Computer Organization 11 10/10/2001

Superscalar Processors
Ch 13

Limitations, Hazards
Instruction Issue Policy
Register Renaming
Branch Prediction

10/10/2001 Copyright Teemu Kerola 2001 1

Superscalar Processing ¢

» Basic idea: more than one instruction completion
per cycle
» Aimed at speeding up scalar processing
— use many pipelines and :
not just more pipeline phases Fig. 13.2
* Many instructions in execution phase
simultaneously
— need parallelism aso in earlier & later phases
— may not execute (completely) in given ol Fig. 13.1
* Multiple pipeines
— question: when can instruction be executed?
 Fetch many instructions at the same time

— memory access must not be bottleneck
10/10/2001 Copyright Teemu Kerola 2001 2

Ch 13, Superscalar Processors 1

Computer Organization 11 10/10/2001

Why couldn’t we execute this
Instruction right now? Fig. 133
* (True) Data Dependency

(datariippuvuus)

load r4, salary(r6)
a

mul r2,r4,r10

* Procedural or Control Dependency

. . (kontrolli-
— even more costlier than with normal ‘s
ven | riippuvuus)
pipeline
— now may waste more than one instruction!
* Resource Conflict :
(resurssi-

— thereis no available circuit right now konflikti)
— memory buffer, FP adder, register file port

» Usual solution: circuitsto detect problem
and stall pipeline when needed

10/10/2001 Copyright Teemu Kerola 2001 3

New dependency for superscalar
case? @®)

* Name dependency (nimiriippuvuus)
— two instructions use the same data item
* register or in memory
— no value passed from one instruction to another
— instructions have all their correct data available
— each individual result isthe one intended
— overall result is not the one intended
— two cases: Output Dependency & Antidependency

(Kirjoitusriippuvuus?) (antiriippuvuus)

» exampleson next 2 dides

— what if there are dliases?
» E.g., two virtual addresses, same physical address
10/10/2001 Copyright Teemu Kerola 2001 4

Ch 13, Superscalar Processors 2

Computer Organization |1

Output Dependency? o

» Some earlier instruction has not yet finished

writing from the same location that we want
to write to
— execution time semantics determined by the

original order of machine read ,rl, sum
instructions add £r2, r1, r3
add rl,r4,r5

* Need to preserve order

Want to havesumof r4 and r5inrl
after all these three instructions were
executed

10/10/2001 Copyright Teemu Kerola 2001 5

Antidependency o

Some earlier instruction has not yet finished reading from
the same location that we want to write to
Need to preserve order

mv r2’,(r1
add rl,r4, 5

Want to have original value of rlinr2

10/10/2001 Copyright Teemu Kerola 2001 6

Ch 13, Superscalar Processors

10/10/2001

Computer Organization 11 10/10/2001

Machine Parallelism ¢

* Instruction-level paralelism
— How much parallelism isthere
— Theoretical maximum

* Machine paraléelism

— How much parallelism is achieved by any specific
machine or architecture?

— At most as much as instruction-level parallelism
* dependencies?
* physical resources?
* not optimized (stupid) design?

10/10/2001 Copyright Teemu Kerola 2001 7

Superscalar Processor

Instruction dispatch Fig. 13.6

— get next available executable instruction from
instruction stream

Window of execution
— al instructions that are considered to be issued
I nstruction issue

— dlow instruction to start execution

— execution and compl etion phase should continue
now with no stalls

— if any stalls needed, do them before issue
Instruction reorder and commit (retiring)
— hopefully all system state changes here!

— last chance to change order or abandon results
10/10/2001 Copyright Teemu Kerola 2001 8

Ch 13, Superscalar Processors 4

Computer Organization 11 10/10/2001

Instruction Dispatch ¢,

» Whenever there are both
— available dots in window of execution

— ready instructions from prefetch or branch
prediction buffer

* instructions that do not need to stall at all during
execution

+ al dependencies do not need to be solved yet
* must know that all

Fig. 13.6

: "datain R4 is not yet
dependenciesare e bytit will betherein
solved by the time three cycleswhenit is
astall would ocour | eeqed by this instruction”

10/10/2001 Copyright Teemu Kerola 2001 9

Window of Execution

Fig. 13.6

» Bigger is better

— easier to find a good candidate that can be
issued right now
— more work to figure out all dependencies
— too small value will limit machine parallelism
significantly
 E.g., 6" instruction could be issued,
but only 4 next ones are even considered

