
Testing framework-based software product lines

Raine Kauppinen

Helsinki, April 17, 2003

Master’s Thesis

University of Helsinki
Department of Computer Science

i

Contents

1 Introduction 1

2 Product line approach to object-oriented software development 3

2.1 Product lines . 4

2.2 Frameworks and framelets . 7

3 Testing of object-oriented software systems 14

3.1 Object-oriented testing process and design for testability 15

3.2 Testing methods for object-oriented systems 18

3.3 Metrics for estimating testing adequacy 20

3.4 Automated testing and tool support 25

4 Testing in the product line approach 27

4.1 Product line testing process . 28

4.2 Testing methods for product lines . 30

4.3 Metrics for estimating product line testing 33

4.4 Automated testing and tool support for product lines 40

4.5 State-of-the-art of product line testing 42

5 RITA: Framework integration and testing application for product lines 45

5.1 Motivation and introduction . 45

5.2 RITA features . 46

5.3 RITA views . 49

ii

5.4 Product line testing with RITA . 54

5.5 Future work . 58

6 Conclusions 59

References 63

1

1 Introduction

A software product line can be seen as a process that can be used to implement a

set of software products that share common features [Nor01]. The resulting set of

software products is a software product family [Ard00]. The commonality across a

software product family can be exploited when individual software products are

designed and implemented. The entire product family is designed so that every

application in the family has a similar software architecture. The architecture

contains features that can be reused in every application of the family.

An implementation strategy for a software product line is an object-oriented appli-

cation framework [FHB00]. It is a partial design and implementation of an archi-

tecture and basic functionality for an application that belongs to a given family.

Frameworks allow easy capturing of commonalities between different applica-

tions and reuse of features from application to application in a software product

family while allowing variation among its members.

In the product line approach, as in general in software engineering, testing is es-

sential. The framework of a product family must be reliable and well-tested,

because all applications of the family share common parts implemented in the

framework. However, also application specific parts as well as the application

as a whole need to be tested thoroughly. The product line approach requires a

carefully planned testing process that can be easily adapted and used for product

families in different application domains.

Unfortunately, testing of product families and product lines is a challenging task.

Especially, testing a framework of a product line may be difficult, because a

framework is only a partial implementation of a product line application. Assur-

ing the reliability of the framework requires careful testing before applications are

derived from it. In practice, however, frameworks are often tested only by testing

2

applications that are derived from them, which makes it difficult to distinguish

errors in the framework from errors in the application specific code. Also, the

current testing methods for frameworks and product lines are quite immature, so

there is a clear need for more mature testing methods. The testing process should

also be supported by testing tools and automated as much as possible.

In this thesis, methods that have been developed or can be applied to the test-

ing of software product lines are studied. Because a framework-based product

line can be seen as an incomplete program, testing of partial programs is also

of interest. Component testing is also studied, because the specific features of

applications that do not belong to the framework can be implemented as compo-

nents whose interfaces are defined in the general architecture of the product line.

Object-oriented testing methods are also of some interest, because software prod-

uct lines, especially frameworks, are usually designed and implemented with

object-oriented techniques.

In addition to the state-of-the-art study of product lines and product line testing,

we introduce the concepts of hook and template coverages for framework-based

product lines. These coverages define how much of the functionality of the ap-

plication specific code expanding the framework has been covered with existing

tests. Also, we introduce the design of RITA, a framework integration and testing

application that can be used in the testing of product families. RITA is an envi-

ronment that makes it possible to test incomplete framework-based product lines.

Moreover, it can be used to manage and keep track of the testing process of the

product line. The tool also provides metrics for estimating the testing coverage

over the product line, including hook and template coverages.

This thesis is organized as follows. Sections 2 to 4 are a state-of-the-art study of

product lines and product line testing. Section 2 is an introduction to software

product lines and application frameworks in general while Section 3 contains an

3

overview of the traditional object-oriented testing methods that form the foun-

dations for product line testing practices. Section 4 introduces testing methods

that have been developed especially for or can be applied to product line test-

ing. Then, Section 5 introduces the RITA tool for product line testing and finally,

Section 6 summarizes and concludes this work.

2 Product line approach to object-oriented software

development

Software engineering is traditionally seen as a development process of a single

software application. This approach corresponds to handcrafting every product

from scratch regardless of possible similarities between different products. After

the introduction of the object-oriented paradigm, reuse of software artifacts such

as classes and components has been emphasized. Object-oriented software en-

gineering techniques provide a feasible way of reusing components that can be

used as such or with slight modifications in several software products. Lately,

many companies have focused on these commonalities between different prod-

ucts and started to capture them in software architectures where they can be used

as a foundation for a product line of software products [JRL00].

This section describes the product line approach to software development. Also,

a specific way to implement a software product line using object-oriented appli-

cation frameworks is introduced. First, Chapter 2.1 describes software product

lines and families in general. In Chapter 2.2, the key components of a framework-

based product line, namely frameworks and framelets, are introduced.

4

2.1 Product lines

Software product lines have recently received attention in research and especially

in industry. Instead of creating software from scratch for each product, many

companies have focused on the commonalities between different products and

started to capture those in product line architectures [Coh02]. In the research

area, case studies of the product line approach have been made [Ard00, Bos99].

In addition to the case studies, a few larger projects have been launched to study

the use of product lines in software development. The projects include, for ex-

ample, the European ARES, ESAPS and CAFÉ projects [JRL00, Lin02a] and SEI’s

(Software Engineering Institute) framework for product line practice [Nor01].

From the industrial viewpoint, product lines in software engineering are sim-

ilar to product lines in manufacturing that are used, for example, by Ford (to

build cars) and Boeing (to build airplanes) and virtually all companies who ex-

ploit the commonalities of their products to enable mass-production. Thus, soft-

ware product lines are expected to provide similar advantages as product lines in

manufacturing. The main advantages are expected to be reduced time to market

and lower development costs once the product line for an application domain

is functional. Another important advantage, related to object-oriented software

engineering techniques, is reuse of software components that is possible in large

scale when product lines are used. In this sense, the product line approach to soft-

ware development is a natural step from handcrafted software products tailored

for one customer to mass-production of software products [Nor01].

The creation of a software product line can be seen as a three-step process. It

consists of commonality analysis, prototyping, and creation of an application engineer-

ing environment and an architecture for the product line [Ard00]. In commonality

analysis, common features of all the products in the product line are identified,

5

as are parameters of variation. The result is a document that typically contains

two structured lists: one is a list of assumptions that are true for every member

of the product line (commonalities), and the other is a list of assumptions about

how the product line members differ (parameters of variation).

After commonality analysis, a prototype of a generic product line member is im-

plemented. The prototype is useful, because it helps to discuss topics related to

the product line. The design of the product line, including commonalities and

parameters of variation, is revised at this stage. It is worth noticing, however,

that the prototype is developed very quickly and is therefore not useful as a real

product.

