582519 Scientific Writing for MSc in Computer Science: Writing process

Lecture 2, 10.9.2014
Tiina Niklander
Last week’s task:
How did it go?

Computing Tools for CS studies? Who?
(Latex –week 4?)
Small group meetings?

-- fill comments here --
What is scientific writing?

- Describing new scientific ideas and results for other scientists and the science community
 - New ideas or combining old ideas in a new way
- Evaluation of the presented ideas/results
 - Correctness
 - Relationship to former ideas and results

- Scientific writing is an important part of the process of science, i.e., the process of accumulating reliable knowledge
What is scientific writing? (2)

- New results (new contribution) build on existing knowledge
- Scientific results are accepted when they have been independently reviewed and published
- Different types of scientific publications with their own characteristics
- Scientific writing itself is also a process
The process of science

- Idea or research question
- Hypothesis or model for the solution
- Testing the hypothesis/model
- Representing and evaluation of the results
- Publishing the results after independent reviewing

- Good writing is a crucial part of this process!
<table>
<thead>
<tr>
<th>Level</th>
<th>Bloom’s definition</th>
<th>Verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Remember previously learned information</td>
<td>Memorize, list, define, identify, repeat, order</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Demonstrate an understanding of the facts</td>
<td>Classify, paraphrase, explain, extend, select</td>
</tr>
<tr>
<td>Application</td>
<td>Apply knowledge to actual situations</td>
<td>Change, employ, use, modify, relate, discover</td>
</tr>
<tr>
<td>Analysis</td>
<td>Break down objects or ideas into simpler parts and find evidence to support gener.</td>
<td>Appraise, criticize, model, examine, diagram</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Complete component ideas into a new whole or propose alternative solutions</td>
<td>Arrange, create, plan, collect, develop, write</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Make and defend judgments based on internal evidence or external criteria</td>
<td>Argue, assess, choose, compare, evaluate</td>
</tr>
</tbody>
</table>
Levels of thinking/ writing/ learning by Boehm (see also Bloom’s taxonomy)

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>FOCUS</th>
<th>GOAL</th>
<th>VERBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INFORMATION</td>
<td>Identification and repeating - able to repeat accurately</td>
<td>Know that you know</td>
</tr>
<tr>
<td>2</td>
<td>UNDERSTANDING</td>
<td>Reach the impact and meaning of information</td>
<td>Show that you understand</td>
</tr>
<tr>
<td>3</td>
<td>APPLICATION</td>
<td>Use information - apply knowledge to new situations</td>
<td>Show: use the information</td>
</tr>
<tr>
<td>4</td>
<td>ANALYSIS</td>
<td>Make conclusions f.e. show relationships between elements and the whole</td>
<td>Show: find the essential elements in the information</td>
</tr>
<tr>
<td>5</td>
<td>SYNTESIS</td>
<td>Be creative and original - compose elements and ideas in new ways</td>
<td>Show: create and formulate large wholes</td>
</tr>
<tr>
<td>6</td>
<td>EVALUATION</td>
<td>Create criteria in order to evaluate the information. Use the criteria.</td>
<td>Show: evaluate ideas, information, methods and solutions</td>
</tr>
</tbody>
</table>
Contents of a scientific article

- The position of the new idea with respect to the former scientific knowledge
- Clear and formal statement of the new idea
 - Often as a hypothesis or a model
- Description of the novelty of the idea, or the contribution of the article
- Justification of the theory by proof or experiments

Note: details of the research process leading to the article do not usually belong to the article!
Structure of a scientific article

- Title and author
- Abstract
- Introduction
- Body of the article (including related research/work)
- Summary/conclusions
- (Acknowledgements)
- Bibliography
- Appendices
Types of publications

- Course books
- Other kinds of text books
- Standards
- Journal articles
- Conference articles
- Theses
- Technical reports
- Manuscript
- Web documents/publications
Nature of publications

