Memory Hierarchy and Cache
Ch 4-5

Memory Hierarchy
Main Memory
Cache
Implementation

2492003 Copyright Teemu Kerola 2003 1

Teemu’s Cheesecake
Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you
are baking...

- Europa

refridge- (Jupiter)
hand rator moon
table G
0 5 sec) 10 sec Tz‘d—‘-‘a-} s g

register, ‘memo . years

(reg) (ry) (disk) (tape)
24.9.2003 Copyright Teemu Kerola 2003 2

Goal @)

* I want my memory lightning fast
* I want my memory to be gigantic in size

» Register access viewpoint:

— data access as fast as HW register
— data size as large as memory ~ HW solution

* Memory access viewpoint
— data access as fast as memory

Memory Hierarchy

* Most often needed data is kept close

» Access to small data sets can be made fast
— simpler circuits

* Faster is more expensive

 Large can be bigger and cheaper (per byte)

Memory Hierarchy
up: smaller, faster, more expensive,
more frequent access
down: bigger, slower, less expensive,

— data size as large as disk L el e less frequent access
SW solution
24.9.2003 Copyright Teemu Kerola 2003 3 24.9.2003 Copyright Teemu Kerola 2003 4
INCi i ikalli o)
Principle of locality « (paikallisuus) Principle of locality «

* In any given time period, memory references
occur only to a small subset of the whole address
space

 The reason why memory hierarchies work

Prob (small data set) =99% Cost (small data set) =2 us
Prob (the rest) = 1% Cost (the rest) =20 ps

Aver cost 99% * 2 us+ 1% * 20 us = 2.2 ps

+ Average cost is close to the cost of small data set
* How to determine data for that small set?
* How to keep track of it?

24.9.2003 Copyright Teemu Kerola 2003 5

* In any given time period, memory references
occur only to a small subset of the whole address

Space (paikallisuus)

» Temporal locality: it is likely that a data item

ill be referenced
@ soon (ajallinen paikallisuus)

« Spatial locality: it is likely that a data items
‘ to the one referenced a short time ago will be

referenced soon (alueellinen paikallisuus)

memory 2511: 23 71:

24.9.2003 Copyright Teemu Kerola 2003 6

Memory

* Random access semiconductor memory
— give address & control, read/write data

« ROM, PROMS, FLASH

— system startup memory, (Table 4.2 [Stal99])
BIOS (Basic Input/Output System)
* load and execute OS at boot
— also random access
« RAM
— “normal” memory accessible by CPU

2492003 Copyright Teemu Kerola 2003 7

RAM E.g.,$0.12/MB
(year 2001)
* Dynamic RAM, DRAM

— simpler, slower, denser, bigger (bytes per chip)
— main memory?
— periodic refreshing required
— refresh required after read

» Static RAM, SRAM E.g., $0.70 / MB (year 2001)

— more complex (more chip area/byte), faster,
smaller (bytes per chip)

— cache?
— no periodic refreshing needed
— data remains until power is lost

E.g., 60 ns access

E.g., 5 ns access?

2492003 Copyright Teemu Kerola 2003 8

DRAM Access
+ 16 Mb DRAM

_ 4 bit data items Fig. 5.3 | (Fig. 4.4 [Stal99])

— 4M data elements, 2K * 2K square
— Address 22 bits (Fig. 4.5 (b) [Stal99])

« row access select (RAS)
« column access select (CAS)
« interleaved on 11 address pins
» Simultaneous access to many 16Mb
memory chips to access larger data items
— Access 8 bit words in parallel? Need 8 chips.

Fig. 5.5 | (Fig. 4.6 [Stal99])

24.9.2003 Copyright Teemu Kerola 2003 9

SDRAM (Synchronous DRAM)

* 16 bits in parallel

— access 4 DRAMs (4 bits each) in parallel

CPU clock synchronizes also the bus

— not by separate clock for the bus

— CPU knows how longs it takes make a
reference — it can do other work while
waiting

* Faster than plain DRAM

* Current main memory technology
(year 2001)

E.g., $0.11 / MB (year 2001)

24.9.2003 Copyright Teemu Kerola 2003 10

RDRAM (RambusDRAM)

* New technology, works with fast memory bus
— expensive E.g., $0.40 / MB (year 2001)?

 Faster transfer rate than with SDRAM
E.g., 1.6 GB/sec vs. 200 MB/sec (?)

