
MPEG library software maintenance documentation

pakkaamo

Helsinki December 18, 2009

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (9 cr)

Project Group
Visa Hankala
Ville Kesola
Heikki Korhola
Kalervo Oikarinen
Sindi Poikelin
Tomi Ronimus

Client
Michael Przybilski, Taneli Vähäkangas

Project Masters
Juha Taina
Jari Suominen

Homepage
http://cs.helsinki.fi/group/pakkaamo

Change Log
Version Date Modifications
1.0 27.11.2009 First version

i

Contents

1 Introduction 1

1.1 The project description .1

1.2 For Mp2 encoder developer . 1

1.3 Legal issues . 1

1.4 Document contents . 2

1.5 User manual . 2

2 MPEG encoder packages 3

3 MPEG encoder classes 4

4 The MPEG-1 Layer II encoder 5

4.1 The audio encoding process .5

4.1.1 The analysis filter . 6

4.1.2 Scalefactors . 7

4.1.3 Bit allocation . 7

4.1.4 Quantization . 8

4.1.5 Bit-level encoding . 8

4.2 The unit tests . 8

4.2.1 The tests . 8

4.3 Known issues . 9

5 Description of the PA model 10

5.1 Introduction . 10

5.2 Implementation details .10

5.3 Overview of the unit tests .11

6 Concerning the multiplexer 12

6.1 The idea . 12

6.2 The classes . 12

6.3 About the structure and workings .. . 12

6.3.1 Stream abstraction . 13

6.3.2 Packetization . 13

ii

6.3.3 Scheduling and multiplex generation 14

6.4 Further development . 14

6.4.1 Adding new input types . 14

6.4.2 Thread-safety needed . 14

6.5 About the testing . 15

6.5.1 What is tested . 15

6.6 Known issues . 15

7 Future development areas 17

8 Implemented features 20

References 22

References 23

1

1 Introduction

1.1 The project description

The Spring 2009 project Tensori created a prototype of a MPEG-2 video encoder library
in Java. This documentation does not contain the video encoding process, only audio
encoding and multiplexer implementation. If you are planning to create an audio/video
encoder please see Tensori project documentation. The Autumn 2009 project pakkaamo
further developed the prototype. Due to the use in DVDs, MPEG-2 is probably the most
widely used encoding format for motion pictures. TypicallyMPEG-2 software encoders
are implemented in C or C++ (e.g., ffmpeg, mpeg2enc) and heavily optimized on all lev-
els to make the encoding process as fast as possible. Unfortunately this makes the code
rather difficult to comprehend and hinders the adoption to other projects. The project
would implement an MPEG-2 encoder purely in Java. The project will be facing a variety
of very interesting challenges. Besides pure software development, these include a good
understanding of mathematical algorithms and compressionmethods, such as discrete co-
sine transformation, but also typical project requirements, such as a basic understanding
of the involved legal requirements. Altogether this project will give the students a com-
prehensive understanding of the subject of media coding, aswell as challenges, typical
for such a software development task. Specifically, the MPEG2 Audio (MPEG 1- Layer
II) would be of interest although layer III (MP3) and AC3 Audio might be possible as well.

1.2 For Mp2 encoder developer

This document contains the instructions how to implement and maintenance an MP2 en-
coder. We assume that you’re familiar with MPEG specification. All package organiza-
tion, class names and variable names are following the MPEG specification. Pakkaamo
does not provide the MPEG specification on the distribution.Please get your legal and
own copy from ISO organization.

1.3 Legal issues

MPEG technology contains several patent and license issues. If you consider to use this
product on commercial purposes or distribute this product please check the project doc-
umentation called legal.pdf. MPEG LA offers several Portfolio Licenses which provide
coverage under patents that are essential for use of varioustechnology standards, includ-
ing MPEG-2 Video and Systems (used together), MPEG-4 Visual(Part 2), AVC/H.264
(MPEG-4 Part 10), VC-1, ATSC, IEEE 1394, and MPEG-2 Systems (used separately
from MPEG-2 Video). Under the Licenses, coverage is generally provided for end prod-
ucts and services that include these technologies. Accordingly, the party offering such
end products and services (for example, under that party’s own brand name) concludes

2

the appropriate License with MPEG LA and is responsible for paying the applicable roy-
alties.

MPEG LA does not offer a license for MPEG-1 or any audio formats. With respect
to MPEG-1, our only suggestion would be to contact the patentowners directly. Visiting
the home page for the Moving Pictures Experts Group (MPEG) may get you pointed in
the right direction (http://www.chiariglione.org/mpeg/).
Regarding audio licenses, our only suggestion would be to try contacting parties such as
Fraunhofer Institute (http://www.iis.fhg.de/audio), Thomson Multimedia (http://www.thomson-
multimedia.com), Philips licensing (http://www.philips.com), SISVEL (http://www.sisvel.com)
and Audio MPEG (http://www.audiompeg.com). MPEG LA understand that Dolby (or
its licensing company Via Licensing (http://www.vialicensing.org/) may provide licenses
for various audio formats.

