Learning objectives of this course

- GOAL: To write a 15-page scientific report (article or essay) based on existing scientific journal and conference articles using your own voice

- You will practice and learn:
 - how to find relevant material
 - how to read the articles
 - how to structure your own text
 - the actual writing and editing process
 - how to review an article

Strict schedule

- Week 1: Paper layout + Material search and creation of bibliography
- Week 2: Create your table of content + Organising the material + reading and searching
- Week 3: Introduction + Chapter 2
- Week 4: Chapters 2-4
- Week 5: Draft version ready - Peer review by other students (and group leader) - feedback for editing
- Week 6: Editing your work

Deadline: Friday 12.10
(Ultimate deadline 24.10.2012)

Your scientific paper

- Scientific text/report (15 pages in the given layout)
- Aims
 - Deeper understanding of the subject
 - Bring the subject into structure
 - Understandable presentation of the subject
 - The structure of the thesis (use the departmental layout model)
 - Scientific style, good written English

Course organization

Small group with a PhD student as teaching assistant. Randomly selected groups, topics given by TAs.

Your tasks:
- Be and do on time
- Follow the instructions

TAs' tasks:
- Monitor your progress
- Give guidance
- NO language teacher -> other courses for this
Lectures: Tue 10-12 B222

Week 1: Startup + hints for material hunt
Week 2: Writing process
Week 3: Use of References (+time management)
Week 4: Ethics of writing
Week 5: Reviewing a paper
Week 6: Future: seminars and MSc thesis

Scientific information retrieval and scientific reading

Every research project is based on former known research
Finding relevant source material is important, but can be very challenging
In computer science most articles are nowadays available in digital form
Articles should be read critically
You must read every article that your are referring to in your text!

Classification of scientific texts

The most important classification system of computer science literature is ACM Computing Classification Systems (CCS)
www.acm.org/about/class
Different versions, newest from 1998
Several main classes that have many sub-classes
For example
H. Information Systems
H.2 Database Management
H.2.4. Systems

Computing bibliographies

Bibliography is a collection of the most important bibliographical facts of articles
One of the oldest and best-known computing bibliographies is ACM Guide to Computing Literature (portal.acm.org)
Another example of computing bibliographies is Michael Ley’s Digital Bibliography & Library Project (DBLP)

Digital libraries

Collections of digital versions of articles published by a certain publisher
Most important digital libraries in computer science are
The ACM Digital Library (http://portal.acm.org/dl.cfm)
IEEE Xplore (http://ieeexplore.ieee.org/xpl/home.jsp)
SpringerLink (www.springerlink.com)
Elsevier (http://www.sciencedirect.com)
Digital libraries (2)

- University of Helsinki has a license for these digital libraries
- List of available digital libraries and bibliographies can be found via the Nelli portal (www.nelliportaali.fi)
- Use of the libraries and bibliographies is possible in the network of the University only
- Use HY-VPN for these restricted services (ask help from the IT Services, helpdesk@helsinki.fi)
- If VPN not possible, Authenticating Proxy available (ask help from the IT Services)

Search engines

- There are several search engines specialised in scientific information retrieval
- Examples of such engines are
 - Google Scholar (scholar.google.com)
 - SiteSeer.IST Scientific Literature Digital Library (citeseer.ist.psu.edu)
 - Elsevier's Scirus for scientific information only (www.scirus.com)
- Other relevant databases and search engines can be found in Wikipedia's article Academic databases and search engines

Other sources of material

- Citation indexes
- Following reference chains
- Web pages of
 - individual researchers
 - research groups
 - departments
 - universities
- Scientific libraries
- Books, journals, technical reports, theses, ...

Scientific reading

- Easily a lot of articles on a given topic
- Usually it is enough to know well only a small number of most relevant articles
- Other articles must be read
 - to widen the understanding of the topic, and
 - to understand better the relevance of the most essential articles
- Quick scan of articles:
 - Read abstract, introduction, related work and conclusions
 - Decide whether it is worth to read the whole paper

Quality of retrieved material

- Publication forum
- Quality of the publication forum
- Web documents/articles may not have been published anywhere else
- Newer articles are often preferred to old ones
- Reader must always be curious and suspicious!

Question list for reading

- What is the main result of the article?
- How precise are the claims?
- How can the results be used?
- What are the arguments for the results?
- How are the arguments obtained?
- How are the measurements done?
- How precise are the descriptions of the algorithms and experiments?
Question list for reading (2)

- Is the article trustworthy and reliable?
- Are the writers referring to a right kind of a related work?
- Can the results be reproduced and how?
- Recognise the contributions and the shortcomings of the article!

Notes for retrieved material

- Only few of the retrieved articles are central, most of them are auxiliary
 - Many references to central sources
 - A few references to auxiliary sources
- When you find an interesting article, write directly down at least the bibliographical data of the article
 - See the departmental layout model for what information is needed from each type of publications

Notes for retrieved material

- It is also good to write down
 - a short summary of the article
 - the ACM classification information
- Start making the notes from the very beginning – otherwise
 - it will never be done, or/and
 - it takes even more of your time!