


### Computer System

Data movement, storage, and processing

Figs 1.3, 1.4

Control

Figs 1.5, 1.6

Figs 3.2, 3.3, 3.9

- System and I/O Buses
- Internal and external memories
- Input/Output systems
- Operating Systems support

### System & I/O Buses

- Bus configurations
- Fig 3.18
- Local (internal, memory) bus (sisäinen väylä)
  - inside CPU chip
  - connects CPU to cache
- System bus

(systeemiväylä)

- connects CPU to memory
- I/O bus

(I/O väylä)

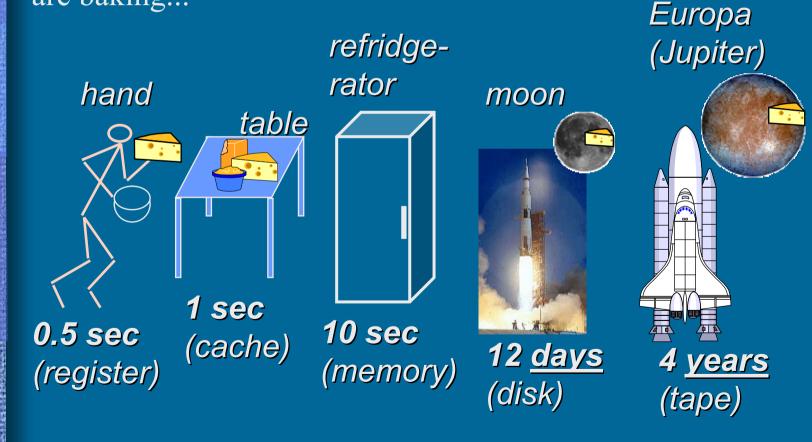
- connects CPU & memory to I/O devices
- Implementation details later on

#### Internal and External Memories

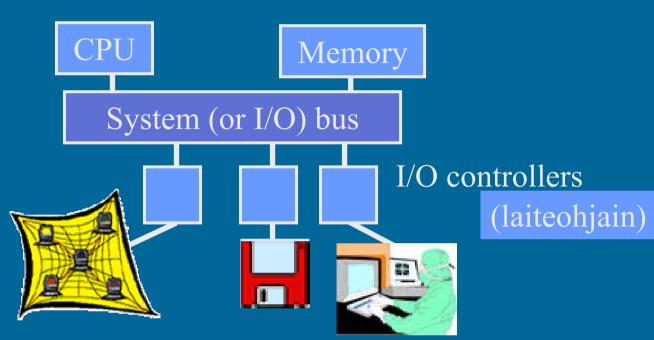
Memory hierarchy

(muistihierarkia)

(saantiaika)


Fig 4.1

- Registers, L1 Cache, L2 Cache
- Main memory, Disk cache
- Disk, Optical, Tape
- File server (local, via LAN)
- Remote server (via WWW?)
- Storage capacity vs. access time


Fig 4.3 [Stal96]

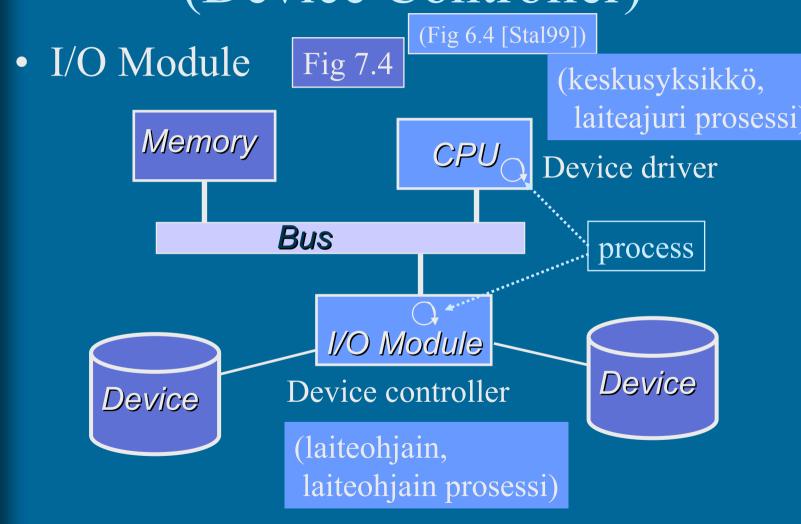
### Teemu's Cheesecake

Register, on-chip cache, memory, disk, and tape speeds relative to times locating cheese for the cheese cake you are baking...