- **Primary sources**
 - Original, reliable information
 - Articles in scientific journals, conference and workshop books, research reports, theses
 - Patents, laws and directives, standards

- **Secondary sources**
 - Useful material for restructuring and analysis of existing information, not original and new results
 - Course books, article collections, surveys, newsletters, dictionaries, etc.
Process of writing scientific text

- Idea or interesting topic
- Finding and evaluating relevant source material
- Reading material
- Identifying essential issues
- Restructuring them logically
- Writing them down using proper presentation techniques

Iterative process: text must be re-written several times!
Characteristics of scientific text

- Content usually technical
- Should be based on facts
 - Writer's interests and opinions can be seen in the choice of the topic, not in the text as such (student paper’s normally contain justified opinions also)
- Based on former theories and research results
- Motivating on why the problem considered is important
 - Not marketing of the ideas
- Arguments and conclusions
- Verifiability, reliability, and repeatability of the results
Characteristics of scientific text (2)

- Clear and logical structure
- Not a direct copy from anybody else's text
- Source material is analysed and restructured
- Based on peer-reviewed research material
 - Journal, conference and workshop articles in computer science are typically peer-reviewed
 - Peer-reviewers are researchers that are experts in the topic in question
 - Writers do not know who the reviewers are
Characteristics of scientific text (3)

- Text is suitable for its target group
 - How are the readers?
 - How are they going to use the text and the information given in it?

- Clearness of the text
 - The reader must understand the text in a same way as the writer

- Reflects writer's deep understanding of the topic!
Target groups of scientific text

- Readers that have scientific background
- Other researchers in the same area
- Whole scientific community
- General public
- Some basic knowledge of the topic is usually required

- In this course and in the seminars: other MSc degree students
How do you learn scientific writing?

- Following the topic area and reading relevant articles
- Writing yourself
- Searching for feedback from others
 - Peer students
 - Teachers
 - ...
- Iterative process!
Important things to remember

- It is important that the reader understands what you have written
 - The audience you should write to are the other students in this course, not only in your group!
- All the texts must be written by you
 - Not a copy of a text written by someone else
 - Not a direct copy from the reference material
- Remember always to check the correctness of the language!
Important things in your paper

- Department’s layout for thesis and reports
- Structure of our text
- List of references
How to start:
Collecting joint ideas

• -- to be added in the class --
Writing process

- (Scientific) writing is a process

- Different phases
 - Thinking and planning
 - Outlining
 - Writing
 - Revising
 - Finalising

- Iteration between phases sometimes necessary
Thinking and planning

- Getting started
 - Defining purpose and scope
 - Identifying target group

- Gathering ideas
 - Finding relevant background information
 - Identifying things to be included

- Taking the requirements of the intended publication forum into account
Getting started

- Define the purpose and scope of your text
 - What are the problems considered? Why are they interesting?
 - What perspective is taken?
 - What are the objectives of the text?
 - Which purpose the text is written to?

- Who are the readers? (target group)
 - What the readers want to know?
 - What information should be given to them?
 - In this course: your fellow students
Gathering ideas

- Finding background information
 - Information retrieval of scientific text
 - Reading the relevant material
 - Defining the main references to be used
 - What kind of related work should be considered?

- Identifying things (topics) to be included and finding their relationships
 - Key words, key phrases
 - Relevant concepts and definitions
 - The most important results to be presented
Outlining

- **Starting point**: What is text's scope and purpose?

- What does the reader need to learn or know about the topic?

- Starting from the common knowledge and proceeding to the new ideas and results

- **Logical structure and order** of the text is essential!
Outlining (2)

- Helps authors to
 - organise their thoughts
 - evaluate relevance of different topics and their representation
 - remember the relationships between topics
- Should support reading and reader's understanding
- Describes
 - structure of the text
 - logical presentation and reading order
- Should still support several types of reading
 - browsing, specific information searches, learning, ...
Outlining (3)

- Should lead to a logical, clear story
 - In a concise form in the list of contents
 - Clarified in the introduction, especially if there is something special in it

- Questions to answer:
 - What topics are considered?
 - In which order they are told?
 - What is the importance and length of each topic?
Outlining (4)

- What kind of parts are needed?
 - Which chapters?
 - Only in longer texts; seldom in scientific articles
 - Which sections?
 - Which subsections?
 - Some other parts?