1.4 Document contents

Second chapter shows the package structure of the encoder. In the third chapter we take a
look at the MPEG encoder classes. Fourth chapter goes through the encoding process on
a higher level and then gives details on the testing. Then it presents some known issues
with the encoder’s implementation. Chapter five gives and overview on the psychoacous-
tic model, its implementation and testing. Chapter six shows the idea and structure of the
multiplexer and gives information testing specific to the multiplexer. Information is also
given about further development and known issues. Chapter seven shows the future de-
velopment areas for the encoder library and chapter eight goes through the implemented
items and offers information on the state of implementationand reliability.

1.5 User manual

If you want to use MP2 library add $PROJECT_HOME/lib/pakkaamo.jar,
$PROJECT_HOME/lib/minim.jar, $PROJECT_HOME/lib/minim_spi.jar and
$PROJECT_HOME/lib/core.jar to your build path. See the essential
classes for audio encoding are MP2Encoder and AudioFrame.
See the examples and full descriptions from the JavaDoc.

3

2 MPEG encoder packages

Package name Description
fi.helsinki.cs.ohtu.mpeg2 MPEG-2 systems
fi.helsinki.cs.ohtu.mpeg2.audio MPEG-2 audio upper classes
fi.helsinki.cs.ohtu.mpeg2.audio.mpaMPEG-1 audio encoder classes
fi.helsinki.cs.ohtu.mpeg2.util Utility classes
fi.helsinki.cs.ohtu.mpeg2.video MPEG-2 video encoding classes
examples Examples on how to use the library

Figure 1: MPEG encoder packages

Figure 1 presents the package structure of Java MPEG-2 Encoder.

The packages fi.helsinki.cs.ohtu.mpeg2, fi.helsinki.cs.ohtu.mpeg2.video and
fi.helsinki.cs.ohtu.mpeg2.util contain classes written by the previous group Tensori. Their
classes were reorganized when the final package structure was made.

If a new encoder will be implemented, for example AC-3, it is suggested to locate in its
own package fi.helsinki.cs.ohtu.mpeg2.audio.ac3.

4

3 MPEG encoder classes

Class name Description
AudioEncoder Encodes a single-channel or multi-channel frame of

samples.
AudioFrame Returns duration of frame in seconds and writes con-

tents of frame to the given stream.
BitAllocator Represents a bit allocation for subbands on multiple

channels.
DummyPAModel A dummy class for a psychoacoustic model.
MP2Data This class encodes compressed audio data to binary

form.
MP2Encoder Implements an MPEG 2 encoder.
MP2Frame Represents a coded MPEG-1 Layer II audio frame.
MP2Quantizer Quantizes the subband samples.
MP123Header Represents an MPEG-1 audio frame header as de-

scribed in section 2.4.1.2 of ISO/IEC 11172-3.
PolyphaseQuadratureFilterThis class implements an analysis subband filter spec-

ified in ISO/IEC 11172-3. Maps samples to 32 sub-
bands.

QuantizationTables Quantization tables.
ScaleFactors Scalefactors are taken from table 3-B.1 of ISO 11172-

3.
StandardPAModel1 Implements the Psychoacoustic Model 1 described in

Annex D of ISO 11172-3.

Figure 2: MPEG encoder classes

Figure 2 presents the most important classes implemented for MPEG-1 Layer II audio
encoder. The most of the classes implement one step of the encoding process, for example
BitAllocator implements the bit allocation phase. In addition, there are some general
classes, like MP2Encoder, which extends AudioEncoder. This class wraps all the other
classes in the encoder, and it is simple to use if you don’t need any special settings.

Further descriptions and use case examples can be found in chapter 4, where the encoding
process is explained.

5

4 The MPEG-1 Layer II encoder

The ISO/IEC 11172-3 standard document defines three layers,I, II and III of audio com-
pression, each building upon and increasing in complexity over the preceding one. In this
project, specifically a Layer II encoder conforming to the standard was implemented.

MPEG-1 audio compression is a lossy compression technique exploiting the weaknesses
of the human auditory system. A psychoacoustic model is usedto guide the compres-
sion process such that the essence of the signal is preservedwhile irrelevant portions are
discarded.

