁</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>A₁ ∨ A₂</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>A₁ ∨ A₂</td>
<td>otherwise</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>A₁ ∧ A₂</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>A₁ ∧ A₂</td>
<td>otherwise</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>A₁ → A₂</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>A₁ → A₂</td>
<td>otherwise</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>A₁ ↔ A₂</td>
<td>v(A₁) = v(A₂)</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>A₁ ↔ A₂</td>
<td>v(A₁) ≠ v(A₂)</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

(App B [BenA 06])

Copyright Teemu Kerola 2012
Propositional Calculus

• Implication
 \[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B\]
 \[A \rightarrow B\]
 - Premise or antecedent
 - Conclusion or consequent

• Formula
 - Atomic proposition
 - Atomic propositions or formulaes combined with operators

• Assignment \(v(f)\) of formula \(f\)
 - Assigned values (T or F) for each atomic proposition in formula
 - Interpretation \(v(f)\) of formula \(f\) computed with operator rules
 - Formula \(f\) is \textit{true} if \(v(f) = T\), \textit{false} if \(v(f) = F\)
Propositional Calculus

- Formula
 - Implication
 - Premise or antecedent
 - Conclusion or consequent
 - Formula \(f \) is true/false if it’s interpretation \(v(f) \) is true/false
 - Given assignment values for each argument
 - Formula is **valid** if it is **tautology**
 - Always true for all interpretations (all atomic propos. values)
 - Formula is **satisfiable** if true in some interpretation
 - Formula is **falsifiable** if sometimes false
 - Formula is **unsatisfiable** if always false

\[(A_1 \land A_2 \land \cdots \land A_n) \rightarrow B \]
Methods for Proving Formulaes Valid

• Induction proof $F(n)$ for all $n=1, 2, 3, \ldots$
 - $F(1)$
 - $F(n) \rightarrow F(n+1)$

• Dual approach: f is valid $\iff \neg f$ is unsatisfiable
 - Find one interpretation that makes $\neg f$ true
 • Go through (automatically) all interpretations of $\neg f$
 • If such interpretation found, $\neg f$ is satisfiable, i.e., f is not valid
 • O/w f is valid

• Proof by contradiction
 - Assume: f is not valid
 - Deduce contradiction with propositional calculus
 $\neg X \land X$
Methods for Proving Formulae Valid

• Deductive proof
 - Deduce formula from axioms and existing valid formulae
 - Start from the “beginning”

• Material implication
 - Formula is in the form \(p \rightarrow q \)
 - Can show that \(\neg(p \rightarrow q) \) can not be (or can not become):
 - if \(v(p) = v(q) = T \) and then
 - if \(v(q) \) becomes \(F \), then \(v(p) \) will not stay \(T \)
 - if \(v(p) = v(q) = F \) and then
 - if \(v(p) \) becomes \(T \), then \(v(q) \) will not stay \(F \)
Correctness of Programs

• **Program P is partially correct**
 - If P halts, then it gives the correct answer

• **Program P is totally correct**
 - P halts and it gives the correct answer
 - Often very difficult to prove (“halting problem” is difficult)

• **Program P can have**
 - preconditions A(x1, x2, ...) for input values (x1, x2, ...)
 - postconditions B(y1, y2, ...) for output values (y1, y2, ...)

• **Partial and total correctness with respect to A(...) and B(...)**

More? Se courses on specification and verification
Verification of Concurrent Programs

- State diagrams can be very large
 - Can do them automatically
- Making conclusions on state diagrams is difficult
 - Mutex, no deadlock, no starvation?
 - Can do automatically with temporal logic based on propositional calculus
 - Model checker programs
 (not covered in this course!)

Spin STeP
Atomic propositions

- **Boolean variables**
 - Consider them as atomic propositions
 - *Proposition wantp* is true, iff *variable wantp* is true in given state

- **Integer variables**
 - Comparison result is an atomic proposition
 - Example: proposition “*turn ≠ 2*” is true, iff *variable turn* value is not 2 in given state

- **Control pointers**
 - Comparison to given value is an atomic proposition
 - Example: proposition *p1* is true, iff *control pointer for P* is *p1* in given state

Idea: system state described with propositional logic
Formulae

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3: await wantq = false</td>
<td>q3: await wantp = false</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>

- **Formula:** \(p_1 \land q_1 \land \neg \text{wantp} \land \neg \text{wantq} \)
 - True only in the starting state
- **Formula:** \(p_4 \land q_4 \)
 - True only if mutex is broken
 - Mutex condition can be defined: \(\neg(p_4 \land q_4) \)
 - Must be true in all possible states in all possible computations
 - **Invariant**
Mutex Proof

