
Hook and Template Coverage Criteria for Testing
Framework-based Software Product Families

Raine Kauppinen, Juha Taina and Antti Tevanlinna

University of Helsinki
Department of Computer Science

P. O. Box 68 (Gustaf Hällströmin katu 2 B)
FIN-00014 UNIVERSITY OF HELSINKI

{Raine.Kauppinen, Juha.Taina, Antti.Tevanlinna}@cs.helsinki.fi

Abstract. In this work, we introduce the concepts of hook and template cover-
age criteria for integration testing of framework-based product families. These
product family specific coverage criteria define how much functionality of the
application code expanding an application framework has been covered with ex-
isting test suites. The criteria are simple, but relevant. We demonstrate the relation
of the proposed and traditional criteria in an example.

1 Introduction

While there have been related large scale projects and case studies [1,2] and a frame-
work for software product line practice has been developed [3], surprisingly little is
written about testing of product families. The traditional object-oriented methods [4] for
testing can be used, but there is also growing demand for a well-defined product family
testing process and methodology including tool support [5]. One part of the work is to
define coverages for estimating adequacy of testing in product family context.

We propose two new coverage criteria for framework-based product families: hook
coverage and template coverage. They define how much functionality of the application
code extending an application framework have been covered with existing test suites.

This work is organized as follows. Section 2 introduces framework-based software
product families and their testing. Section 3 defines hook and template coverages. Sec-
tion 4 shows an example of these coverages and finally, Section 5 concludes this article.

2 Framework-based Software Product Families and Testing

Object-oriented application frameworks provide a means to implement product families
[6,7]. An application framework is a partial design and implementation for an applica-
tion in a given domain. To create an application, missing functionality and, if required,
new features must be added.

Frameworks are adapted by adding application specific functionality to the structure
the framework provides [6]. Variation points open for customization in a framework are
called hot spots while stable parts are called frozen spots. Hot spots are implemented as
hook classes and frozen spots as template classes. A template class contains template

methods that use services of a hook class [7]. The hook class is abstract, so its hook
methods must be implemented when the framework is extended.

Figure 1 shows an example of an application derivation from a framework. The
left side of the figure shows the structure of the application. The framework defines
interfaces with templates and hooks that are used to implement the application specific
functionality of the product as shown in the center of the figure. When the template
methods in the framework call abstract hook methods, virtual binding delivers the in-
vocation to application specific code enabling variability. This is illustrated in Figure
1 using curved arrows between methods. The messages from a template method are
targeted to a hook method never reaching it, but instead pointing to the real receiver –
the hook method implementations as shown on the right side of the figure.

Framework

Application
code

Application
code

FrameworkTemplate

templateMethod1()

ApplicationClass1

hookMethod()

Hot spot

Frozen spot

hook
methods

methods
template

code
other framework

hook method
implementations

other application
code

coverages
template

hook
coverages

key:

method
invocation

*

abstract FrameworkHook

abstract hookMethod()

Fig. 1. An example of the structure of an application derived from a product family based on an
object-oriented framework (on the left), the class level interface between the framework and the
application specific code element extending it (in the center) and context of the hook and template
coverages (on the right).

In a product family organization, different teams implement unit tests for the frame-
work and the application code and, during testing of the framework, it is most conve-
nient to use minimal stub implementations of the hot spots. Hot spots promote isolation
in unit testing, because it is relatively easy to implement stubs and take them into use.
Therefore, integration testing is crucial as the framework is first unit tested without
complete knowledge of the future applications. Also, application-specific parts are unit
tested assuming the framework is well-tested.

The framework interface requires new coverage criteria for integration testing to
complement the traditional structural coverages. Traditional structural coverages have
given a good indication of the integration testing coverage when there is no dynamic
binding. For example, condition coverage subsumes coverage of the invocations in call
graph of a program. But with dynamic binding, there may be several arcs in the graph
for a method invocation in code and the indication of adequacy provided by traditional
criteria is significantly weaker.

Many criteria have been defined to test polymorphism in object-oriented languages
[4,8,9]. We aim to stronger integration testing criteria still retaining simplicity. The
template coverage we propose is similar to existing criteria. The hook coverage is new
and stronger than most existing criteria taking into account structural aspects in addition
to the existence of a polymorphic binding. The results and application of the hook

coverages are based on widely used traditional coverages such as statement coverage.
We also claim the hook and template coverages are simple to understand, which makes
them easy to use and build tool support for.