The implementation supports monophonic, dual-monophonicand stereo encoding. The
three sampling rates, 32, 44.1 and 48 kHz, defined in the MPEG-1 standard are supported.
In addition, the encoder partially supports the MPEG-2 Lower Sampling Frequencies ex-
tensions: 16, 22.05 and 24 kHz. However, the current psychoacoustic model is restricted
to MPEG-1 sampling rates only. A dummy model is used for the LSF rates.

Code example

MP2Encoder mp2Enc;
AudioFrame frame;

mp2Enc = new MP2Encoder(AudioEncoder.Mode.SINGLE_CHANNEL,
AudioEncoder.SampleRate.SRATE_48000);

frame = mp2enc.encode(new double[mp2enc.getSampleFrameSize()]);

4.1 The audio encoding process

The implementation of the encoder follows the example in theAnnex C of the ISO 11172-
3 document. The example was chosen as the basis, since it was,afterall, relatively
straightforward. Besides, it would have been very tedious to develop an equivalent en-
coder from scratch. The essential idea is to break the input signal into components that are
then encoded in a (somewhat) smart way. The encoding consists of the following phases:
Analysis filtering, the psychoacoustic model, scale factorcalculation and selection, bit
allocation, quantization and bit-level coding. The whole process is orchestrated by the
MP2Encoder class which consists mainly of glue logic. An overview of theencoder
and data flows within it are presented in Figure 3.

As an input, the encoder takes a frame of pulse-code modulated samples. The encoder
outputs a coded frame. The frame size is fixed to precisely 1152 samples by the standard.
In the encoding, the input samples are assumed to be in the open range(−1, 1).

6

PQF Psychoacoustic model

Scalefactors

Bit allocation

Quantization

Bit-level encoding

PCM frame

subband
samples

SMRs

scale factors
and selectors

quantization
levels

quantized
samples

Encoded frame

Figure 3: The general picture of the encoder

4.1.1 The analysis filter

The first phase of the encoding process is analysis filtering.The filtering is done by
the classPolyphaseQuadratureFilterwhich implements a polyphase quadrature
filter (PQF) described in Section 3-C.1.3 of the ISO/IEC 11172-3 document. The filter
maps the input signal into 32 subbands.

Technical details

The sub-bands are evenly spaced in frequency: The middle frequency for a subbandi
(zero based) is1

64
(2πi + 1). Adjacent subbands are slightly overlapped. The filter has a

delay of 256 samples due to internal windowing. The window size is 512 samples. As a
consequence, the filter “remembers” a glimpse of the previous samples. In addition, there
is a short “run-in phase” to fill the window at the start of filtering (initially it is full of
zero).

Layer II coding groups are 3 of 12 samples per subband which is1152 samples per frame.
There can be up to 3 scale factors per subband to avoid audibledistortion in special cases.

Code example

PolyphaseQuadratureFilter pqf = new PolyphaseQuadratureFilter();

7

double[] samples = new double[1152];
...
subbands = pqf.filter(samples, samples.length / SBLIMIT);

4.1.2 Scalefactors

The second encoding phase is scalefactor calculation and selection. The classScaleFactors
implements scalefactor calculations for both MPEG-1 LayerI and II audio. The scale fac-
tors are used in the encoding process to implement an application specific (read “home-
made”) floating-point representation of sub-band samples:The scalefactor indices are
coded along the scaled (and quantized) subband samples. Thus the scaling can be re-
versed while decoding.

Code example

scfis = ScaleFactors.calcScale(samples);
...
scaledSample = ScaleFactors.scale(sample, scfi);

4.1.3 Bit allocation

The bit allocator is, more or less, the core of the encoder. The allocator determines how
to fit given subbands into a coded audio frame. For every subband the allocator deter-
mines a quantization level. The implementation, the classMP2Encoder uses the class
BitAllocator to do the actual allocation.

The essence of the allocator is as follows: Initially every sub-band sample is (almost)
noiseless in terms of representation. Due to quantization,quantization noise is brought
on. The bit allocator tries to eliminate the noise by incrementing the representation pre-
cision step by step. The psychoacoustic model has determined a signal-to-mask ratio for
every subband. The quantization noise is eliminated once ithas been “pushed” below the
masking threshold: the noise can not be heard anymore. However, the number of rep-
resentation bits is rather limited. The bits ought to be spent in subbands that need them
truly.

The allocation is constrained by a quantization table. Table selection is implicit by bitrate
and sample rate. The ISO/IEC 11172-3 document defines four different tables, Tables 3-
B.2[a-d]. The ISO/IEC 13818-3 defines an additional table, Table B.1, which is used for
MPEG-2 LSF. TheQuantizationTables class stores these five tables. In addition
to bit allocation, the tables are used in the quantization phase.