¢ Faster access than SDRAM E.g., 38 nsvs. 44 ns
» Fast internal Rambus channel (800 MHz)
* Rambus memory controller connects to bus

* Speed slows down with many memory modules
— serially connected on Rambus channel
— not good for servers with 1 GB memory (for now!)

* 5% of memory chips (year 2000), 12% (2005)?

24.9.2003 Copyright Teemu Kerola 2003 11

Flash memory
* Original invention
— Fujio Masuoka, Toshiba Corp., 1984 a]
— non-volatile, data remains with power off
— slow to write ("program”)
* Nand-Flash, 1987
— Fujio Masuoka

— lowers the wiring per bit to one-eighth that of the Flash
Memory's

24.9.2003 Copyright Teemu Kerola 2003 12

Intel ETOX Flash

e Intel, 1997

* A single transistor with the addition of an electrically
isolated polysilicon floating gate capable of storing charge
(electrons)

» Negatively charged electrons
act as a barrier between the

use high voltage to write,
control gate and the

and “Fowler-Nordheim

floating gate. Tunneling” to clear

+ Depending on the flow l bt
through the floating gate e /
(more or less than 50%)
it has value 1 or 0. e/ Nl

° Read/ Write data http://developer.intel.com/technology/
in small blocks itj/q41997/articles/art_1.htm
24.9.2003 Copyright Teemu Kerola 2003 13

Intel StrataFlash

 Flash cell is analog, not —
digital storage
» Use different charge
levels to store 2 bits (or
more!) of data in each L1 1]
flash cell " CanTrrasnd diotage invos
http://developer.intel 1

P
itj/q41997/articles/art_1.htm

Humbar of Call

24.9.2003 Copyright Teemu Kerola 2003 14

Flash
Implementations

» BIOS (PC’s, phones,

other hand-held devices....)
¢ Toshiba SmartMedia, 2-256 MB
* Sony Memory Stick, 2-1024 MB
* CompactFlash, 8-512 MBc..cccccvininennne
* PlayStation II Memory Card, 8 MB
* MMC - MultiMedia Card, 32-128 MB
* Fuji XD Picture Card 32-256 MB

* Hand-held phone memories

24.9.2003 Copyright Teemu Kerola 2003 15

24.9.2003 Copyright Teemu Kerola 2003 16

Cache Memory (valimuisti)

* Problem: how can I make my (main)
memory as fast as my registers?

* Answer: (processor) cache

— keep most probably referenced data in fast
cache close to processor, and rest of it in
memory

« much smaller than main memory
* (much) more expensive (per byte) than memory
» most of data accesses only to cache

Fig. 4.3 & 4.6 | (Fig. 4.13 & 4.16 [Stal99])

24.9.2003 Copyright Teemu Kerola 2003 17

90% 99%?

Memory references with cache

* Data is in cache? Hit
Data is only in memory? Miss
Read it to cache .
CPU waits until data available (Wi A5 (B

Many blocks (cache lines) help for temporal locality
many different data items in cache -
i
Large blocks help for spatial locality (Fig. 4.14 [Stall99])
lots of “nearby” data available

Fixed cache size?
Select “many” or “large”? (can not have both!)

24.9.2003 Copyright Teemu Kerola 2003 18

Cache Features

Cache Size

* Size
. 1 i kuvausfunkti . . .
Mapping function () Bigger is better in general
— how to find data in cache? .
. : ,, * Bigger may be slower
* Replacement algorithm (poistoalgoritmi) .
— lots of gates, cumulative gate delay?
— which block to remove to make . .
* Too big might be too slow!
room for a new block?
. . — Help: 2- or 3-level caches IKW (4 KB),
* Write policy T 128MW (512 MB)?
— how to handle writes? regs L1 L2 L3 mem
+ Line size (block size)? |(sivin tai lohkon koko) " 0[] m
* Number of caches? Types of caches? cpu chip| || ’
24.9.2003 Copyright Teemu Kerola 2003 19 24.9.2003 Copyright Teemu Kerola 2003 20
Mapping: Memory Address o) Mapping o

+ Alpha AXP issues 34 bit memory addresses
— Use block address to locate block in cache

— With cache hit, block offset is controlling a multiplexer

to select right word o
& Cache line size

block = block size

» Given a memory block address,
— is that block in cache?

— where is it there?