Based on the commonality analysis and the prototype, an application engineer-

ing environment and a product line architecture are developed. A new prod-

uct is formed by taking useful components from the environment and by using

preplanned variation mechanisms, such as parameterization and inheritance, to

tailor them as necessary. After application specific parts have been added, the

application is ready. Object-oriented application frameworks can be used as the

application engineering environment that represents the product line architecture

[Ard00, Nor01]. The use of frameworks as the core of product lines is covered in

more detail in Chapter 2.2.

An example of a software product line is the server product line used in Axis

Communications AB. Axis develops, among other products, storage, camera and

scanner servers. The product line is illustrated in Figure 1. It is based on a product

line architecture that is divided into three product family architectures, namely

storage server, camera server and scanner server architectures. The storage server

architecture is further divided into CDROM and file server architectures. Each of

the architectures contains variations, for example, for different kinds of hardware

and standards that are supported by the servers. An object-oriented framework

6

Variations Variations

Variations Variations

arcitecture
Product line

Storage server
architecture

Camera server
architecture

Scanner server
architecture

CDROM server
architecture

File server
architecture

Figure 1: The architecture of the software product line used in Axis Communica-
tions AB [Bos99].

is used to implement the product line [Bos99].

It is expected that product lines become the dominating software production

paradigm in the near future [JRL00]. Product flexibility is currently a very im-

portant factor in the software market and, with product lines, the promise of

tailor-made systems built specifically for the needs of particular customers or

customer groups can be fulfilled. Especially for large companies, product lines

offer an efficient way to exploit the commonalities shared by different products

to achieve economies of production [Ard00, Nor01].

Currently, many companies have been successful in developing and fielding prod-

ucts using the product line approach [JRL00]. Examples of such companies are,

for example, Axis Communications AB with their server product line, Lucent

Technologies with their product lines for different domains [Ard00] and Nokia

Mobile Phones with their mobile browser product line [Jaa02]. However, while

many companies have succeeded in adopting the product line approach as their

standard way of doing business, there are also many companies that either are in

7

the middle of the adoption process or do not use the product line approch at all.

Also, only few companies yet have adequate data to show meaningful gains from

the approach, but they still remain committed due to the promise of financial and

other benefits of the product line approach [Coh02].

Of course, the product line approach is not without problems. The problems en-

countered in include, for example, the fact that the use of product lines requires

plenty of resources, at least when starting a product line in a new application

domain. Smaller companies may not have the resources needed. In addition,

there are some technical diffulties with the product line approach, because it is

relatively new in software engineering. For example, a well-defined software en-

gineering process for developing and testing product line applications is needed.

Also, tool support is needed for developing, testing and maintaining a full-scale

software product line [Bos99, Nor01].

2.2 Frameworks and framelets

A natural core of a product line is an object-oriented application framework.

Frameworks allow companies to capture the commonalities between applica-

tions for the domain they operate in. Thus, framewoks provide an easy way

to reuse software components and create applications. This is very appealing

to companies who use the product line approach as described in Chapter 2.1

[FHB00, GuB01].

An object-oriented application framework can be defined as a partial design and

implementation for an application in a given domain. In this sense, a framework

is an incomplete system. It is a set of objects that captures the special expertise in

some application domain to a reusable form, but leaves application-specific func-

tionality unimplemented. To create an application from this skeleton, missing

8

functionality and possible new features must be added [GuB01, Vil01].

Object-oriented frameworks take advantage of techniques that object-oriented

programming languages provide. These techniques include, for example, ab-

stract classes, polymorphism, dynamic binding and object composition. Often,

objects in frameworks are described as abstract classes. For the framework, they

represent the design of its components and, for applications, they serve as tem-

plates for creating subclasses. The design of a component includes its interface

and usually a core for its implementation. An abstract class, for example, can de-

fine a skeleton for an algorithm where every step is defined as a call to an abstract

method either in the same class or in another class. Default implementations for

these methods can also be defined in the framework or they can be left unim-

plemented. If the implementation language separates classes and interfaces, like

Java, frameworks written in such a language usually contain both an interface

and an abstract class for a framework component [Vil01].

The process of reusing a framework to build an application is called framework

adaptation. Frameworks are adapted by adding the application specific parts to

the structure the framework provides [FSJ99, GuB01]. The parts in the framework

that are open to customization are called hot spots (or variation points) while stable

parts are called frozen spots. Hot spots can be discovered in the domain analysis

or they can be defined by a domain expert. Design patterns are usually used to or-

ganize framework code so that proper parts become hot spots [Gam94]. Different

technical variations of hot spots can be captured with metapatterns [Pre95].

Metapatterns are a way to use the basic mechanisms of object-oriented program-

ming languages to compose different kinds of object structures with different

properties [Pre95]. In practice, metapatterns simply name certain aspects of de-

sign structures. More specifically, a metapattern is a named expression for the

placement of two methods, a calling method and a called method, in classes.

9

In metapatterns, methods of classes are categorized into template methods and hook

methods [Pre95]. A method can be a hook method, a template method or both, de-

pending on its context. Template methods are high-level function bodies that

invoke lower-level operations – hook methods – defined somewhere else. Hook

methods can be abstract (defined in subclasses), delegated (defined in other ob-

jects), regular (the lowest level of action with no succeeding calls), or they can be

recursively new template methods for other hooks. A class that contains a tem-

plate method is called a template class, and a class that holds a hook method is

called a hook class. A class can also be both a template and a hook class. A hook

class parameterizes its template class, so hooks are points that must be defined or

modified when deriving a new application from the framework.

There are seven metapatterns that result from the combination of three aspects:

the separation of hook and template classes, the cardinality of the reference re-

lationship between template and hook classes, and the possible inheritance rela-

tionship between hook and template classes. Four of the metapatterns are illus-

trated in Figure 2. The remaining metapatterns result when the cardinality of the

reference from template to hook class is 1:1 instead of 1:*.

In unification, both the template method and the hook method are combined in

the same class, so adaptations can only be done by overriding the hook method

in the subclasses. More flexible approach is connection, where template and hook

methods are separated to different classes. In connection, one template class can

be connected to many instantiations of the hook class. Unification and connection

are metapatterns that are most often used to implement hot spots of a framework.

In the recursive metapatterns the template and the hook methods have the same sig-

natures and they are defined in the same class hierarchy. In recursive unification the

template method and the hook method are declared as being the same method.

In recursive connection the template method resides in a subclass of the hook class.

10

I

I

...TH

Unification

I

I

...

I

I

...

I

I

...

T H*

H = Hook class
T = Template class

TH*
T H*

1:* Connection

1:* Recursive Unification 1:* Recursive Connection

I = Instantiated hook class

Figure 2: Four metapatterns.

Although they allow more flexible implementation of hot spots, the recursive

metapatterns are not used as often as unification and connection [Pre95].

An implementation of unification and connection metapatterns is illustrated in

Figure 3 as UML class diagram [JSL02]. The framework contains both the frozen

spot (template) and the hot spot (hook). The hot spot is instantiated by compo-

nents in the application specific part. In unification, the frozen spot and the hot

spot are in the same class that contains both the template and the hook method.