### Input/Output Systems




- Three categories
  - I/O with people
  - I/O with machines
  - Communication

Video display, joy-stick, ...

CD, disk, ...

Ethernet, token ring, ...

# I/O Module (Device Controller)



### Direct vs. Interrupt-driven I/O (2)

- Direct, I.e., programmed I/O
- (suora I/O)

- CPU controls I/O directly
- CPU spins (waits) while I/O device works
- I/O device transfers one word at a time
- Interrupt-driven I/O

(keskeyttävä I/O)

- CPU gives one I/O command, does a process switch, and continues with some other work
- when I/O is done, I/O controller interrupts the CPU, and original process is made ready to run again

## Direct vs. Interrupt-driven I/O (contd) (2)

- Direct Memory Access (DMA)
  - I/O controller can directly access memory
    - o/w access only to "data registers"
  - interrupt CPU only after (a big) block transfer
- I/O channels and I/O processors
  - − I/O controller is smart
  - − I/O controller manages complete I/O jobs
    - each with many DMA transfers?
    - many I/O jobs in queue at a time?

- Memory-Mapped I/O (3) (muistiinkuvattu I/O) (3)
- Each device controlled via device registers
  - data, status, control

(laiterekisterit)

- Device registers are addressed similarly as memory
  - with normal read/write instructions(vs. specific machine instructions for I/O)
  - device controller acts also as a memory card
- Device registers are physically located in the device controller which recognises certain memory addresses belonging to it

### SCSI - Small Computer System Interconnect (3)

- Parallel data interface
  - -8,16, or 32 parallel data lines (wires)
  - 9 control lines
- Max 7 devices
- Arbitration
  - select who can use
  - the one with the highest priority wins
  - priority = SCSI id selected for the device

### Operating Systems Support

• User/computer interface

Fig 8.1

(Fig 7.1 [Stal99])

Resource manager

Fig 8.2

(Fig 7.2)

Process manager

Fig 8.7 (Fig 7.8)

(prosessin tilat)

Process Control Block (PCB)

Fig 8.8

(Fig 7.9)

(käyttöliittymä)

(resurssien hallinta)

(prosessien hallinta)

(prosessin kontrollilohko)

#### Processor States

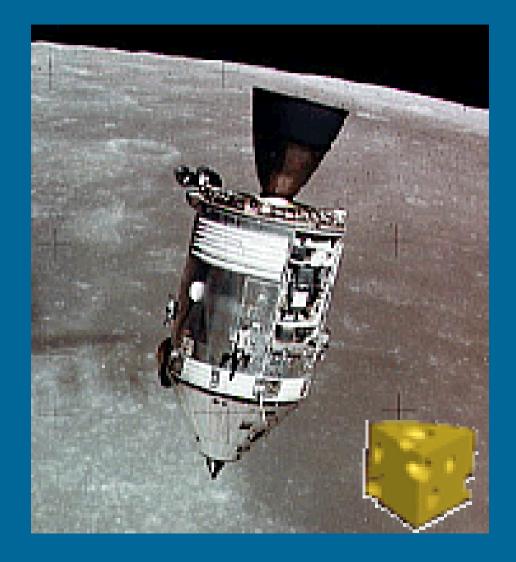
user kernel

(suorittimen tilat)

• User mode (normal mode)

- (käyttäjätila)
- can use only non-privileged instructions
- can access only memory in user-space
- Kernel mode (privileged mode)
- (etuoikeutettu tila)
- can use all machine instructions,
   including privileged instructions
- (etuoikeutetut konekäskyt)

can access all memory,
 including kernel memory


(KJ:n ytimen omat muistialueet)

### Changing Processor Mode SVC, INT



- User mode  $\rightarrow$  kernel mode
  - interrupt or explicit SVC instruction
  - interrupt handler checks for rights to changemode (keskeytyskäsittelijä)
- Kernel mode → user mode
  - privileged machine instruction
  - return from interrupt (e.g., IRET)
  - returns control & restores previous mode

#### -- End of Chapter 1-8: Intro --