34 bit address . i
byt addreny) |lock address — 25~ 32 bytes Three solution methods
. 20 bits 5 =4 words ‘ — direct mappings
................. \\ — fully associative mapping
max physical Number of possible blocks ~ setassociative mapping
address space in physical address space
=234 -16GB =2% = 512M blocks
24.9.2003 Copyright Teemu Kerola 2003 21 24.9.2003 Copyright Teemu Kerola 2003 22
Direct Mapping (S - -
pping o : Direct Mapping Cache line size
+ Every block has only one possible location Word = — block size = 23
(cajhe 111}e :g@bzr) 1;1 lc:ghe ?tht;S Example ®) = 8 bytes = 64 bits
_ t ere
ctermine Bly ‘E Z’;Ile - ReadW 12, 0xA4 tag data
OCK af €SS
(in memory) Cache line size 0xA4=1010 0100 000: . &

block = block size tzg index ogfset

34 bit address : g 3 001:
-ta -mdex -offset =25 o vt 8 bit address
Coyteaddress) — / @ . (byte address) {10 100 [100 | o10:

)| 5 /
Unique bits that Fixed addr in gAche, cache size
are different for @ kS (8 KB
each block, stored ‘ Fig. 4.7 (s=29,1=8, w=>5) ‘
in each cache line (Fig. 4.17 [Stall99]) :

Fig. 7.10 [PaHe98]

24.9.2003 Copyright Teemu Kerola 2003 23 24.9.2003

011:1 01| 54 A7 0091 23 6632 11
100:(77 55 5566 66 22 44 22
101: 6543 2198 76 6543 32

Direct Mapping Example 2 ¢

ReadW 12, 0xB4 tag data

0xB4 = 1011 0100 000: 2 64

tag index offset
3 3

11 01| 54 A7009123663211

11| 77 55 55 66 66 22 44 22

| 01| 6543 2198 76 6543 32

10) 00 11 223344 55 66 77

J

24.9.2003 Copyright Teemu Kerola 2003 25

Fully Associative
Mapping

 Every block can be in any cache line

(tdysin assosia-
tiivinen kuvaus)

— tag must be complete block address

Block address
(in memory) Cache line size

«—— block = block size
e m S—
(byte address) Qs =27 =32 bytes

/ Cache lme can be anywhere
Cache size can be any number

Umq}J.e bits that of blocks
are different for ‘ Fig 4.9 (s=29. w5 ‘
each block ig. 49 (s —=4 w=>5)
(Fig. 4.19 [Stal99])
24.9.2003 Copyright Teemu Kerola 2003 26

Fully Associative Example ¢

cache
ReadW 12, 0xB4 tag data
0xA4 = 1011 0100 5 i

(=]

tag (offiset 00 3§1]Qi 1)| 123456 78 9A 01 23 45
5 10111)|87 00 32 89 65 A1 B2 00

10110 (1

S\ =

or 00011)| 87 54 00 89 65 A1 B2 00

E 1010@ 54 A700091 23 6632 11

W 9B __WBTI(D0ITIIN 55 5566 66 224422

=2

= 101{(T0100)| 65 432498 76 65 43 32

110{(10110)| 00 11 22 33]44 55 66 77

= —r10011)| 87 54 32 89 65 Al B2 00

Copyright Teemu Kerola 2003 27

Fully Associative Mapping
* Lots of circuits
— tag fields are long - wasted space!

— each cache line tag must be compared
simultaneously with the memory address tag
* lots of wires Large surface
* lots of comparison circuits area on chip

* Final comparison “or” has large gate delay
— did any of these 64 comparisons match?
2 log(64) = 8 levels of binary or-gates
— how about 262144 comparisons? [{gevels?

e = Can use it only for small caches

24.9.2003 Copyright Teemu Kerola 2003 28

Set Associative Mapping ¢
(joukkoassosiatiivinen kuvaus)
» With set size k=2, every block has 2 possible
locations in cache

— Possible location of block is o
determined by set (index) field bits | Cache line size
block = block size

34 bit address
ffset —75_
(o s ! 1 =25 =32 bytes

Unique bits that are Nr of sets v=27=128 blocks = 4 KB
different for each block,

: . Total cache size vk=2*4 KB= 8 KB
stored in each cache line

Fig. 4.11 (confusing, complex?)