The hook method is abstract and it is overridden by its instantiation in the appli-

cation specific part. In connection, template and hook methods in the framework

are in separate classes. The hook class is instantiated by implementing the ab-

11

abstract hookMethod()

abstract hookMethod()

Application specific part

Frozen spot

Hot spot

. . .
templateMethod()

TemplateHook

Component1

hookMethod()

hookMethod()

ComponentN

Unification

Framework

Application specific part

. . .

Component1

hookMethod()

hookMethod()

ComponentN

Framework

1:N Connection

Frozen spot Hot spot

templateMethod()

Template

*

abstract Hook

Figure 3: An implementation of unification and connection metapatterns as UML
class diagram [JSL02].

stract hook class in the application specific part.

Object-oriented frameworks are traditionally designed so that they contain the

main event loop and have full control over the application. This is called the in-

version of control or the Hollywood principle (”Don’t call us, we’ll call you”), because

the framework itself, instead of the user-created application part, is responsible

for the flow of control [Vil01]. However, this is not always the case. A distinction

can be made between calling and called frameworks: calling frameworks contain

12

the main loop whereas called frameworks do not [SBF96]. Good examples of

called frameworks are framelets. They are mini-frameworks that contain less than

ten classes and have a simple, clearly defined interface [Pre95]. Framelets do

not assume the main control of the application although they follow the Holly-

wood principle. They are usually used as architectural elements in product line

architectures, but they can also be used, for example, to integrate legacy software

components to frameworks and product lines [PrK99].

Figure 4 shows an example of the structure of an application derived from a

product line based on an object-oriented framework. The framework provides

a skeleton for the application. It defines templates that contain hot spots where

the application specific parts can be plugged in. In this case, the framework has

two templates and three hot spots. However, the application uses only two of the

hot spots. The application specific parts, in this case a framelet and an applica-

tion code element, are connected to their respective hot spots via interfaces. Two

of the three hot spots of the framelet are used to extend the framelet with an ap-

plication code element and with another framelet by using the same mechanism.

The hot spots in the two templates of this framelet are left unimplemented.

Figure 5 shows the interface between the template and the hot spot marked with

the filled rectangle in Figure 4. The interface is implemented using the connection

metapattern where the cardinality of the connection between the template class

and the hook class is 1:1. The template class contains a template method that

uses the hook class. The hook class is abstract, so the class and its hook method

are implemented by a class in the framelet that extends the framework via this

interface.

In addition to calling and called frameworks, frameworks can also be classified

by the way they are adapted to derive new applications [GuB01]. A white-box

framework is a framework that can be used by inheritance only. The framework

13

Application
code

Application
code

Framework

Framelet

Framelet

Control flow

Template

Hot spot

Interface

Figure 4: An example of the structure of an application derived from a product
line based on an object-oriented framework. The interface between the template
and the hot spot marked with the filled rectangle is shown in more detail in Figure
5.

shown in Figure 4 is a white-box framework. It is impossible to use a white-box

framework without understanding how it works internally. A black-box frame-

work, on the other hand, can be used by configuring existing components. A

black-box framework is easier to use than a white-box framework, because its

internal mechanisms are – at least partially – hidden from the developer. The

drawback is that this approach is less flexible, because the capabilities of a black-

box framework are limited to what has been implemented in the set of provided

components. A framework that has some characteristics from both white-box and

black-box frameworks is sometimes called a gray-box framework [Vil01].

14

abstract hookMethod() hookMethod()

FrameletComponent

Framework

Frozen spot Hot spot

templateMethod()

Template abstract Hook

1

Framelet

Figure 5: An implementation of the interface in Figure 4 as UML class diagram.

Although object-oriented application frameworks fit very well to the product line

approach and are widely used, there are some well-known difficulties with them.

These difficulties may not appear before frameworks are used in real projects,

so they may be hard to deal with [Bos00]. Typical difficulties include, on one

hand, the framework gap and, on the other hand, the overlap of framework entities.

The framework gap occurs when the structure of a framework does not cover the

requirements of an application. The overlap of framework entities may occur if

the same real-world entity is modeled in more than one way in the framework.

However, these difficulties can be avoided with careful design of the framework

[FSJ99]. Despite the difficulties encountered, increased reusability of software

components and reduced time to market for applications make frameworks fea-

sible to use [FHB00, GuB01].

3 Testing of object-oriented software systems

Testing of traditional procedural applications is a well-established software de-

velopment practice. However, the object-oriented paradigm has created new

15

challenges to testing, because object-oriented applications have a different kind

of structure than traditional procedural applications. Especially, dealing with

instantiations of classes and their collaboration can be very difficult when test-

ing is performed. These new challeges to testing of object-oriented applications

have been met by extensive research that still produces new results. The results

provide ways to apply traditional testing methods in the object-oriented con-

text. Also, new testing theory and methodology designed specifically for object-

oriented applications has been proposed [AlA01, BOP00, Lab00].

This section is an overview to object-oriented testing methods that form founda-

tions for testing practices specific to product lines discussed in Section 4. First,

the traditional object-oriented testing process and the need to design for testa-

bility are discussed in Chapter 3.1. Then, in Chapter 3.2, the basic methods for

testing object-oriented software are introduced. Chapter 3.3 discusses metrics

for estimating testing adequacy. Finally, Chapter 3.4 gives an overview of how

object-oriented testing can be automated and supported by testing tools.

3.1 Object-oriented testing process and design for testability

The overall goal of testing is to provide confidence in the correctness of an ap-

plication by executing and studying its code or parts of it. Traditionally, testing

has been used in two ways to achieve this goal. First, testing has been used to

assist developers to find faults in applications so that they can be repaired. Sec-

ond, testing has been used to determine whether an application can perform as

specified by its requirements [Bei90].

Recently the role of testing has been expanded to provide techniques for estimat-

ing the reliability of a software component. This is especially important when

object-oriented programming is used, because software components are being

16

constantly reused [AlA01, Nor01]. However, testing of object-oriented software is

not an easy task, because the object-oriented paradigm is more complex than the

traditional procedural one. Useful testing methods for object-oriented program-

ming are available, but they may not be effective if not used properly [AlA01].

Unfortunately, the gap between reasearch knowledge and actual testing practice

can be very large [McK94].

Before applying testing methods, a software engineer must understand the basic

principles that guide testing [Pre97]. According to these principles testing should

be objective, systematic, thorough and integral to the development process. Fur-

thermore, the tests used should be planned long before the actual testing begins.

Also, testing should begin from the small and progress towards the large, which

means that the first tests planned and executed focus on individual components

of the application under test and the focus of testing moves towards the testing

of entire application as a whole as the testing progresses.

Testing requires careful planning and a well-defined process that can be inte-

grated with the software development [McK94]. The testing of an object-oriented

software system can be modeled, for example, with the standard V-model [FeG99].

The V-model is illustrated in Figure 6. According to the model, software is de-

veloped in four levels. The top level is requirement specification where the speci-

fications of the software are gathered. The second level is architectural design in

which the overall architecture of the system is designed. The third level is detailed

design where each component of the system is designed. The lowest level is code

level that contains the concrete implementation of the system in a programming

language.