- Finding
 - a good title for the whole text
 - headings for chapters, sections and subsections
Some publication forums may have strict rules on the outline
 - For example: Introduction, Methods, Results, Discussion

Can cause problems in explaining complex topics in phases
 - For example a comparison of two methods => Introduction, Background, Methods, Results, Discussion, Methods, Results, Discussion

Not typical in computer science
Different types of outlines

- Chaining outline
 - Presentation of the problem
 - Related work, earlier solutions and their flaws
 - New solution
 - Results and their evaluation

- Specificity-based outline
 - First general explanation/description, then more specific ones
 - For example for describing a system consisting of several components
Different types of outlines (2)

- **Example-based outline**
 - Idea or results explained first with help of a typical case or situation
 - Generalisation of ideas/results and describing them more formally

- **Complexity-based outline**
 - First presentation of a simple case
 - Then description of a more complicated case (generalisation, extension)
Titles

- A title of an article/thesis/report must be informative and concise
 - Too general terms and titles should be avoided
 - Every term should be necessary

- Must be attractive
- Not too complicated and filled with words
- Not too short either

- Preciseness is more important than conciseness and attractiveness!
Examples:

- Too complicated:
 - An Investigation of the Effectiveness of Extensions to Standard Ranking Techniques for Large Text Collections

- Better:
 - Extensions to Ranking Techniques for Large Text Collections

- Too general:
 - Huffman Coding for Databases

- Better:
 - Limited-Memory Huffman Coding for Databases of Textual and Numeric Data
Chapter and section headings

- Should reflect the structure of the work
 - For example
 - 4. List and trees
 - 4.1. Lists
 - 4.2. Trees

- Not complete sentences
 - Example:
 - Not: Replication of Data Leads to Reduction in Network Traffic
 - But: Replicating Data to Reduce Network Traffic
Chapter and section headings (2)

- Not too lively

- Avoid questions or abbreviations

- Headings at the same level should
 - be comparable in their contents and structure
 - have a clear connection to the balanced outline

- Third-level headings, i.e. subsubsections, seldom needed
 - Usually the need of them indicates problems in the outline
Chapter and section headings (3)

- Paragraph titles should be avoided
 - If needed, should be part of the paragraph

- Numbering of headings depends on the publication forum
 - Unnumbered headings must be distinguished by a specific font, style or font size
 - At our department numbering of headings is required
Paragraphs

- Building blocks of chapter, sections and subsections

- Should not be too long
 - Logical flow of the text becomes difficult to follow

- Short paragraphs easier to read and they make communication more efficient
 - No paragraphs consisting of just one sentence!

- A paragraph for each aspect of the topic
Scientific text should be impartial, accurate and objective
- Arguments must be based on evidence
- Statements should be supported by examples
- Sources of information and ideas must be indicated
- Use enough words to make your meaning clear

Started by writing a draft of the text
- Flow of ideas
- A short text can be drafted completely
First draft

- Freely written
 - Concentrate on presenting ideas in a logical way

- Raw text
 - Style, layout and punctuation can be corrected later
 - Exception: mathematical and formal issues as precisely as possible from the very beginning

- Must be edited and revised carefully and thoroughly
 - Several times
 - Difficult things more times than easier
How to proceed with writing

- Different approaches
 - Write the introduction first
 - Start from the body of the text
 => use the method that is the best for you

- Write something even if it is hard
- Start with easier things
- If everything else is difficult, fix the technical details (list of references, etc.)
Revising

- After the first draft is ready/complete

- **Aim:** ensure that thoughts created in the mind of the reader(s) are the same as the thoughts of the writer(s)