3 Hook and Template Coverage Criteria

A hook method reference is a method call from a template class to a hook method
implementation residing in adapting code. A test case goes through a hook method
reference if the test case invokes the reference; that is, if the test case executes the
statement containing the method call from the template class to the hook method. A
hook method reference is tested if it is gone through by one or more test cases and not
tested otherwise. Furthermore, a test case reaches a hook method implementation if it
goes through a hook method reference and if it executes some or all of the code in the
method.

We define the hook method coverage
��� �

for a hook method implementation ���
and the template method coverage � � �

for a template method �	� as follows:

Definition 1 HMC(hm) = the structural coverage (for example the statement coverage)
of hm provided by test cases that reach the method.

Definition 2 TMC(tm) = the number of tested hook references in �	� divided by the
number of the hook method references in �	� .

Next, we define the hook class coverage
���
�

for a hook class ��� and the template
class coverage � �
� for a template class �	� as follows:

Definition 3 HCC(hc) = the number of covered structures divided by the number of
coverable structures in the in hc. The structures to be counted depend on the struc-
tural coverage applied. For example, if statement coverage is used, these structures are
statements.

Definition 4 TCC(tc) = the number of tested hook method references in tc divided by
the number of hook method references in tc.

The hook and template coverages can also be used to measure the coverage of
frameworks or other collections of classes in an application by counting the structures
or hook method references from them instead of single methods or classes. In a similar
way, it is possible to measure the hook and template coverage of an application.

The hook coverage is best applicable at method, class or application level since
hooks are application-specific. However, the template coverage is a product family level
testing measure, because the same templates exist in every product of the family.

4 An Example and Analysis

We demonstrate the hook and template coverages using framework-based Osuma-appli-
cation, which generates code for design patterns. In these examples, we deduce the

coverage values for simplicity. In real-life testing, an automatic calculation and analysis
is a necessity. We have such an environment implemented in the RITA environment
designed for product family testing [5].

The framework of Osuma contains hot spots for design patterns and querying infor-
mation from the user to configure the structure to be created. An example of a frozen
spot is the displaying of the questions in queries. Next, we analyze the testing of a
template method that checks an answer to a query.

Figure 2 shows the relevant code of the template method containing three hook
method invocations (See the underlined references to methods of the hook class refer-
ence this.question in the code) and the possible hook method implementations invoked
by each hook reference. In the analyzed configuration, there are 15 potential hook ref-
erences.

<<hook implementation>>
TraceAbleClassQuestion

+setAnswer(answer:String)

<<hook implementation>>
ClassQuestion

+isValid()
+setAnswer(answer:String)

<<hook implementation>>
IntQuestion

+getTypeHint()
+isValid()
+setAnswer(answer:String)

<<template class>>
QuestionDisplayer

-question: Question
+<<template>> checkAnswer()

<<interface, hook class>>
Question

+<<hook>> getTypeHint()
+<<hook>> isValid()
+<<hook>> setAnswer(answer:String)

<<hook implementation>>
ParameterQuestion

+setAnswer(answer:String)

<<hook class reference>> shows

if(this.question.getTypeHint().equals(
 Option.TYPEHINT_YES_NO)){
 //this kind handled already
 return;
}

this.question.setAnswer(...);

if(this.question.isValid()){
 //update view
 ...
}else{
 //show error
 ...
}

<<hook implementation>>
BasicQuestion

+getTypeHint()
+isValid()
+setAnswer(answer:String)

<<hook implementation>>
YesNoQuestion

+getTypeHint()

relevant source code fragments contained in checkAnswer()

<<hook implementation>>
NonEmptyQuestion

+setAnswer(answer:String)

<<hook implementation>>
FileQuestion

+getTypeHint()
+isValid()

<<hook implementation>>
MethodNameQuestion

+isValid()

Fig. 2. The presentation of queries in the Osuma application. The framework-related functionality
of a template method is illustrated by underlining the hook references in the code and connecting
them to the relevant hook implementations.

Based on the information shown in the figure, it is possible to analyze the template
coverage achieved when executing a test suite of QuestionDisplayer. The test suite con-
tains three test cases. During first two test cases of the suite, the reference to the hook
class contains an instance of IntQuestion. The invocations of the template method cover
the three hook references to IntQuestion-hook implementation satisfying statement and
branch coverage criteria in the last fragment of the code that appears in the upper right
corner of the figure.