Testing is performed at every level of the V-model. On the left side, tests that

will be used are designed and written during the design of the system at each

level. The designed models can also be validated using inspections [GiG93]. In

17

Detailed
design

Architectural
design

Requirements
specification

Code
level

Integration test

Acceptance test

System test

Unit test

W
rite tests

Run te
sts

Figure 6: The V-model for testing object-oriented software applications [FeG99].

an inspection, a design model or part of it is reviewed thoroughly before it is

implemented. Reviewers can be members of the team that developed the model

or they can be other experts who have the knowledge needed to evaluate the

model under inspection. The validation of design models via inpections is usu-

ally not considered testing, because no application code is executed. However,

inspections are sometimes seen as testing that is performed long before the actual

implementation of the designed application has started [McS01].

On the right side of the V-model, the designed tests are executed. At different

levels different testing strategies and methods are needed. At the code level,

classes and their methods are tested via unit testing. As classes are integrated into

components at the detailed design level, integration testing is performed. At the

architectural design level the focus of testing moves to testing the entire system

as a whole with system testing. Finally, at the requirements specification level

acceptance testing is used to determine whether the system meets its specifications

or not [FeG99]. Object-oriented testing strategies and methods are discussed in

more detail in Chapter 3.2.

18

The cost and difficulty of testing object-oriented systems can be reduced with a

strategy called design for testability. Design for testability means that every com-

ponent of a system is designed so that it can be easily tested. Easy testing of

components requires that testing is directly supported for example via build-in

testing capabilities. Design for testability is especially important when the prod-

uct line approach to software development is used although the strategy has re-

ceived relatively little consideration in software development [Bin94].

3.2 Testing methods for object-oriented systems

The only way to completely guarantee the correctness of a program is to execute

it on all possible inputs, which is usually impossible or at least impractical. Thus,

systematic testing techniques generate a representative set of test cases to provide

adequate testing for the program [Bei90]. Metrics for determining adequacy of

testing are covered in Chapter 3.3.

In its most general form, a test case is a pair (input, expected result), in which

input is a description of an input to the software under test and expected result

is a description of the output that the software should give for this particular

input. Test cases are organized into a test suite. Test suites are usually organized

based on the kinds of test cases. Developing and organizing a test suite so that

it is correct, observable and adequate is one of the greatest challenges in testing

[McS01].

There are two general forms of testing, namely program-based and specification-

based. Program-based testing is called white-box testing (sometimes also glass-

box testing) and specification based testing is called black-box testing [Pre97]. In

white-box testing, certain aspects of the code of a program, such as statements,

branches, data dependencies or paths are used to select test cases. White-box test

19

cases can often be generated from the program code with testing tools.

In black-box testing, test cases are designed to show that a program satisfies its

specifications. The specifications can be functional or non-functional. Functional

specifications define features that the program has and non-functional specifica-

tions define other properties of the program, such as performance, security and

maintainability. Both functional and non-functional specifications must be con-

sidered when black-box test cases are defined. Black-box test cases are usually

generated manually based on requirements derived from the specifications. Since

white-box and black-box testing complement each other, both types of testing are

usually performed [McS01].

Most systematic testing techniques are used to validate program units. In object-

oriented programming, these units include objects and classes. Classes are often

seen as the smallest units of an object-oriented program that should be tested

[McS01]. In this case, unit testing in object-oriented programming means class

testing. Unlike unit testing of conventional procedural software, which focuses

on the algorithmic details and data flow, class testing for object-oriented software

is driven by the operations encapsuled by the class and the state behavior of the

class [Pre97]. A variety of white-box methods for testing classes have been pro-

posed and used for testing of the object-oriented programs [AlA01, Bal00].

Additional testing is required when units are combined or integrated into subsys-

tems. Integration testing focuses on the interfaces between units and subsystems.

Interface problems include, for example, errors in input and output formats and

misunderstood entry or exit parameter values. In addition to interface problems

similar to procedural programs, integration testing of object-oriented programs

can be very difficult due to lack of hierarchical control structure, which makes

it difficult to use the traditional top-down or bottom-up integration strategies.

Instead, object-oriented integration testing can be performed, for example, by

20

testing clusters of collaborating classes or components [Pre97] or by exploiting

an underlying class dependency diagram to determine the test order of classes

[Lab00]. Although most integration testing methods are black-box methods, also

white-box methods for integration testing have been developed [HMF92].

The overall architecture of a system is tested using system testing, where the en-

tire system is tested as a whole. At this level, the focus of testing shifts completely

to black-box testing. The adequacy of system testing is based on the number of

the possible ways to use the system. In object-oriented systems, for example, use

cases can be used to derive test cases for system testing [Pre97]. In addition, ac-

ceptance testing is used to verify that the system meets its requirements. When

a system is functional, regression testing is periodically performed to ensure the

correct functionality of the system. Regression testing is done, for example, when

changes are made to components of the system [Bei90].

Whenever test cases are executed, a test driver is used. A test driver runs each

of the test cases in a test suite and reports the results. It creates one or more

instances of a class to run a test case. A test driver can take a number of forms.

It can be, for example, a separate class that is used to run the tests. Sometimes,

when only parts of a program are tested, stubs may also be required. Stubs are

used to replace missing parts of a program needed to be able to complete a test,

that is, run the program. A stub can be, for example, an empty implementation

of a method that returns a default value that the calling method can properly use

[FeG99, McS01].

3.3 Metrics for estimating testing adequacy

Because an application usually cannot be tested on all possible inputs, the goal

of testing is to adequately test the application, as mentioned in the beginning of

21

Chapter 3.2. However, it is not easy to define when an application is adequately

tested. There are many aspects to consider when addressing this question. The

amount of testing required should be determined relative to the long-term and

short-term goals of the project and to the software being developed. For example,

the expected lifetime of an application is one viewpoint. Another may be the type

of the application. For example, a life-critical real-time software system requires

very extensive testing before it is released, whereas many information system

applications can be released after a relatively short testing period [Bei90].

Adequacy of testing can be measured based on the concept of coverage. Coverage

is a measure of how completely a test suite exercices the capabilities of a piece of

software. Coverage can be measured in at least two ways. One way is in terms of

the number of the requirements in the specification, which conforms to black-box

testing. For example, the percentage of the requirements that are tested by test

cases in a test suite can be measured. This is called requirements coverage [FeG99].

Another, more common way is in terms of the amount of code executed when

running a test suite. A test suite might be adequate if, for example, some portion

of the source code has been executed at least once. This approach matches the

approach of white-box testing.

Three commonly used measures of adequacy for white-box testing of object-

oriented software are code-based coverage, state-based coverage and constraint-based

coverage [McS01]. Code-based coverage is based on counting how much of the

code that implements a class is executed across all test cases in a test suite. The

goal is to make sure that every logical unit (for example, every statement in state-

ment coverage or every condition in condition coverage) in or every path through the

code implementing a class is executed at least once when all test cases have been

executed. If certain units of code (or paths) have not been reached, the test suite

needs to be expanded or the code needs to be corrected to remove unreachable

22

parts. Even with full code coverage, the test suite for a class might not be ade-

quate because it might not exercise interactions between methods as state-based

and constraint-based coverages do. So, the use of one or both of those coverages

to complement code-based coverage – and vice versa – is necessary.