Algorithm 3.8: Third attempt

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>boolean wantp ← false, wantq ← false</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1:</td>
<td>non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2:</td>
<td>wantp ← true</td>
<td>q2: wantq ← true</td>
</tr>
<tr>
<td>p3:</td>
<td>await wantq = false</td>
<td>q3: await wantp = false</td>
</tr>
<tr>
<td>p4:</td>
<td>critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5:</td>
<td>wantp ← false</td>
<td>q5: wantq ← false</td>
</tr>
</tbody>
</table>

- **Invariant** \(\neg(p4 \land q4)\)
 - If this is proven correct (true in all states), then mutex is proven
- **Inductive proof**
 - True for *initial state*
 - Assuming true for *current state*, prove that it still applies in *next state*
 - Consider only statements that affect propositions in invariant
Mutex Proof

- Invariant \(\neg(p4 \land q4) \)
 - Can not prove directly (yet) - too difficult
- Need proven Lemma 4.3
 - Lemma 4.1: \(p3..5 \rightarrow \text{wantp} \) is invariant
 - Lemma 4.2: \(\text{wantp} \rightarrow p3..5 \) is invariant
 - Lemma 4.3: \(p3..5 \leftrightarrow \text{wantp} \) and \(q3..5 \leftrightarrow \text{wantq} \) are invariants
 - Proof not covered here
- Can now prove original invariant \(\neg(p4 \land q4) \)
 - Inductive proof with Lemma 4.3
 - Details on next slide
Lemma 4.3: \(p^{3..5} \leftrightarrow \text{want}p \) and \(q^{3..5} \leftrightarrow \text{want}q \) invariants

Theorem 4.4: \(\neg(p^4 \land q^4) \) is invariant
 - Prove \((p^4 \land q^4) \) inductively false in every state
 - Initial state: trivial
 - Only states \(\{p^3, \ldots\} \) need to be considered
 - \(p^4 \) may become true only here, i.e., state \(\{p^4, q^?, \ldots\} \)
 - States \(\{\ldots, q^3, \ldots\} \) similar, symmetrical
 - Can execute \(\{p^3, \ldots\} \) only if \(\text{want}q=\text{false} \) (i.e., \(\neg\text{want}q \))
 - Because \(\text{want}q=\text{false} \), \(q^4 \) is also false (Lemma 4.3)
 - Next state can not be \(\{p^4, q^4, \ldots\} \), i.e., \((p^4 \land q^4) \) is false
Temporal Logic

- Propositional logic with **extra temporal operators**
- Computation
 - **Infinite** sequence of states: \(\{s_0, s_1, s_2, \ldots \} \)
- Temporal operators
 - Value (T or F) of given predicate does not necessarily depend only on current state
 - It may depend on also on (some or all) future states
 - **Always** or box (\(\Box \)) operator
 - \(\Box A \) true in state \(s_i \) if \(A \) true in all \(s_j, j \geq i \)
 - E.g., mutex must always be true
 - **Eventually** or diamond (\(\Diamond \)) operator
 - \(\Diamond A \) true in state \(s_i \) if \(A \) true in some \(s_j, j \geq i \)
 - E.g., no starvation means that something eventually will become true
Other Temporal Logic Operators

• True in next state (O) operator
 - O_p true in state s_i, if p is true in the state s_{i+1}

• Until eventually (U) operator
 - $p \mathcal{U} q$ true in state s_i, if p is true in every state in future until eventually q becomes true

• ...

• Not used (needed) in this course...
Some Laws of Temporal Logic

- **deMorgan**
 \[\neg(A \land B) \iff (\neg A \lor \neg B) \]
 \[\neg(A \lor B) \iff (\neg A \land \neg B) \]

- **Distributive Laws**
 \[\Box(A \land B) \iff (\Box A \land \Box B) \]
 \[\Diamond(A \lor B) \iff (\Diamond A \lor \Diamond B) \]

- **Duality**
 - Not always is equivalent to eventually not
 \[\neg \Box A \iff \Diamond \neg A \]
 - Not eventually is equivalent to always not
 \[\neg \Diamond A \iff \Box \neg A \]
Sequence

- **Eventually always**
 - Will come true and then stays true forever

- **Always eventually**
 - Always will become true some times in future (again)
More Complex Proofs