Code example

BitAllocator.Allocation alloc;

8

alloc = BitAllocator.allocate(quantizationTable[0],
bitsAvail, scfsi, smr);

4.1.4 Quantization

The classMP2Quantizer implements a quantizer for subband samples. Annex C of the
ISO/IEC 11172-3 document outlines the quantization. The quantizer maps subband sam-
ples represented in floating-point to a set of non-negative integers. The set is determined
by the number of a subband and the quantization level specified by the bit allocator.

The codomains of quantized samples are stored in theQuantizationTables class.
For every input samples the conditions ∈ [−1, 1) must hold.

Code example

QuantizationTable[] tables = new QuantizationTable[5];
for (int i = 0; i < tables.length; i++) {

tables[i] = QuantizationTables.getTable(i);
}
...

4.1.5 Bit-level encoding

The bit-level encoding is the last phase of the encoding process. The quantized sam-
ples, along with scalefactor indices, selectors and quantization levels, are written to a bit
stream. The classMP2Data is responsible for the bit fiddling. In short, it writes all the
previously mentioned data in the form described in Section 2.4.1 of the ISO/IEC 11172-3.
The coded data is put into an audio frame after an audio header. The classMP123Header
writes the header, whereas the classMP2Frame writes the complete frame.

4.2 The unit tests

There are unit tests for every class in the encoder.

4.2.1 The tests

BitAllocator The allocator is fed with predefined inputs and the output is compared to
hand calculated reference values.

Bit-level encoding classesThe classesMP123Header,MP2Data andMP123Header
are tested by setting an instance to a particular state and generating an array of bytes.
The array is compared to handmade reference values.

9

MP2Encoder It is checked whether the encoder is able generate an encodedaudio frame
from a proper input frame. The encoder’s accessors are tested as well.The tests do
not verify the real sanity of the output!

MP2Quantizer Predetermined input values are quantized with the quantizer. The output
values are compared to hand computed reference values.

PolyphaseQuadratureFilter The filter is applied with known inputs and the output is
checked for validity.The tests are rather austere. More interesting cases, such as
frequency sweeps, are conspicuous by their absence.

QuantizationTables The class is tested in a fashion of a spot test: Values from here and
there are checked, emphasis being on borderline cases.

ScaleFactorsThe class is fed with hand picked input values. The output is then com-
pared with precomputed reference values.

4.3 Known issues

There are some issues in the encoder:

• It is not possible to change a sample rate for anMP2Encoder instance. Some
might consider this as a shortcoming, but in fact, it is a feature. At the minimum,
switching a sample rate causes a transient glitch in playback (the synthesis filter has
a memory!). Some oversensitive decoders might get confusedtemprarily or come
to a complete halt. Yet, as the encoding is done on the frame level, the switch can
be done (conciously) by creating a new encoder instance.

• The current implementation of the psychoacoustic model supports MPEG-1 sample
rates only. For the MPEG-2 LSF, the encoder falls back to the dummy model.

10

5 Description of the PA model

5.1 Introduction

A psychoacoustic model determines the acoustically irrelevant parts of signal. From the
human ear’s standpoint, an audio signal has redundance bothin the time domain as well as
in the frequency domain. This redundance stems from the masking phenomenon, which
exists in both time and frequency. Auditory masking means the human ear’s inability to
distinguish sounds in the presence of other sounds. In otherwords, this means that weak
signal components in close proximity to more powerful components are masked, meaning
they cannot be heard. This gives us room to introduce essentially inaudible quantization
noise to some parts of the final encoded signal, greatly improving the compression ratio
while still preserving signal quality.

The human ear’s frequency resolution is non-linear across the audible frequency range
(20Hz - 20kHz). The audible range can be broken up into frequency bands called the
critical bands. The critical bands are of non-equal width, with the bands corresponding
to the lower frequencies being much narrower relative to thehigher frequency critical
bands. This derives from psychoacoustic experiments, in which it has been concluded
that the human ear has much better resolving ability at lowerfrequencies. In the time
domain, the masking can be more easily approximated with thepre-masking occurring
roughly 10 milliseconds before the masker and the post-masking effect lasting a little
longer at about 50 milliseconds.

5.2 Implementation details

We have chosen to implement the MPEG-1 standard Psychoacoustic Model 1 which is,
compared to for example the Model 2 in the same standard, lesscomputationally ex-
pensive and makes some serious compromises in what it assumes a listener cannot hear.
When we are converting samples to frequency domain we use a Hann weighting and then
a Discrete Fourier Transform (DFT). Simply gives an edge artifact (from finite window
size) free frequency domain representation. Model 1 uses 512 (Layer I) or 1024 (Layers
II and III) sample window.