State-based coverage is based on counting the number of transitions in the state

transition diagram of a component covered by a test suite. If any of the transitions

is not covered, the component has not been tested adequately and more test cases

are needed. If test cases are generated directly from the state transition diagram,

they achieve this measure [Bal00]. Even if all transitions are covered, adequate

testing is doubtful, because states usually embrace a range of values for various

object attributes. So, in addition to the test cases that achieve state-based cover-

age, further testing is needed for typical and boundary values of the attributes to

improve testing coverage.

Parallel to adequacy based on state transitions, adequacy can be expressed in

terms of how many pairs of pre- and postconditions have been covered (constraint-

based coverage). If, for example, the preconditions for an operation are A or B

and the postconditions are C or D, the test suite should contain test cases for all

the valid combinations (A=true, B=false, C=true, D=false; A=false, B=true, C=true,

D=false; and so on). If one test case is generated to satisfy each requirement, the

test suite meets this measure of adequacy [McS01].

The three measures of coverage are illustrated in Figures 7-10. Figure 7 shows

a partial Java code of a simple state machine class. Figure 8 shows a test suite

that executes all the statements of the code in Figure 7. Every statement can be

reached with a relatively small test suite. The creation of a SimpleStateMa-

chine instance and two state changes are all that is needed for full code-based

coverage. However, test suites generated according to state-based and constraint-

based coverages test the class more thoroughly than the code-based test suite.

23

16: }

 ...

15: }
14: return changeOk;

13: changeOk = false;
12: else
11: currentState = state;
10: if (validStates[state] == true)

9: boolean changeOk = true;
8: public boolean changeState(int state) {
 // accessor

 ...

7: }
6: validStates = {true, true, false};
5: currentState = 0;
4: public SimpleStateMachine() {
 // constructor

 ...

3: private boolean validStates[];
2: private int currentState;

1: public class SimpleStateMachine {

Figure 7: Partial Java code of a simple state machine class.

Number Description Coverage Test case
1 Creation of a class instance Lines 1−7 SimpleStateMachine sm = new SimpleStateMachine()

2 Legal state change from 0 to 1 Lines 8−11, 14−16 sm.changeState(1)

3 Illegal state change from 1 to 2 Lines 8−10, 12−16 sm.changeState(2)

Figure 8: Test suite based on statement coverage for the simple state machine in
Figure 7.

For state-based coverage, the state transition diagram has to be created. In this

case there is only one variable that affects the state of the class: private int

currentState declared on line 2. Because this simple state machine can only

be in states 0 and 1 (as stated on line 6), there are two possible states and four

transitions. The state transition diagram is shown in Figure 9. The figure also

shows a test suite that covers all the transitions. The test suite contains four in-

dependent test cases. Each test case starts from the initial state (currentState

= 0) and covers one transition that is not covered by other test cases. It is also

worth noticing that transitions 3 and 4 are taken when state is changed to the

24

state where the state machine already is or when an illegal transition to any other

state than 0 or 1 is tried, so there are several test suites that cover all the tran-

sitions. Moreover, the instantiation of the class is not tested with this test suite,

because the starting state – from which there is a transition to the initial state of

the machine – is omitted from the diagram.

2

1

currentState = 0 currentState = 1

3

4

1

3

2

4

changeState(1)

changeState(1), changeState(2)

changeState(1), changeState(0)

changeState(2)

Transition 1

Transitions 1 and 4

Transitions 1 and 2

Transition 3

Number

Corresponding test suite

State transition diagram

Coverage Test case

Figure 9: The state transition diagram for the simple state machine in Figure 7
and a corresponding test suite.

Finally, contraint-based coverage is illustrated in Figure 10. The pre- and postcon-

ditions of the simple state machine class depend on the same variable private

int currentState as in the state transition diagram. Here, the precondition is

the state the class is in and the postcondition is the state to which the class moves

after the method public boolean changeState(int state) is executed.

In this case, the local changeOk variable can be used as the other part of the post-

condition: the variable (and the return value of the method) is true if transition

is made and false if the state is not changed due to illegal target state. As can

25

be seen, the constraint-based coverage is very similar to the state-based coverage

although constraint-based coverage is in this case slightly more thorough than

the state-based coverage.

Number Precondition Postcondition Test case
1 not instantiated currentState = 0, SimpleStateMachine sm = new SimpleStateMachine()

2 currentState = 0 currentState = 0, changeState(0)
 changeOk = true
3 currentState = 0 currentState = 1, changeState(1)
 changeOk = true
4 currentState = 0 currentState = 0, changeState(2)
 changeOk = false

5 currentState = 1 currentState = 0, changeState(0)
 changeOk = true
6 currentState = 1 currentState = 1, changeState(1)
 changeOk = true
7 currentState = 1 currentState = 1, changeState(2)
 changeOk = false

Figure 10: Test suite based on pre- and postconditions for the simple state ma-
chine in Figure 7.

3.4 Automated testing and tool support

Object-oriented testing, as well as testing of traditional procedural programs, re-

quires automation and tool support [FeG99]. Without automation, less testing

will be done or greater cost will be incurred to achieve a given testing goal. An

automated testing environment needs functions to initialize a system and its envi-

ronment, execute test suites and replay them under predefined conditions. Many

testing tools that have been originally developed for testing of traditional proce-

dural programs can also be used to test object-oriented applications with minor

changes. Also, several test tools that provide a testing environment especially de-

signed for object-oriented testing have recently become commercially available

[FeG99].

Object-oriented testing can be automated in several ways with testing tools. The

level of automation provided by different tools varies from very low (the tool au-

tomates only some specific testing tasks such as test driver and stub generation)

to very high (the tool provides an entire testing environment). However, every

26

tool that can automate a part of the testing process is useful, because manual

testing of object-oriented programs is a tedious task [Bal00, DHS02].

Figure 11 shows different kinds of tools that can be used at different levels of the

V-model. Testing can be managed during the entire software development pro-

cess with management tools. On the left side of the model, tests can be designed

and written with test design tools at the requirement specification, architectural

design and detailed design levels. Also, static analysis tools can be used to create

unit tests at code level. On the right side of the model, where the actual testing

is performed, coverage tools can be used to evaluate testing coverage of unit test-

ing. Dynamic analysis tools and debugging tools can be used with both unit and

integration testing. At higher levels of testing – system and acceptance testing

– performance simulator tools are useful. In addition, test execution and comparison

tools can be used at every level on the right side of the model to run the tests and

compare the obtained results with the expected ones [FeG99].