Fig. 5.8 [HePa%%6
lig. 5.8 [HePa96] (E.g., k=2,5=29,d=7,w=>5)
Fig. 7.19 [PaHe98] (Fig 421 [S@io9))

24.9.2003 Copyright Teemu Kerola 2003 29

Two definitions for ”Set” in
’Set Associative Mapping”

» Term “set” is the set of all possible locations where
referenced memory block can be
— Field set” of memory address determines this set
— [Stal03], [Stal99]

» Cache memory is split into multiple sets”, and the
referenced memory block can be in only one location in
each "set”

— Field “index” of memory address determines possible location of
referenced block in each “set”

— [HePa96], [PaHe98]

24.9.2003 Copyright Teemu Kerola 2003 30

Two definitions for ’Set” in
’Set Associative Mapping”

Stallings "set”

set 0 |:|

set 1 |:|
block i
can be in

|:| any of
ot these
set i % locations
set 15 |:| 4 blocks 16 blocks{

Copyright Teemu Kerola 2003 31

Hennessy-Patterson "set”

index i:

Memory

24.9.2003

’S’St:glfgs :| 1001 87 54 00 89 65 A1 B2 00
(Hennessy’s :|101| 54 A7 009123 6632 11

line order)

24.9.2003

2-way Set Associative Cache

15 lines
tgg %zzta in each set

(11012 34 56 78 9A 01 23 45
:1110/87 00 32 89 65 A1 B2 00

;{011 77 55 55 66 66 22 44 22
: 2 01:[101] 65 43 219876 6543 32

" setsize 2 = "10:/101] 00 11 2233 44 55 66 77

2 cache lines per set

< 4 sets = 2 bits for 11:111] 87 54 32 89 65 Al B2 00

* 3 bit tag

set index 2" lines
* 8 byte cache lines in each set
= 3 bits for byte address in cache line
Copyright Teemu Kerola 2003 32

Set Associative Example

cache i
stlines
L3 data in each set
ReadW 12, 0xB4 3 64
0xB4 = 1011 0100 00:/110 12 34 56 78 9A 01 23 45

(tag set offset 01:/110/87 00 32 89 65 A1 B2 00

32 A109 87 5400 89 65 A1 B2 00
:[101] 54 A7009123 6632 11
TONLZ7 55 55 66 662244 22
:[101] 65 732498 76 65 43 32
i01) 00 11 223344 55 66 77
11:|1T1) 87 54 32 89 65 A1 B2 00

or/
[Match}— -

Set Associative Mapping

* Set associative cache with set size 2
= 2-way cache
* Degree of associativity v? [Usually2

Fig. 7.16 [PaHe98]

* More data items (v) in one set

— v large?

« less “collisions” within set
« final comparison (matching tags?) gate delay?
— v maximum (nr of cache lines)
= fully associative mapping

2nd Jines — v minimum (1) = direct mapping
in each set
24.9.2003 Copyright Teemu Kerola 2003 33 24.9.2003 Copyright Teemu Kerola 2003 34
Replacement Algorithm Write Policy

* Which cache block (line) to remove to make
room for new block from memory?

* Direct mapping case trivial
¢ First-In-First-Out (FIFO)
* Least-Frequently-Used (LFU)
* Random
* Which one is best?
— Chip area?
— Fast? Easy to implement?

24.9.2003 Copyright Teemu Kerola 2003 35

24.9.2003

* How to handle writes to memory?
e Write through
— each write goes always to memory

(lapikirjoittava)

— each write is a cache miss! —
(lopuksi kirjoittava

* Write back takaisin kirjoittava?)

— write cache block to memory only when it is
replaced in cache

— memory may have stale (old) data

— cache coherence problem | (vélimuistin
yhteneviisyysongelma)

Copyright Teemu Kerola 2003 36

Line size

* How big cache line?
» Optimise for temporal or spatial locality?
— bigger cache line is better for spatial locality
— More cache lines is better for temporal locality
« Data references and code references behave in a
different way
* Best size varies with program or
program phase
* 2-8 words?

— word = 1 float??

24.9.2003 Copyright Teemu Kerola 2003 37

Number/types of Caches ¢
* One cache too large for best results

* Unified vs. split cache (yhdistetty, erilliset)
— same cache for data and code, or not?

— split cache: can optimise structure separately
for data and code

* Multiple levels of caches
— L1 - same chip as CPU
— L2 - same package or chip as CPU

« older systems: same board Fig. 4.13

— L3 - same board as CPU (Fig. 4.23 [Stal99])

24.9.2003 Copyright Teemu Kerola 2003 38

-- End of Ch. 4-5: Cache Memory --

http://www.intel.com/procs/servers/feature/cache/unique.htm

“The Pentium® Pro processor's unique multi-cavity

chip package brings L2 cache memory closer to the CPU,
delivering higher performance for business-critical
computing needs.

2492003 Copyright Teemu Kerola 2003 39