PA model need to separate sound into tones and noise components. Local peaks are tones,
lump remaining spectrum per critical band into noise at a representative frequency. We
have to calculate a masking threshold for each subband in thepolyphase filter bank and
select the minima of masking threshold values in range of each subband. Inaccurate at
higher frequencies recall how subbands are linearly distributed, critical bands are not!

After the tonal and non-tonal components have been separated, they will be inspected in
the decimation step. The non-tonal components are not decimated, as suspected due to
their more pervasive effect. Instead a simple check is made to discard non-tonal com-
ponents below the absolute threshold. As for the tonal components, for each tonal com-
ponent a scan around the spectral line is performed with a width of 0.5 Bark. The tonal
component with the maximum power in the are will be preservedand the others will be

11

ignored in further considerations.

The hard work is done now, we just calculate the signal-to-mask ratio (SMR) per subband
SMR is signal energy per masking threshold. We pass our result on to the coding unit
which can now produce a compressed bitstream.

Code example

double[] SMRs = computeSMRs(samples, scf);

5.3 Overview of the unit tests

Each step in the model has been unit tested. A crude ”system test” that tests the program
flow through all steps has also been implemented.

12

6 Concerning the multiplexer

6.1 The idea

The multiplexer writes program stream in fixed sized chunks of bytes. Given a particular
multiplex rate, a chunk corresponds a time span of precise length. This reduces the task of
the multiplexer to time-division multiplexing: it has to decide what to do with every slot.
Data for a single slot comes from at most one elementary stream. Not all slots are used
for data. Sometimes it is necessary to output padding slots just to keep up the multiplex
rate. If the rate is not fixed, the padding slots are not written for real.

Scheduling is the process of deciding from which stream to read data from. The im-
plementation is based on the Program Stream system target decoder model (P-STD) de-
scribed in Section 2.5.2 of ISO 13818-1. The model is a little(too) detailed. Some (small)
corners have been cut in the implementation:

• The system clock is handled only in the accuracy of 90kHz which is more than
enough for the task.

• The system clock reference present in the stream is counted from the first byte
of the stream, not from timestamp itself. This helps to eludenasty offsets in the
calculations. Besides, the error is very small if not insignificant and definitely not
accumulating.

• The modelling of decoder buffers is rather approximative. However, the imple-
mentation should do its work. Errors should not be accumulating. In addition,
real decoders tend to be rather varied. Thus working to the ultimate precision on a
theoretic level would not really pay off.

6.2 The classes

The following are the most important classes of the multiplexer:

Class name Description
AudioStream Receives audio frames and generates a packetizable

stream of access units.
AVPacketizer Packetizes audio and video streams into PES packets.
ProgramStreamMuxer Implements the core of the multiplexer. Controls

packetizers and generates program stream.
VideoStream Receives components of video and generates a pack-

etizable stream of access units.

6.3 About the structure and workings

A general overview of data flows via method calls during multiplexing are is show in the
Figure 6.3. The following sub-sections give a slightly moredetailed view.

13

ProgramStreamMuxer

AVPacketizer

AVPacketizer

AudioStream

VideoStream

Audio in

Video in

PS outstreamDataAvail

packetize

packetize

Figure 4: Data flow as method calls during multiplexing

6.3.1 Stream abstraction

The classesAudioStream andVideoStream implement a stream abstraction. They
both take in pieces of data via variouswrite methods. Received data are collected to
form access units. Presentation and decoding timestamps are embedded into every access
unit (the classes try to automatically maintain the timestamps). A stream class passes
finished access units to packetizers associated to the class.

All the stream classes extend the abstract classElementaryStream. For the moment,
the base class has very little functionality. The class in itself is little artificial. Besides,
the sub-classes implement redundantly the basic handling of packetizers. This has been
conscious, as the sub-classes may have rather specific needs. Anyway, it seemed nicer to
have a common base class.

The classVideoStream implements a simple minded verification of the video stream
structure. Inside the class there is a twisted state machinewhich keeps track of incoming
video elements.

6.3.2 Packetization

Instances of theAVPacketizer class accept access units via thewrite(AccessUnit)
method. The access units are enqueued to be packetized later. When a packetizer deter-
mines it has enough data available, it notifies a packet listener (notifying does not need to
happen immediately, slow “charging” and occasional “discharges” would actually make
multiplexing more efficient). Thus the data flow does not needto go any further every
time.

The multiplexer pulls data from a packetizer using thepacketize method. The multi-
plexer defines which is the target size of a packet. The packetizer tries to fill the packet as
full as it can. If there is not enough data available for a fullpacket, the packetizer retreats.
This is necessary to avoid wasting bandwidth (in general, the multiplexer might not be
able to get any benefit of the “spare space”).