To satisfy the statement and branch coverage criteria in the first fragment of the
code, a third test case is executed while the hook class reference contains an instance of
YesNoQuestion. Thus, the references to IntQuestion and to YesNoQuestion are covered,

which yields the template coverage of 4/15. The coverage is quite low although state-
ment and branch coverage criteria are satisfied. This is typical in presence of dynamic
binding when testing objectives are defined by intra-method elements like branches.

Figure 3 contains the code of a implementation of the setAnswer-hook method in
the Question-hook class. By analyzing execution of the test suite, we calculate the hook
coverages of the method. The method is invoked two times. During both invocations
the tested object is in a locked state and the first expression is never evaluated true.
The hook branch coverage is 1/3 (including branching from the exception) and the
hook statement coverage is 2/8. The binding from checkAnswer-method to setAnswer-
method has been invoked, but the integration testing value of the interaction is limited.
This may be noticed using the plain statement coverage. In the presence of intra-class re-
entrance to hook methods and when using large test suites that mix unit and integration
tests, it is unlikely that the inadequate integration would be evident using traditional
coverage criteria. Notice that hook coverages always result lower than the coverages
they are based on do.

public boolean setAnswer(String answer){
 if(!this.locked){
 try{
 Integer.parseInt(answer);
 this.valid = true;
 this.answer = answer;
 return true;
 }catch(NumberFormatException e){
 //was not a number
 this.valid = false;
 this.message = "not a number";
 }
 }
 // no operation
 return false;
}

Fig. 3. Code of IntQuestion.setAnswer(String answer).

The implementor of the analyzed tests was one of the developers of the framework.
In this case, the tester had no knowledge of the structures contained in the application
specific classes. In the framework, the tests fulfilled the branch coverage criterion, but
the poor hook branch coverage (1/3) indicates inadequate integration testing. Significant
integration objectives were missed even in the elements that were integration tested.
The guidance provided by the hook and template coverages is valuable in improving
the structural testing in the case discussed.

5 Conclusions

We need product family specific testing methodology. One part of the methodology are
the coverage criteria. We have defined two new criteria for framework-based product
families, namely the hook and template coverages. They are based on traditional struc-
tural coverages and are simple to understand and use. As our example shows, they are
useful in framework-based product family context. In our example, the hook and tem-
plate coverages indicated results that would not have been indicated with currently used
coverage criteria. We will continue our work to support these coverages in the existing
RITA environment.

Acknowledgments
This work has been done as a part of the ITEA projects CAFÉ and Families. The authors would
also like to thank Professor Jukka Paakki from the University of Helsinki.

References

1. van der Linden, F., Software Product Families in Europe: The Esaps & Café Projects.
IEEE Software, Volume 19, Number 4, July/August 2002, 41–49.

2. Bosch, J., Product Line Architectures in Industry: A Case Study. Proceedings of the
21st International Conference on Software Engineering (ICSE’99), Los Angeles, Cali-
fornia, USA, May 1999, 544-554.

3. Northrop, L. (director), A Framework for Software Product Line Practice – Ver-
sion 4.2. Software Engineering Institute, Carnegie Mellon University, 2004, URL:
http://www.sei.cmu.edu/plp/framework.html [May 27, 2004].

4. Binder, R., Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 2000.

5. Tevanlinna, A., Product Family Testing with RITA. Proceedings of the Eleventh Nordic
Workshop on Programming and Software Development Tools and Techniques (NW-
PER’2004), Turku, Finland, August 2004, to appear.

6. Fayad, M., Schmidt, D., Johnson, R., Building Application Frameworks. Wiley and
Sons, 1999.

7. Pree, W., Koskimies, K., Rearchitecting Legacy Systems – Concepts and Case
Study. Proceedings of the First Working IFIP Conference on Software Architecture
(WICSA’99), San Antonio, Texas, USA, February 1999, 51–64.

8. Alexander, R., Offutt A., Criteria for Testing Polymorphic Relationships. Proceedings
of the 11th International Symposium on Software Reliability Engineering (ISSRE’00),
San Jose, California, USA, October 2000, 15–23.

9. Chen, M-H., Kao, H., Testing Object-Oriented Programs – An Integrated Approach.
Proceedings of the 10th International Symposium on Software Reliability Engineering
(ISSRE’99), Boca Raton, Florida, USA, November 1999, 73–82.