Requirements
specification

Architectural
design

Detailed
design

Code

level

design

Test

tools

Static

analysis tools

Coverage

tools

Debugging

tools

Dynamic

analysis tools

Performance

simulator
tools

Unit test

Integration test

Management tools

Test execution and comparison tools

Acceptance test

System test

Figure 11: Testing tools and V-model levels [FeG99].

27

In addition to commercial tools, testing automation has been under extensive

academic research. At lower level of automation, techniques and algorithms

for automatic test driver and stub generation as well as for automatic test case

generation have been proposed [AlA01, Bal00, BOP00]. In addition, entire test-

ing environments for unit testing have been developed. For example, the JUnit

framework is designed for object-oriented unit testing [Fow99]. The use of JUnit

is a flexible way to design, execute and manage unit tests. JUnit can also be used

with commercial tools, for example, with the JTest environment to further auto-

mate unit testing [Par03]. Another testing environment is the Roast framework

[DHS02], which generates test drivers with embedded test cases and provides

unit operations for automated class testing.

4 Testing in the product line approach

The traditional object-oriented testing methods discussed in the previous sec-

tion form foundations for product line testing. However, when a product line

is tested, or multiple product lines are tested, product line specific issues arise.

These issues include, for example, problems of scale, because all applications of

the product line need to be tested. The key idea in product line testing is to reuse

test cases and other testware throughout the entire product line instead of testing

every application as an independent software product.

In this section, product line specific testing issues are discussed. In Chapter 4.1,

the overall testing process for product lines is described. Then, testing methods

specific to framework-based product lines are introduced in Chapter 4.2. Metrics

for product line testing are discussed in Chapter 4.3, and Chapter 4.4 focuses on

the automation and tool support needed in product line testing. Finally, Chapter

4.5 gives an overview of the state-of-the-art of product line testing.

28

4.1 Product line testing process

Product line testing, like the traditional testing of a single application, is usu-

ally performed according to the standard V-model described in Chapter 3.1. Al-

though product line testing can also be performed according to the V-model, the

testing process has to be integrated with the higher level product line business

process [Lin02a].

Unlike the V-model that has become a standard approach for testing of single

applications, there is no standard process framework that would integrate the

overall product line business process to the product line testing process. Instead,

there are several process frameworks that can be used. For example, the ESAPS

and CAFÉ projects and SEI have their own frameworks [Lin02b, Nor01].

The process framework of the CAFÉ project, CAFÉ Process Reference Model (CAFÉ-

PRM) is illustrated in Figure 12. It is an improved version of the framework

developed in the ESAPS project that divides software engineering to two main

levels: software family reverse engineering activities and derivation activities. Both

levels are divided further into six phases that correspond to the phases in the

traditional waterfall process model for software engineering [Roy70].

At the software family reverse engineering level, the core of the product line is

developed. This corresponds to the development of the application framework

in the framework-based product line approach. This level deals with issues that

concern all the applications in the domain, while issues specific to a single ap-

plication belong to the application engineering level. As can be seen in Figure

12, testing is performed in four of six phases at both levels of the CAFÉ-PRM

framework [Lin02b].

Between the two main levels resides a repository of reusable assets that contains

domain specific artifacts, like documents, application components or framelets

29

that can be reused throughout the application domain. In other words, reusable

assets are components that can be used in every application in a domain, either

as such or with slight modifications (see Chapter 4.2 for more information).

Figure 12: CAFÉ Process Reference Model (CAFÉ-PRM) [Lin02b].

SEI’s Framework for Product Line Practise is built on the CMMI process framework

[JoS02]. It is very similar to the CAFÉ-PRM. It also has domain and application

engineering levels and specific development phases at both levels. The use of

reusable assets is also emphasized in this framework. In addition, SEI’s frame-

work has an additional key aspect, management activities for the product line prac-

tice. Management activities cover the essential managerial aspects of the product

line engineering [Nor01].

Integrating testing to product line process frameworks has proved to be some-

what problematic in practice. It seems to be unclear from the business point of

view where testing belongs in the overall product line process. For example, both

CAFÉ-PRM and SEI’s frameworks imply that testing is performed according to

the standard V-model, but neither framework explicitly integrates the V-model

to the overall product line process. However, SEI’s framework has a more de-

30

tailed description of different testing phases related to development phases of

the framework.

4.2 Testing methods for product lines

In the product line approach, testing is based on generating, managing and us-

ing reusable test assets that contain test suites and other test artifacts. To effectively

manage test assets, a test asset repository is needed. Reusable assets in Figure 12

contain artifacts shown in Figure 13, which illustrates CAFÉ Asset Reference Model

(CAFÉ-ARM). It describes reusable assets that can be reused throughout the life-

cycle of a product line. The assets include, for example, different documents, use

cases, scenarios, classes and other software components [Lin02b]. Testing related

assets include, for example, test plans, test suites and test reports.

Figure 13: CAFÉ Assets Reference Model (CAFÉ-ARM) [Lin02b].

The relationship between test assets and a product line is illustrated in Figure 14.

The figure shows a product line architecture from which product A is derived. On

the application domain level, the product line has a test plan and corresponding

31

test cases that are designed during the domain engineering process. Since these

artifacts already exists when product A is implemented during the application

engineering process, they can be used to derive an application specific test plan

and application specific test cases. The generated test plan and test cases can also

be reused later, when new applications are derived from the architecture.

Product line
architecture

Test cases

Test plan

Test cases

Test plan

Product A

Figure 14: The relationship of the test assets and a product line [McG01].

Two basic approaches have been proposed for managing test assets. The first one

is to have a separate asset repository – usually a database management system –

where reusable assets, including test assets, are kept. In this approach, the appli-

cation code is kept separate from the test assets [McG01]. The idea of separating

the code and the assets fits very well to the CAFÉ-PRM and is illustrated in its

representation. The asset repository is located between the two main levels of the

framework. The reason for the separation is reusable and thus repetitive nature

of test assets. Also, a typical product line contains huge amount of test assets, so

an asset repository provides a feasible way to organize them.

However, the code and the assets are not always separated. The second approach

to manage test assets is to integrate them with application code. For example,

documentation and test cases along with their expected results can be integrated

32

directly to Java code with a Javadoc extension [HoW02]. In this approach, there

is no separate asset repository. Instead, the necessary artifacts are extracted from

the application code with specific tools when needed.

The integration of application code and testing assets corresponds closely the

ideas of generative programming[CzK00] . In generative programming, applica-

tions are built by extracting the necessary features from the base code to the ap-

plication during compilation. This idea can be seen as an alternative approach

for building a product line. In this case, commonalities of different products of a

product line are captured as features and added to a new product line application

via extraction from a base feature set. Integrating testing assets into the feature

set would therefore fit nicely to the ideas of generative programming .

In the framework-based product line approach, both a separated and an inte-

grated asset repository can be used. The standard way to implement an asset

repository is to separate and manage application code and test assets with a

DBMS. However, object-oriented application frameworks also provide a simple

way to integrate the assets and the application code via inheritance mechanism.