- Checking
 - the order of presented ideas
 - the use of words and terminology
 - style, layout and punctuation
Revising (2)

- No statement should be introduced abruptly and without warning

- Relationships between parts at a same level should be clear
 - Each section should be related to the preceding and the next one
 - Similarly with paragraphs in a section and sentences in a paragraph
Revising (3)

- Paragraphs and sentences should be in a logical and effective order

- Balance is important
 - Parts must be balanced in themselves, and in the relation to one another
 - Holds for sections, subsections, paragraph, and even sentences
 - For example, no sections with just one subsection!
Revising (4)

- Important and difficult parts typically re-written several times

- After a revision, put the text a side for a moment
 - Avoid blindness to your own text!

- Ask someone to read your text and give comments!
 - Experts versus non-experts
 - The function of criticism and feedback is to improve your writing
Finalising

- When all the parts of the text are written at least once
- Check that objectives, motivation and restrictions are in line
- Evaluate issues that the readers or reviewers might criticise or argue against
- Check technical details
- If published, the critics of the reviewers should be taken into account
- Changing publication forum may require bigger changes
Structure of a thesis, report or seminar paper
Structure of a thesis, report or seminar work

- Title page
- Abstract
- Table of contents
- Introduction
- Body of the work
- Conclusions
- List of references
- (Appendices)
Abstract

- Helps the reader to decide whether to read the whole text or not
- Should be short, but clear, informative and concise
- Details or description of the outline not part of the abstract
- Final version is written after all the other parts of the text are ready
- Aimed to large audience
 - Readers are not necessarily experts on the topic
- No references to other articles
Introduction

- Introduction should be the easiest part of the text to read and not too long
- Must tell what are the new ideas and the main results presented in the article/report/thesis
- Must show that that the whole text is worth reading
- Can be written first, but then typically must be revised
Introduction (2)

- Not too technical, but specific and informative enough
 - Not technical terminology
 - Not very detailed definitions of terms/concepts
 - Not too much mathematics and formulas

- Must contain motivation
- No deep literature analysis
- Importance of the results, not conclusions
- (References to relevant work)
Introduction (3)

- Typical contents and structure
 - Description of the topic and its context
 - (Related work)
 - Description of the problem considered
 - Summary of the proposed solution
 - Evaluation of the solution
 - Application areas
 - Consequences
 - Brief description of the outline of the work
- In surveys: why the certain approaches were chosen
Literature overview

- Related work, survey
- Connections to earlier research on relevant topics
- As important as the description of the contribution of the text
- Location in the text
 - In the beginning of the article (description of the context, a part of introduction)
 - If large, a separate section is required
 - As a part of the body of the text
 - After the body, where a comparison of old and new solutions is possible
 - In different sections when it is appropriate
Definitions

- Terminology, variables, abbreviations and acronyms must be defined or explained the first time they appear in the text
- Consistent emphasising
 - Different style of letters: italics, boldfacing, …
 - Only the first occurrence
- Sometimes several explanations can be good
- Definitions are given when needed
 - Usually a separate section “Definitions” is not needed/good
 - Every defined term should be necessary
Results and their analysis

- Traditional order of presentation:
 - Description of all results
 - Analysis of the results
- Drawback: the reader might not be able to follow what happens
- More reasonable order of presentation:
 - Analysis is combined with the description of results and how they are obtained
- Description of a particular result should usually start with a brief summary on the main observations
Conclusions

- Brief repetition of the main ideas, results and conclusions as well as their meaning
- Restrictions of the work can be repeated
- No new ideas or conclusions that are not presented in the body
- Can be stated
 - Unsolved problems
 - Which points or perspectives were omitted
 - Which variations should be considered/researched further
Divided authorships

- All the authors have some kind of contribution to the contents of the article

- Brainstorming and developing ideas

- Even writing together
 - Each author writes a certain part of the text (different styles, non-coherent style)
 - One or two authors write the draft, and others revise it in turns