10/10/2001 Copyright Teemu Kerola 2001 10

Ch 13, Superscalar Processors 5

Computer Organization |1

| nstruction Issue Fig. 136

» Select next instruction(s) for execution

» Check first everything so that execution can
proceed with no stalls (stopping) to the end

— resource conflicts
— data dependencies
— control dependencies
— output dependencies
— antidependencies
« Simpler instruction execution pipelines
— no need to check for dependencies

10/10/2001 Copyright Teemu Kerola 2001 11

| nstruction Issue Policies ¢

* Instruction fetch policy

— constraints on how many instructions are
considered to be dispatched at atime

* E.g., 2instructions fetched and decoded at atime
= both must be dispatched before next 2 fetched

* Instruction execution policy

— constraints on which order dispatched
Instructions may start execution

» Completion policy
— congtraints the order of completions

10/10/2001 Copyright Teemu Kerola 2001 12

Ch 13, Superscalar Processors

10/10/2001

Computer Organization 11 10/10/2001

Example 1 of Issue Policy «

* In-order issue with in-order compl etion
— same as purely sequential execution

no instruction window needed Fig. 134 (9)
instruction issued only in original order

* many can be issued at the same time
instructions completed only in original order

* many can be completed at the same time
check before issue:

* resource conflicts, data & control dependencies

 execution time, so that compl etions occur in order:
wait long enough that earlier instructions will

complete first
— Pentium I1: out-of-order middle execution for micro-
ops (uops
10/10/2001 p (p)Copyright Teemu Kerola 2001 13

Example 2 of Issue Palicy

* In-order issue with out-of-order completion
— issuein original order Fig. 13.4 (b)
* many can be issued at the same time
— no instruction window needed

— alow executions complete before those of earlier
instructions

— check before issue:
* resource conflicts, data & control dependencies

* output dependencies: wait long enough to solve
them

10/10/2001 Copyright Teemu Kerola 2001 14

Ch 13, Superscalar Processors 7

Computer Organization 11 10/10/2001

Example 3 of Issue Policy ¢

» Qut-of-order issue with out-of-order completion

— issuein any ordgr . Fig. 134 ()
* many can be issued at the same time

— instruction window for dynamic instruction scheduling

— alow executions complete before those of earlier
instructions

— Check before issue:
* resource conflicts, data & control dependencies

* output dependencies: wait for earlier instructions to
write their results before we overwrite them

* antidependencies. wait for earlier instructions issued
later to pick up arguments before overwriting them

10/10/2001 Copyright Teemu Kerola 2001 15

Get Rid of Name Dependencies
* Problem: independent data stored in locations with
the same name

— often a storage conflict: same register used for two
different purposes

— resultsin wait stages (pipeline stalls, “bubbles”)
» Cure register renaming

— actual registers may be different than named registers

— actual registers allocated dynamically to named

registers

— alocate them so that name dependencies are avoided
» Cost:

— moreregisters

— circuitsto allocate and keep track of actual registers

10/10/2001 Copyright Teemu Kerola 2001 16

Ch 13, Superscalar Processors 8

Computer Organization 11 10/10/2001

Register Renaming

Output dependency: 13 can not o .
complete before 11 has completed first: ngzsg :]F_Q-S, E: g
¥ ’

Antidependency: 13 can not complete — .
before 12 has read value from R3: R3=R5+1; (13)
R7:=R3+R4; (14

Rename datain register R3

to actual hardware registers R3b:=R3a+ R5a (1)
Rename alR :c? o?r?e?, rFefgiCsters =Rte s 1 (12)
R4b, R5a, R7b R3c:=R5a+ 1 (13)

- R7b:=R3c + R4b (14)
| No name dependencies now: |

» Drawback: need more registers
— Pentium 11: 40 extraregs + 16 normal regs
 Why R3a& R3b?

10/10/2001 Copyright Teemu Kerola 2001 17

Superscalar Implementation

» Fetch strategy Fig. 13.6
— prefetch, branch prediction

» Dependency check logic

 Forwarding circuits (shortcuts) to transfer

dependency data directly instead viaregisters or
memory (to get data accessible earlier)

e Multiple functional units (pipelines)

 Effective memory hierarchy to service many
memory accesses simultaneously

* Logic to issue multiple instruction simultaneously
* Logic to commit instruction in correct order

10/10/2001 Copyright Teemu Kerola 2001 18

Ch 13, Superscalar Processors 9

Computer Organization 11 10/10/2001

Overall Gain from Superscalar

| mplementation

o Seethe effect of ... Fig. 135
— renaming = right graph
—issuewindow size = color of vertical bar
— out-of-order issue = “base’” machine