14

6.3.3 Scheduling and multiplex generation

The core of the multiplexer lies in theProgramStreamMuxer class. Once a multi-
plexer instance is notified of available data, it performs packet scheduling. At first, the
multiplexer determines whether scheduling can be done at all. An imperative condition
for scheduling is that every connected packetizer has either some data available or there
will never be data to pull again. Without this being in force,the multiplexer can not make
a choice between packet sources and scheduling has to be postponed. Owing to this,
packetizers’ data buffers can grow without a bound in the long run if streams receive data
unevenly all the time.

After succesful scheduling, the multiplexer tries to get a packet from the selected packe-
tizer using thepacketize method. If the packetizer lacks data, the multiplexer has to
fall back to wait. The scheduling has to be done again later. The decision should stay
the same, though (here is a good opportunity for optimization). When a packet is finally
generated, the multiplexer outputs the packet in a “chunk” of program stream.

6.4 Further development

6.4.1 Adding new input types

Adding a new input type for the multiplexer should be relatively easy as long as the for-
mat is either audio or video. At the bare minimum one needs only to feed an instance
of AVPacketizer with the access units. A higher level interface, likeAudioStream
andVideoStream, is preferrable since it hides the details of packetization. To cus-
tomize the packetization one has to sub-classAVPacketizer. For a simple example,
see the implementation of the video stream packetizer,VideoStream.VideoPacketizer.

It will be more tricky to add an input type which does not follow the semantics imple-
mented byAVPacketizer. If one can specify a decoding timestamp for every packet,
the model ofAVPacketizer might still do. However, it has to be generalized. Other-
wise even the scheduler of the multiplexer needs to be altered.

6.4.2 Thread-safety needed

The present implementation of the multiplexer is not thread-safe. However, it would be
very natural to use it simultaneously in multiple threads. There are two definite ways
to do multithreading: The first one is to make the whole multiplexer thread-safe and let
every thread multiplex. The second one is to employ a separate thread for multiplexing
and make the access unit transfer from stream-level classesto packetizers thread-safe.
The first option is more appealing since there would be no “hidden” threads beneath the
surface. Then, in addition, the user would not be forced to use multithreading if one did
not want to.

A simple, and inefficient, way to multithreading is accessing the multiplexer insynchronized
blocks:

15

synchronized (psmux) {
...
vs.write(...);
...

}

6.5 About the testing

Every component of the multiplexer has a unit test. The testing covers at least 80 per cent
of the code, both in lines and blocks.

6.5.1 What is tested

AudioStream Basic timestamp manipulations and auto-increment are tested. In addition,
the fundamental parts of packet streaming are tested.

AVPacketizer The packetizer is fed with an (artificial) input of access units. The work-
ings of the decoder buffer model is checked. The model’s effect on packetization is
tested, as well. Furthermore, it is verified nothing is left into the packetizer’s buffers
after draining.

ProgramStreamMuxer Various knobs of the class are adjusted and then the effects are
checked. A multiplex of two artificial audio streams is generated. The multiplex is
inspected vaguely.The uppermost test is missing: The validity of the multiplexis
not verified! That would require at least a bitstream decoderwhich the library does
not have.

VideoStream A valid video sequence is applied to the class. The sequence contains I,
P and B-frames.The B-frame sequence is rather experimental.Timestamp manip-
ulations and auto-increment are tested, too. The video state tracking is tested by
feeding the class a not-so-valid video sequence and checking whether exceptions
are throw at the right moments.The testing assumes the class refuses invalid input
and retains consistent state.

6.6 Known issues

The following are known issues in the multiplexer:

• The system clock precision is only 90kHz. If the multiplex rate is very high or if
hair breaking between data sources is essential, the precision might not be enough.
In spite of all, the multiplexer should be able to cope with any reasonable, normal
multiplexing task. For rates over 1Gbit/s, this library might not be a sane solution
. . .

16

• Packetizer has to meet the target packet size fully or leave it short for at least seven
bytes. Otherwise the multiplexer can not fit a padding packetinto a chunk. Due
to limitations in thePESPacket class it is troublesome to add stuffing bytes af-
terwards. Thus the packetizer has to take care of appropriate stuffing for the multi-
plexer (or leave a gap big enough).

• The packetizer does not “hoard” data before notifying the multiplexer. This induces
often unnecessary scheduling as there is not enough data to fill a packet. A simple
solution to the problem is to add a static level trigger: Notification is made only
if the size of the available data exceeds the limit. A better solution would be an
adaptive limit: The trigger level is constantly fine-tuned to match with the average
data in a packet.

• The video state tracking in theVideoStream class is rather loose. It works only
on the surface level. Thus many errors might go through unnoticed. At the same
time, the class might complain about things that are in fact totally acceptable.

