Computer Organization II

Position
- Advanced (MSc) level course (2005 degree requir.)
- Intermediate (BSc) level course (2010 degree requir.)

Prerequisite: Computer Organization I (TiTo)
- Main hardware
- Symbolic assembly language, machine instructions
- CPU Instruction cycle
 - What happens in system during the cycle?

Related to Operating Systems
- Interrupts
- Virtual memory
- I/O Techniques
Course Material

- Course book (Make sure you have one!)
 - (7&6th ed.) possible, but MISSING a lot of material

- Lecture course home page (Autumn 2010)
 - Schedule, slides, exercises, announcements, links, etc.

- Course home page
 http://www.cs.helsinki.fi/group/nodes/kurssit/tikra/
 - Old courses, slides in Finnish and English, etc.

Schedule Autumn 2010

- Lectures: 2.11. – 9.12.2010
 - Tue and Thu 14-16 (D122), Teemu Kerola
 - In English when needed

- Practice sessions:
 - Thu 14-16 (D122), Teemu Kerola
 - General discussion in English
 - Table discussion in Finnish (if everyone understands)

- Course Exam
 - Tue 14.12.2010, 9-12 (A111)
 - Tue 25.1.2011, 16-20 (A111), make-up exam/final exam
 - All exams also in English, if requested in advance
Comp Org I (TITO)

Functionality! What happens in the system?

A := B + C;
High-level lang.

\{ MOV AX, B \\
ADD AX, C \\
MOV A, AX \}
Assembler

Comp Org II (TIKRA)

Implementation! How is the hardware composed of? What makes it tick? How do ticks translate to work?

MOV AX, B
ADD AX, C
MOV A, AX
Assembler

Logical circuits
Learning goals

- Digital logic: Combinatorial & Sequential Circuits
- Bus: multiplexing, signaling
- Memory hierarchy: cache, TLB
- Arithmetics: Booth algorithm, representations
- Instruction set: operands, operations, memory reference
- Processor structure and functions: pipelining, RISC, CISC
- Control: micro-operations, micro-programmed control, clock pulse
- Parallel Processing: types, cache coherence, multicore

More detailed learning goals are available from course page

Course contents and schedule

- Week 1
 - Overview (Ch 1 – 8)
 - Digital logic (online Ch 20)
 - Bus (Ch 3)
- Week 2
 - Memory, Cache (Ch 4, 5)
 - Virtual memory (Ch 8.3-8.6)
- Week 3
 - Computer arithmetic (Ch 9)
 - Instruction sets (Ch 10, 11)
- Week 4
 - CPU struct. & func. (Ch 12)
 - RISC-architecture (Ch 13)
- Week 5
 - Instruction-level parallelism, Superscalar proc. (Ch 14)
 - Control Unit (Ch 15-16)
- Week 6
 - Parallel Processing (Ch 17)
 - Multicore (Ch 18)
 - Summary
Work during the course

- Combine the details together to form a larger picture
 - Try to continuously understand and analyse the connections
 - Stay awake!
- Make notes
 - Write down own ideas and questions immediately
- Ask questions
 - Question are never too simple.
 (If you missed the point, then somebody else missed it also)
 - Ask from teachers but also from co-students.
- Teamwork is allowed even with individual assignments
 - However, own paper must be written by you, even if you co-operated in learning the content

Summary lectures

- All lectures are summary lectures
 - Slides are just the “table of content” for summary lectures
 - Students are expected to have studied lecture topic in advance
 - Read given chapters from the text book!
- Lecture consists of
 - Summary of central topics for this lecture
 - Small group discussions on given topics
 - General discussions, based on small group discussions and student questions
Practice Sessions

- Mark down homeworks done
 - Grade points based on marked homeworks and attendance
- Split into tables
 - Some tables in English
- Discuss all problems in each table
- Ask questions if needed

Projects

- All volunteer with extra projects
- Project 1: Make 2 new practice problems
 - Team project, 1-4 students
 - Understand some topics better
- Project 2: Study diary
 - Can work with a team
 - Each student will turn in their own diary
 - 1^{st} part turned in already after 3 weeks
 - Understand all topics better
Grading

<table>
<thead>
<tr>
<th>Course Component</th>
<th>Available points toward grade</th>
<th>Minimum points needed to pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice Sessions (homeworks, attendance)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Course Exam</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Extra Projects</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>18</td>
</tr>
</tbody>
</table>

How much time do I need to invest for this course?

- Simple time estimations (for planning)
 - VERY OLD: 6.5 weeks*(2*(4+2) h/wk) = 78 h
 - OLD: 4 cu = 2 study weeks: 2 * 40 h = 80 h
 - CURRENT: 1 year / 60 cu = 1600 h / 60 cu = 26.67 h / 1 cu = **107 hours** / 4 cu

- Motto:
 "It is not good exercise, if you do not sweat"
 ("Kunto ei nouse, ellei tule hiki.")

 Enjoy the course!
Credits

- Teemu Kerola 1999-2003
 - Original slides (in English), Based on 5th edition
 - Updated to 6th edition 2002
- Auvo Häkkinen 2004-2005
 - Most slides translated to Finnish, orange layout
 - Updated to 7th edition 2005
- Teemu Kerola 2006
- Liisa Marttinen 2007
- Tiina Niklander 2008-2010
 - 2009: Translation to English from the Finnish slide set
 - 2010: Updated most slides to 8th edition