— duplicated
» data cache access = “+ld/st”
* ALU = “ALU”
* both = “both”

» Max speed-up about 4

10/10/2001 Copyright Teemu Kerola 2001 19

10/10/2001 Copyright Teemu Kerola 2001 20

Ch 13, Superscalar Processors 10

Computer Organization 11 10/10/2001

Example:

PowerPC 601 Architecture

» General RISC organization
— instruction formats Fig. 10.9
— 3 execution units Fig. 13.10
» Logica view
— 4 instruction window for issue

— each execution unit picks up next onefor it
whenever there is room for new instruction

— integer instructions issued only when 1st
(dispatch buffer 0) in queue

Fig. 13.11

10/10/2001 Copyright Teemu Kerola 2001 21

PowerPC 601 Pipelines u

e Instruction pipelines Fig. 13.12
— all state changesin final “Write Back” phase

— up to 3instruction can be dispatched at the
same time, and issued right after that in each
pipeline if no dependencies exist

* dependencies solved by stalls

— ALU ops place their result in one of 8 condition

code field in condition register
* up to 8 separate conditions active concurrently

10/10/2001 Copyright Teemu Kerola 2001 22

Ch 13, Superscalar Processors 11

Computer Organization 11 10/10/2001

PowerPC 601 Branches

» Zero cycle branches
— branch target addresses computed already in
lower dispatch buffers
* before dispatch or issue!
— Easy: unconditional branches (jumps) or branch
on already resolved condition code field
— otherwise
» conditional branch backward: guess taken
» conditional branch forward: guess not taken

* if speculation ends up wrong, cancel conditional
instructions in pipeline before write-back

» speculate only on one branch at atime

10/10/2001 Copyright Teemu Kerola 2001 23

PowerPC 601 Example

» Conditional branch example
— Original C code Fig. 13.13 (a)

— Assembly code Fig. 13.13 (b)
* predict branch not taken

— Correct branch prediction Fig. 13.14 (a)
— Incorrect branch prediction Fig. 13.14 (b)

10/10/2001 Copyright Teemu Kerola 2001 24

Ch 13, Superscalar Processors 12

Computer Organization 11 10/10/2001

PowerPC 620 Architecture

* 6 execution units Fig. 4.25
» Up to 4 instructions dispatched simultaneously

» Reservation stations to store dispatched
instructions and their arguments [HePag6] Fig. 4.49
— kind of rename registers also!

10/10/2001 Copyright Teemu Kerola 2001 25

PowerPC 620 Rename Registers ¢

* Renameregisters to store results not yet
committed [HePa%6] Fig. 4.49
— normal uncompleted and speculative instructions
— 8int and 12 FP extrarename registers
* in sameregister file as normal registers
— results copied to normal registers at commit
— information on what to do at commit isin completion
unit in reorder buffers
* Instruction completes (commits) from completion
unit reorder buffer once all previous instructions
are committed
— max 4 instructions can commit at atime

10/10/2001 Copyright Teemu Kerola 2001 26

Ch 13, Superscalar Processors 13

Computer Organization 11 10/10/2001

PowerPC 620 Speculation

 Speculation on branches
— 256-entry branch target buffer
* two-way Set-associative
— 2048-entry branch history table
» used when branch target buffer misses
— speculation on max 4 unresolved branches

10/10/2001 Copyright Teemu Kerola 2001 27

10/10/2001 Copyright Teemu Kerola 2001 28

Ch 13, Superscalar Processors 14

Computer Organization 11 10/10/2001

Intel Pentium 11 speculation

512-entry branch target buffer

— 4-bit prediction state, 4-way Set-associative

Static prediction

— used before dynamic will work

— forward not taken, backward branches taken
In-order-completion for 40 uops (micro-

operations) limits speculation

RSB — 4 entry Return Stack Buffer

10/10/2001 Copyright Teemu Kerola 2001 29

-- End of Chapter 13: Superscalar --

FP cpemnd buses
Resanafion
s e [e S [o e F':‘:.mh”s [T [
1+ |3} i
o = [
GP resul buses FP rosuflbu B
¥ ¥ {
Rezull stalus buses
Dala
wache

(Fig. 4.49)

FIGURE 4.49 The PowarPC 620 has six different functlonal units, aach with Its own resarvatlon statlons and a 16~
antry rearder buffer, In the unit.

(Hennessy-Patterson, Computer Architecture, 2nd Ed, 1996)

10/10/2001 Copyright Teemu Kerola 2001 30

Ch 13, Superscalar Processors 15