17

7 Future development areas

This chapter list and describes functionalities which havebeen omited from the encoder
and what can be implement later.

• AC-3 encoding

AC-3 is a product of Dolby Laboratories. The encoding is defined in the ATSC
Digital Audio Coding (AC-3) Standard. Unlike the MPEG standards, the AC-3
standard is available for free. See the project documentation the prospects of Ac3.

• MP3 encoding

MPEG-1 Layer III encoding is defined in the ISO/IEC 11172-3. It has a few simi-
larities with the Layer II encoder. However, MP3 is mostly very different. See the
project documentation the prospects of MP3.

• AAC encoding

Advanced Audio Coding is a rather complex audio encoding scheme. AAC is de-
fined in the MPEG-2 and MPEG-4 standards.

• Joint stereo support for the MP2 encoder

In joint stereo mode high frequency sub-bands of a stereo signal are joined into one
channel. In some cases this has only a small impact in the sound quality but helps
to spend bits where they are really needed.

A general idea for an implementation: The encoder needs a wayto determine a
sub-band from which to join the channels. It can be done by calculating how many
bits are needed for a noiseless signal. The join-level is reduced as long as the
coded frame will not fit into a frame. Yet the result might be rather rough. The
channels can be joined simply by averaging. The joined sub-bands have a common
quantized sample but their scale factors are separate. A humble solution would
be to use the same factors for both the channels. Some improvement might be
gained if the factors were separate. However, this affects the joining (simple average
is not enough any longer). The bit allocation has to take intoaccount the join.
The quantization itself does not need to be changed. The bit-level coding class
MP2Data has a support for the joint stereo mode already.

• Signal quality feedback for the MP2 encoder for VBR

A signal quality feedback in the MP2 encoder would permit a rather generic way
to implement a variable bitrate encoder. How it might be done: The encoder would
output information on the signal quality as a by-product or in some other manner.
Then, the information could be used to guide the encoder to dothe encoding for
real. A pseudo two-pass encoding might be implemented by windowing sample
frames and encoding the oldest frames with the data from the window.

18

• Multithreading (or thread-safety)

In some parts of the code multithreading would be a very natural way of doing
things. For instance, the multiplexer has to deal with multiple data sources. Cur-
rently, it does its work by ’multiplexing’ a single thread todo everything: process-
ing input, encoding, multiplexing and so on. Doing all this by hand is rather awk-
ward. Besides, in complex situations it might as prone to errors as is programming
with multiple threads.

Here multithreading has little to do with speed. For the mostof the time there are
data dependencies which inhibit truly parallel execution very quickly (or solving
the dependencies would demand non-obvious solutions). To gain speed, doing less
smarter is the way to begin with.

• Transport stream multiplexing

It should be rather straightforward to implement a multiplexer for transport stream,
once the idea of multiplexing is clear. The multiplexer has to cope with multiple
programs each of which have a separate clock. Things are (relatively) easy as long
as the eventual multiplex rate is fixed. Individual programsmay be variable in
bitrate, however. If the transport stream itself were of variable rate, it would be
tricky to correctly advance the clocks. In addition to audioand video streams, the
scheduler has to work with a system stream. The system streamhas scheduling
semantics different from audio and video.

What (at least) is needed for a bare minimum implementation:The scheduler has to
be adapted for transport stream. A transport stream packetizer is essential: It packs
PES packets and system data into tiny TS packets. When necessary, it outputs
null packets to keep up with the target bitrate. The multiplexer has to generate
descriptive information, such as the program map, too. In overall, transport stream
is relatively dynamic. To provide the user the sufficient amount of flexibility does
require some care.

• Refactoring of the PESPacket class and its sub-classes

The PESPacket class and its sub-classes should be refactored so that it would be
possible to adjust packet’s parameters at any moment without losing any contents.
The current code behind the class PESPacket does not allow changing the param-
eters without wiping packet’s contents. This behaviour is fine as long as the entire
packet can be built at once. However, in some cases it is desirable to do small ad-
justments to the packet after it has been build initially. A good example is of adding
stuffing bytes in the multiplexer.

• Support for Linear PCM multiplexing

Although it has little to do with the MPEG standards, adding asupport for linear
pulse-code modulated (that is, uncompressed) audio to the multiplexer might be
an interesting task. It would allow the easy trial of multiplexer extension without
heavy background work (as would be the case with AC3, for example).

19

• Multichannel support

The MPEG-2 audio (described in the ISO 13818-3 document) contains extensions
to MPEG-1 audio to support multichannel coding. The featurerequires (possibly
rather extensive) changes on every stage of the encoder.

