581365 Computer Organization II
(Tietokoneen rakenne)

Spring 2012

Tiina Niklander

Faculty of Science
Matemaattis-luonnontieteellinen tiedekunta
Position
- Intermediate (BSc) level course

Prerequisite: Computer Organization I (TiTo)
- Main hardware
- Symbolic assembly language, machine instructions
- CPU Instruction cycle
 - What happens in system during the cycle?

Related to Operating Systems
- Interrupts
- Virtual memory
- I/O Techniques
Course Material

Course book (Make sure you have one!)
- (7&6th ed.) possible, but MISSING a lot of material

Lecture course home page (Spring 2012)
https://www.cs.helsinki.fi/en/courses/581365/2012/k/k/1
- Schedule, slides, exercises, announcements, links, etc.

Course home page
- Link to list of old exams
- Old courses, slides in Finnish and English, etc.
http://www.cs.helsinki.fi/group/nodes/kurssit/tikra/
Schedule Spring 2012

Lectures: 16.01-22.02.2012
- Mon 12-14 C222 and Wed 12-14 D122, Tiina Niklander
- In English when needed

Practice sessions:
- Thu 12-14 (C222), Tiina Niklander
- General discussion in English
- Table discussions allowed in Finnish (if everyone understands)

Course Exam (tentative time)
- Wed 29.2.2012, 16.00 - 20
- All exams also in English, if requested in advance
Functionality! What happens in the system?

A := B + C;

MOV AX, B
ADD AX, C
MOV A, AX

High-level lang.

Assembler
Implementation! How is the hardware composed of? What makes it tick? How do ticks translate to work?

Sta10: Fig 16.7
Learning goals

- **Digital logic**: Combinatorial & Sequential Circuits
- **Bus**: multiplexing, signaling
- **Memory hierarchy**: cache, TLB
- **Arithmetics**: Booth algorithm, representations
- **Instruction set**: operands, operations, memory reference
- **Processor structure and functions**: pipelining, RISC, CISC
- **Control**: micro-operations, micro-programmed control, clock pulse
- **Parallel Processing**: types, cache coherence, multicore

More detailed learning goals are available from course page
Course contents and schedule

- **Week 1**
 - Overview (Ch 1 – 8)
 - Digital logic (online Ch 20)
 - Bus (Ch 3)

- **Week 2**
 - Memory, Cache (Ch 4, 5)
 - Virtual memory (Ch 8.3-8.6)

- **Week 3**
 - Computer arithmetic (Ch 9)
 - Instruction sets (Ch 10, 11)

- **Week 4**
 - CPU struct. & func. (Ch 12)
 - RISC-architecture (Ch 13)

- **Week 5**
 - Instruction-level parallelism, Superscalar proc. (Ch 14)
 - Control Unit (Ch 15-16)

- **Week 6**
 - Parallel Processing (Ch 17)
 - Multicore (Ch 18)
 - Summary
Work during the course

- Combine the details together to form a larger picture
 - Try to continuously understand and analyse the connections
 - Stay awake!

- Make notes
 - Write down own ideas and questions immediately

- Ask questions
 - Question are never too simple.
 (If you missed the point, then somebody else missed it also)
 - Ask from teachers but also from co-students.

- Teamwork is allowed even with individual assignments
 - However, own paper must be written by you, even if you co-operated in learning the content
Summary lectures

- All lectures are summary lectures
 - Slides are just the “table of content” for summary lectures
 - Students are expected to have studied lecture topic in advance
 - Read given chapters from the text book!

- Lecture consists of
 - Summary of central topics for this lecture
 - Small group discussions on given topics
 - General discussions, based on small group discussions and student questions
Practice Sessions

- Mark down homeworks done
 - Grade points based on marked homeworks and attendance

- Split into tables
 - Tables in English or Finnish

- Discuss all problems in each table
- Ask questions if needed
Projects – write essays

- Three short essays during the course
 - Total 6 points from the essays
 - Each graded with scale 0-5 and then later converted to the course grading points

Goals

- Practise writing own text and scientific argumentation
 - Learn to present own ideas in written form
- Based on new scientific articles
 - Current trends and latest research
Grading

<table>
<thead>
<tr>
<th>Course Component</th>
<th>Available points toward grade</th>
<th>Minimum points needed to pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice Sessions (homeworks, attendance)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Course Exam</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Projects</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>20</td>
</tr>
</tbody>
</table>
How much time do I need to invest for this course?

Simple time estimations (for planning)
- 1 year / 60 cu = 1600 h / 60 cu
 = 26.67 h / 1 cu = 107 hours / 4 cu
- 107 hours / 7 weeks = 15 hours each week

Motto:
"It is not good exercise, if you do not sweat"
("Kunto ei nouse, ellei tule hiki.")

Enjoy the course!
Credits

- Teemu Kerola 1999-2003
 - Original slides (in English), Based on 5th edition
 - Updated to 6th edition 2002

- Auvo Häkkinen 2004-2005
 - Most slides translated to Finnish, orange layout
 - Updated to 7th edition 2005

- Teemu Kerola 2006

- Liisa Marttinen 2007

- Tiina Niklander 2008-2010
 - Translation to English from the Finnish slide set 2009
 - Updated most slides to 8th edition 2010

- Teemu Kerola 2010
 - Course update to 8th edition