This idea has been applied in the form of built-in tests [Wan00]. The idea is to

integrate tests into classes of a framework. In this way, tests can be inherited

to the classes that implement the application framework. In other words, built-

in tests can be used as default properties or services of the classes in a frame-

work [JSL02]. This approach makes it possible to build self-testing components for

a software product line in similar way as they are used in electrical engineering

[Mau93].

While test assets and their use in the product line approach have been stud-

ied, the current product line practice does not describe which testing methods

should be used when product lines are tested. The asset repository and test ar-

tifacts are used to support testing, but no product line specific testing methods

33

have been presented apart from build-in tests that can be used if the product line

is framework-based. Instead, it is assumed that the methods are similar to the

object-oriented testing methods presented in the previous section. This assump-

tion is the main problem with the current product line testing practice and it is

discussed in more detail – along with the state-of-the-art of the product line test-

ing in general – in Chapter 4.5.

4.3 Metrics for estimating product line testing

Traditional object-oriented measures of coverage (see Chapter 3.3) can be applied

at the component level when product lines are tested. In addition, product line

specific measures of coverage that can be used to evaluate the overall testing

coverage over a product line are also needed. We propose two new coverage

criteria for framework-based product line applications: hook coverage and template

coverage. They define how much of the functionality of hand-written application

code elements and framelets extending an application framework via hot spots

have been covered with existing test suites.

Let us have a template class
�

that has template methods
���������������
	

as shown in

Figure 5. Each template method references one or more hooks � ������� � 	 . Each hook

is an abstract method, either in a unified template and hook class (the unification

metapattern) or in an abstract hook class (the connection metapattern) as shown

in Figure 2. We say that a hook is connected if the abstract hook method is instanti-

ated either by overriding it in the unified template and hook class (the unification

metapattern) or by deriving a class that implements the abstract hook class and

its hook method (the connection metapattern). Thus, a hook is connected only if

it is expanded by hand-written application code or by a framelet. Especially, this

means that an abstract hook method can not be connected.

34

The template class
�

is connected if one or more of its hook methods are connected.

In the unification metapattern, the unified template and hook class is connected

if one or more of its abstract hook methods are instantiated by overriding them in

hand-written application code or in a framelet. In the connection metapattern, the

template class is connected if the abstract hook class is instantiated by deriving a

class that implements it in hand-written application code or in a framelet.

Let us now have a test suite
���

that contains test cases
��������������� 	

. We say that a

test case reaches a connected hook method if it executes some or all of the code

in the hook method. We say that a connected hook method is tested if one or

more of the test cases in the test suite
���

reach it and the test cases provide 100%

statement coverage for the hook method. If one or more of the test cases in the

test suite
���

reach the hook method, but the statement coverage they provide is

below 100%, the hook method is partially tested. The hook method is not tested if it

is not reached by any test case in the test suite
���

. We use the statement coverage,

because it measures how much of the code is reached with the test cases used.

Especially, the statement coverage gives an overview of how much of the code is

not tested at all. However, other method level coverages could also be applied.

We say that a connected hook class is tested if all of its hook methods are tested

and partially tested if one or more of its hook methods are tested or partially tested;

otherwise the hook class is not tested.

Let us furthermore have a template method
���

in a connected template class
�
.

The template method
���

references one or more of its hook methods � � ����� � 	 via

hook method references ��� � ����� ��� 	 . In other words, a hook method reference is

a method call from a template class to an instantiated hook method that resides

either in hand-written application code or in a framelet. We say that a test case

goes through a hook method reference if the test case invokes the hook method

reference, that is, if the test case executes the statement containing the method

35

call from the template class to the instantiated hook method. We say that a hook

method reference is tested if it is gone through by one or more test cases and not

tested if the hook method reference is not gone through by any test case.

We say that the template method
���

is tested if its every hook method reference is

tested and partially tested if one or more of its hook method references are tested;

otherwise the template method is not tested. A connected template class is tested

if all of its template methods are tested and partially tested if one or more of its

template methods are tested or partially tested; otherwise the template class is

not tested.

We can now define hook method coverage, hook class coverage, template method cover-

age and template class coverage for connected templates and hooks. We define the

hook method coverage
�����

, provided by a test suite
���

, for a connected hook

method � � as follows:
������� � �	� ����
 � � � �� � ����� � �
�� � ��� � ��� � ����� � � � � ��������� � ���! "� � �$#&% � ���

� � ��� �'
 � � �(� � ��� � � ��� �*)	 � �,+	- � �
 � ���
 � � � ��� � ����� � � � � ������� �

Based on this definition, we define the hook class coverage
�.���

for a connected

hook class � � as follows:

�����/� ����� �10 �����*0 ����� 	
� 2

where
���3� �

2
�����
2
����� 	

are the hook method coverages of the hook methods

residing in the hook class � � and � is the number of all the hook methods in the

hook class � � .

In a similar way, we define template method coverage and template class cover-

age. The template method coverage 4 ���
for a template method

���
is as follows:

4 ����� ��5(687:9;687"<
� 2

where
��5(687=9>687?<

is the number of tested hook references in the template method
���

and � is the number of all the hook method references in the template method

36

���
. The template class coverage 4 ��� for a template class

���
is as follows:

4 ��� � ��5 � 687=9>687?<
� 2

where
��5 � 687=9>687?<

is the number of tested hook method references in the template

class
���

and � is the number of all the hook method references in the template

class
���

.

These coverages are illustrated in Figures 15 and 16. Figure 15 shows a frame-

work with three hot spots. Two of the hot spots, numbers one and three, are

connected. Hot spot number one is connected to a framelet with the connection

metapattern and hot spot number three is connected to application code with the

unification metapattern. Hot spot number two is not connected.

The method templateMethod1 in the class FrameTemplate has one refer-

ence to method hookMethod1 in the class FrameletClass1 and one reference

to method hookMethod1 in the class FrameletClass2. The method hook-

Method1 of the class FrameletClass1 is not tested whereas the method hook-

Method1 of the class FrameletClass2 is tested, so the hook method coverage

for hookMethod1 in FrameletClass1 is
�

and the hook method coverage for

hookMethod1 in FrameletClass2 is � . The hook class coverage of Framelet-

Class1 is
�
, because its only hook method is not tested. The hook class cover-

age of FrameletClass2 is � , because its only hook method is tested. In this

case, the reference from templateMethod1 to untested hookMethod1 can not

be tested, since there is no test case that executes any of its code. However, the

reference from templateMethod1 to hookMethod2 is tested. This yields the

template method coverage of ����� for templateMethod1, since one of its two

hook method references are tested. Because there are no other template methods

in the class FrameTemplate1, its template class coverage is also ����� .

The method templateMethod3 references only the tested hook method hook-

37

Method3, whose hook method coverage is � . Four of the five hook method ref-

erences of the method templateMethod3 are tested, so the template method

coverage of the method is � ��� as is the template class coverage of the class Fram-

eTemplateHook1. The hook class coverage of the class ApplicationCode-

Class1 is � , because its only hook method is tested.