- State diagrams become easily too large for manual analysis
- Use model checkers
 - Spin for Promela programs (algorithms)
 - Java PathFinder for Java programs
- More details?
 - Course
 An Introduction to Specification and Verification

Spesifioinnin ja verifioinnin perusteet
Advanced Critical Section Solutions

Bakery Algorithm

Bakery for N processes
Fast for N processes
Bakery Algorithm

- **Environment**
 - Shared memory, atomic read/write
 - **No HW support needed**
 - Short exclusive access code segments
 - Wait in busy loop (no process switch)

- **Goal**
 - Mutex and customers served in request order
 - Independent (distributed) decision making

- **Solution idea**
 - Get queue number, service requests in ascending order

- **Possible problems**
 - Shared, distributed queuing machine, will it work?
 - Get same queue number as someone else? Problem?
 - Some number skipped? Problem or not?
 - Will numbers grow indefinitely (overflow)?
Bakery Algorithm (2 processes)

Algorithm 5.1: Bakery algorithm (two processes)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer (np \leftarrow 0), (nq \leftarrow 0)</td>
<td></td>
</tr>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
<td>q1: non-critical section</td>
</tr>
<tr>
<td>p2: (np \leftarrow nq + 1)</td>
<td>q2: (nq \leftarrow np + 1)</td>
</tr>
<tr>
<td>p3: await (nq = 0) or (np \leq nq)</td>
<td>q3: await (np = 0) or (nq < np)</td>
</tr>
<tr>
<td>p4: critical section</td>
<td>q4: critical section</td>
</tr>
<tr>
<td>p5: (np \leftarrow 0)</td>
<td>q5: (nq \leftarrow 0)</td>
</tr>
</tbody>
</table>

In real life usually not atomic!

- Can enter CS, if ticket (np or nq) is “smaller” than that of the other process
- Priority: if equal tickets, both compete, but P wins
 - Fixed priority not so good, but acceptable (rare occurrence)
Correctness Proof for 2-process Bakery Algorithm

• Mutex?
• No deadlock?
• No starvation?
• No counter overflow?

• What else, if any?

• How?
 - Temporal logic

Alg. 5.1

Spesifioinnin ja verifioinnin perusteet
(Slides Conc.Progr. 2006)
(for those who really like temporal logic…)
Bakery for n Processes

Algorithm 5.2: Bakery algorithm (N processes)

<table>
<thead>
<tr>
<th>integer array[1..n] number ← [0, ..., 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
</tr>
<tr>
<td>p1: non-critical section</td>
</tr>
<tr>
<td>p2: number[i] ← 1 + max(number)</td>
</tr>
<tr>
<td>p3: for all other processes j</td>
</tr>
<tr>
<td>p4: await (number[j] = 0) or (number[i] ≪ number[j])</td>
</tr>
<tr>
<td>p5: critical section</td>
</tr>
<tr>
<td>p6: number[i] ← 0</td>
</tr>
</tbody>
</table>

- No write competition to shared variables
 - Load/store assumed atomic
- Ticket numbers increase continuously while critical section is taken – danger?
- All other processes polled
 - Not so good!

when equality, give priority to smaller number[x]
in non-critical section?
in q3..q6?
not atomic!?
Bakery for n Processes

- **Mutex OK?**
 - Yes, because of priorities at competition time
- **Deadlock OK?**
 - Yes, because of priorities at competition time
- **Starvation OK?**
 - Yes, because
 - Your (i) turn will come eventually
 - Others (j) will progress and leave CS
 - Next time their number[j] will be bigger than yours
- **Overflow**
 - Not good. Numbers grow unbounded if some process always in CS
 - Must have other information/methods to guarantee that this does not happen.

E.g., max 100 processes, CS less than 0.01% of executed code

18.1.2012 Copyright Teemu Kerola 2012
Concurrent read & write may result to bad read

Lamport, 1974

- Correct behaviour in p7 even if number[j] value read wrong!
 - Assuming that await is in busy loop

(3)
Performance Problems with Bakery Algorithm

• Problem
 – Lots of overhead work, if many concurrent processes
 – Check status for all possibly competing other processes
 • Other processes (not in CS) slow down the one process trying to get into CS – not good
 – Most of the time wasted work
 • Usually not much competition for CS