20

8 Implemented features

This chapter list and describes functionalities which havebeen implemented.

• PQF see sections 4.1.1. and 4.2.1.

• Scalefactors see sections 4.1.2. and 4.2.1.

• Bit allocation see sections 4.1.3. and 4.2.1.

• Quantization see sections 4.1.4. and 4.2.1.

• Packaging see sections 6.3.2. and 4.2.1.

• Multiplexer see sections 6.0 and 6.5.1.

• Psychoacoustic model. Step 1: FFT from Minim -library is used. [9]

• Psychoacoustic model. Step 2: determination of the sound pressure level

This step is fairly straight forward, so there shouldn’t be any problems with it. First
we just find the highest scalefactor and calculate the power corresponding to it.
Then we compare that power to the spectral line powers of thatsubband replacing
the power if a higher one is found. Then the highest value is chosen for the subband
in question.

• Psychoacoustic model. Step 3: determination of the absolute threshold

This step is a simple selection of a right table, so there shouldn’t be any problems
here.

• Psychoacoustic model. Step 4: finding of tonal and non-tonalcomponents

This step if quite complicated. Tonal components should be calculated correctly.
There might be some problems with non-tonal components. Arethey located on
the right spectral index and is the components power calculated correctly from the
spectral lines.

• Psychoacoustic model. Step 5: decimation of maskers

In this step the relevant tonal and non-tonal components arechosen for masking.
Tests check that the right kind of components are chosen and unfit are discarded.
This step should be correct, but if there is something wrong check the non-tonal
components and that they are handled correctly.

• Psychoacoustic model. Step 6: calculation of individual masking thresholds

This step is quite complicated with lots of calculations andtables. MATLAB im-
plementation of the PA-model was used as a guideline to code this step. It should
work correctly, but testing was difficult due to its complexity.

21

• Psychoacoustic model. Step 7: calculation of the global masking threshold

This step takes the individual masking thresholds table from step 6. The mechanics
of this step aren’t too complicated, so the process has been tested with smaller
tables and simple values. There shouldn’t be problems with this step. MATLAB
implementation of the PA-model was also used as a reference in this step.

• Psychoacoustic model. Step 8: determination of the minimummasking

This step takes the global masking thresholds from the previous step and calculates
the minimum values per subbands. The testing was simple, feeding the method a
table and calculating by hand that the smallest value is selected.

• Psychoacoustic model. Step 9: calculation of the signal-to-mask ratios

This step is simple operation of substacting one table from another and storing the
results in a new table. There shouldn’t be any problems here.

• System testing and Validation tested with mplayer Mplayer plays encoded audio
file without errors. We have done a subjective hearing based comparison between
original audio file and encoded files, where different bit rates were used.

• Sample rates for PA-model

Sample rate support for the PA-model was a simple as adding more tables to the
class from the MPEG-1 standard and choosing the right ones byparameters. MPEG-
2 introduced some new sample rates for the PA-model which haven’t yet been im-
plemented.

22

References

1 ISO/IEC INTERNATIONAL 13818-1 STANDARD
Information technology - Generic coding of moving picturesand associated
audio information: Systems
Second edition
2000-12-01

2 INTERNATIONAL STANDARD 13818-2
INFORMATION TECHNOLOGY - GENERIC CODING OF MOVING
PICTURES AND ASSOCIATED AUDIO INFORMATION: VIDEO
1995 (E)

3 ISO/IEC 13818-3 Information Technology - Generic Coding of Moving
Pictures and Associated Audio: Audio
1994

4 ITU-T H.222.0 SERIES H: AUDIOVISUAL AND MULTIMEDIA SYS-
TEMS Infrastructure of audiovisual services - Transmission multiplexing
and synchronization Information technology - Generic coding of moving
pictures and associated audio information: Systems
05/2006

5 ITU-T H.222.0 SERIES H: AUDIOVISUAL AND MULTIMEDIA SYS-
TEMS Infrastructure of audiovisual services - Transmission multiplexing
and synchronization Information technology - Generic coding of moving
pictures and associated audio information: Systems Amendment 2: Car-
riage of auxiliary video data
08/2007

6 ITU-T H.222.0 SERIES H: AUDIOVISUAL AND MULTIMEDIA SYS-
TEMS Infrastructure of audiovisual services ¿ Transmission multiplexing
and synchronization Information technology ¿ Generic coding of moving
pictures and associated audio information: Systems Technical Corrigen-
dum 1 Correction of zero_byte syntax element and stream_id_extension
mechanism
06/2008

7 EclEmma Java code coverage tool
http://www.eclemma.org/

23

8 JUnit testing framework
http://www.junit.org/

9 Minim library
http://code.compartmental.net/tools/minim

References