• How to do it better?
 – Check competition in fixed time
 – In a way not dependent on the number of possible competitors
 – Suffer overhead only when competition occurs
Algorithm 5.4: Fast algorithm for two processes (outline)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- Assume atomic read/write
- 2 shared variables, both read/written by P and Q
- Block at gate1, if contention
 - Last one to get there waits
- Access to CS, if success in writing own id to both gates
Algorithm 5.4: Fast algorithm for two processes (outline)

integer gate1 ← 0, gate2 ← 0

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td></td>
<td>non-critical section</td>
</tr>
<tr>
<td>p1: gate1 ← p</td>
<td>q1: gate1 ← q</td>
</tr>
<tr>
<td>p2: if gate2 ≠ 0 goto p1</td>
<td>q2: if gate2 ≠ 0 goto q1</td>
</tr>
<tr>
<td>p3: gate2 ← p</td>
<td>q3: gate2 ← q</td>
</tr>
<tr>
<td>p4: if gate1 ≠ p</td>
<td>q4: if gate1 ≠ q</td>
</tr>
<tr>
<td>p5: if gate2 ≠ p goto p1</td>
<td>q5: if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td></td>
<td>critical section</td>
</tr>
<tr>
<td>p6: gate2 ← 0</td>
<td>q6: gate2 ← 0</td>
</tr>
</tbody>
</table>

- No contention for P, if P alone (i.e., gate2 = 0)
 - Little overhead in entry
 - 2 assignments and 2 comparisons
Q pass gate2 (q3), when P tries to get in
- P blocks at p2, until Q releases gate2
- Q will advance even if P gets to p1 before q4 executed
Q arrives at the same time with P
- Competition on who wrote to gate1 and gate2 last
- P & P: P advances, Q blocks at q5
- P & Q; P advances, Q advances, i.e., no mutex (ouch!)
Algorithm 5.6: Fast algorithm for two processes (2)

```
integer gate1 ← 0, gate2 ← 0

boolean wantp ← false, wantq ← false
```

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1:</td>
<td>q1:</td>
</tr>
<tr>
<td>gate1 ← p</td>
<td>gate1 ← q</td>
</tr>
<tr>
<td>wantp ← true</td>
<td>wantq ← true</td>
</tr>
<tr>
<td>p2:</td>
<td>q2:</td>
</tr>
<tr>
<td>if gate2 ≠ 0</td>
<td>if gate2 ≠ 0</td>
</tr>
<tr>
<td>wantp ← false</td>
<td>wantq ← false</td>
</tr>
<tr>
<td></td>
<td>goto q1</td>
</tr>
<tr>
<td>p3:</td>
<td>q3:</td>
</tr>
<tr>
<td>gate2 ← p</td>
<td>gate2 ← q</td>
</tr>
<tr>
<td>p4:</td>
<td>q4:</td>
</tr>
<tr>
<td>if gate1 ≠ p</td>
<td>if gate1 ≠ p</td>
</tr>
<tr>
<td>wantp ← false</td>
<td>wantq ← false</td>
</tr>
<tr>
<td>await wantq = false</td>
<td>await wantp = false</td>
</tr>
<tr>
<td>p5:</td>
<td>q5:</td>
</tr>
<tr>
<td>if gate2 ≠ p goto p1</td>
<td>if gate2 ≠ q goto q1</td>
</tr>
<tr>
<td>else wantp ← true</td>
<td>else wantq ← true</td>
</tr>
<tr>
<td></td>
<td>critical section</td>
</tr>
<tr>
<td>p6:</td>
<td>q6:</td>
</tr>
<tr>
<td>gate2 ← 0</td>
<td>gate2 ← 0</td>
</tr>
<tr>
<td>wantp ← false</td>
<td>wantq ← false</td>
</tr>
</tbody>
</table>
```

- P last at gate1
- Q last at gate 2
- Q blocks here
Fast N Process Baker

- Expand Alg. 5.6
  - Still with just 2 gates

- Still fast, even with “for all other”
  - Fast when no contention (gate2 = 0)
    - Entry: 3 assignments, 2 if’s
  - Awaits done only when contention
    - p4: if gate1 ≠ i

P: \text{await wantq=false} \quad \rightarrow \quad \text{Pi: For all other } j \quad \text{await want}[j]=false

18.1.2012
Copyright Teemu Kerola 2012
Summary

• How to verify concurrent programs with Propositional Calculus and Temporal Logic
• Use of invariants in correctness proofs
  – E.g., mutual exclusion (mutex) proofs with invariants
  – Can often use in practice, when no formal proofs used
• Bakery algorithm
  – Shared memory
  – No HW support for concurrency control
  – 2 or N processes
  – Overflow problem, performance problem