���

���

������������

abstract hookMethod1()

*
− FrameletClass1 hook class coverage: 0/1 = 0%
− FrameTemplate1 template class coverage: 1/2 = 50%

− FrameletClass2 hook class coverage: 1/1 = 100%

hookMethod1()

FrameletClass1

/* HMC=0 */

*

abstract hookMethod2()

FrameTemplate2

abstract FrameHook2

templateMethod2()

Hot spot 2

template or hook
Connected and tested

template or hook
Connected and partially tested

template or hook
Connected and untested

Framework

Framelet

FrameTemplateHook1

abstract hookMethod3()

templateMethod3()

Hook method coverage

Template method coverage

ApplicationCodeClass1

Hot spot 1

FrameTemplate1

abstract FrameHook1

templateMethod1()

Application code

− ApplicationCodeClass1 hook class coverage: 1/1 = 100%
 − FrameTemplateHook3 template class coverage: 4/5 = 80%

Class coverages of hot spot 1:

Class coverages of hot spot 3:

hookMethod3()

HMC

TMC

/* HMC=1 */

/* TMC=1/2 */ /* TMC=4/5 */
Hot spot 3

FrameletClass2

/* HMC=1 */hookMethod1()

or hook or connected abstract hook
Unconnected template

Figure 15: Hot spots of a framework and its hook method, hook class, template
method and template class coverages.

Figure 16 shows an example of a framelet. The framelet uses the unification

metapattern and has one unified template and hook class, FrameletTemplate-

Hook1. The class contains two template methods and three abstract hook meth-

ods. Two of the hook methods are instantiated by the class ApplicationCode-

Class1 that extends the framelet.

The method templateMethod1 has three references to the partially tested hook

method hookMethod2. The hook method hookMethod2 is partially tested, be-

38

cause its hook method coverage is ����� . Two of the three hook method references

from templateMethod1 to hookMethod2 are tested and is one not tested, so

the template method coverage for templateMethod1 is ����� . The method tem-

plateMethod2 has one reference to the hook method hookMethod1 which is

not tested, so the hook method coverage for the method hookMethod1 is
�

and

the template method coverage for the method templateMethod2 is also
�
.

These coverages yield the template class coverage of ����� to the class Framelet-

TemplateHook1, because two of its four hook method references are tested.

The hook class coverage of the class ApplicationCodeClass1 is ����� , since the

hook method coverage for the method hookMethod1 is
�

and the hook method

coverage for the method hookMethod2 is ����� .

template or hook
Connected and partially tested

Application code

Framelet

FrameletTemplateHook1

abstract hookMethod1()

abstract hookMethod2()

abstract hookMethod3() /* not instantiated */

ApplicationCodeClass1

− FrameletTemplateHook1 template class coverage:
(2/3+0/3)/2 = 1/3 = 33%

Class coverages

− ApplicationCodeClass1 hook class coverage:
(0/3+1/3)/2 = 1/6 = 17%

Template method coverage

Hook method coverageHMC

TMC
templateMethod1() /* TMC=2/3 */

templateMethod2() /* TMC=0 */

hookMethod1() /* HMC=0 */

hookMethod2() /* HMC=1/3 */

Figure 16: Hot spots of a framelet and its hook method, hook class, template
method and template class coverages.

Finally, we define hook coverage and template coverage. We define the hook

coverage
���

of an application

as follows:

���/� ����� � 0 �����*0 ����� 	
� 2

where
����� �

2
�����
2
����� 	

are the hook class coverages of all the classes that con-

39

tain instantiated hook methods in the application

and � is the number of all

the hook classes that contain instantiated hook methods in the application

. The

hook coverage can also be used to measure the coverage of a single framework

or framelet. In this case,
����� �

2
�����
2
����� 	

and � are counted from a single frame-

work or framelet instead of the entire application.

We define the template coverage 4 � of an application

as follows:

4 � � 4 ��� � 0 �����*0 4 ��� 	
� 2

where 4 ��� � 2
�����
2 4
��� 	

are the template class coverages of all the template classes

of the application

and � is the number of all the template classes in the appli-

cation

. The template coverage can also be used to measure the coverage of a

single framework or framelet if 4 ��� � 2
�����
2 4
��� 	

and � are counted from a single

framework or framelet instead of the entire application.

The hook and template coverages are illustrated in Figure 17. The figure shows

an application that uses the framework shown in Figure 15, the framelet shown

in Figure 16 and two application code elements. Hook and template coverages

are shown for the framework, the framelet and the entire application. The hook

coverage of the framework is ����� , because the hook class coverages of the hook

classes in the framework are
�
, � and � . The template coverage of the frame-

work is � � ��� � , because the template class coverages of the template classes in the

framework are
�
, ����� and � ��� . The hook coverage of the framelet is ����� and the

template coverage is ����� , because the framelets has only one hook and one tem-

plate class and their coverages are ����� and ����� . These coverages yield the total

hook coverage of ��� ��� (42%) and template coverage of
� � � � (47%) for the entire

application.

40

Framelet Application
code

Application
code

Template

Hot spot

Interface

Framework
Application: Framework:

Framelet:
− hook coverage:

− template coverage:

− hook coverage:

− template coverage:

 1/6 = 17%

 1/2 = 50%

 (2/3+1/6)/2 = 5/12 = 42%

 (13/30+1/2)/2 = 7/15 = 47%

− hook coverage:
 (0+1+1)/3 = 2/3 = 67%
− template coverage:
 (0+1/2+4/5)/3 = 13/30 = 43%

Figure 17: An application using the framework shown in Figure 15, the framelet
shown in Figure 16 and two application code elements and their hook and tem-
plate coverages.

4.4 Automated testing and tool support for product lines

In the product line approach, tool support is even more important than in tradi-

tional object-oriented testing. This is because the scale of a product line contain-

ing several applications derived from the same architecture is greater than the

scale of a single application. For example, there is much more code and related

test assets to manage. It is also possible that an organization has multiple prod-

uct lines which means even more problems of scale. In the product line approach,

tool support can be used to automate the generation and usage of test assets. For

example, test execution and test analysis should be automated. Moreover, regres-

sion testing should also be automated, since test cases related to the core of the

product line have to be repeated every time a new product is derived from the

core [Nor01].

41

Figure 11 in Chapter 3.4 shows different kinds of testing tools that can be used

at different levels of the V-model. In product line testing, all of these tools can

and should be be applied. Compared to traditional testing, the testing manage-

ment tools are of more importance in the product line approach than in testing

of a single application. This is because of additional management overhead due

to complexity of a product line. Also, an asset repository requires additional tool

support in the product line approach. If the repository is separated from appli-

cation code, a DBMS-based tool support is required. Otherwise, if the repository

is integrated, extraction tools for integrated assets are needed to build the repos-

itory when necessary [HoW02, McG01].

The main problem concerning product line testing automation is that most of the

tools available do not support the product line approach. Usually this kind of

tools can also be used with product lines, but they are applicable only to low-

level testing, like unit testing. For example, the JUnit, JTest and Roast Framework

tools mentioned in Chapter 3.4 are unit level tools that can be used at least par-

tially. Furthermore, management tools for testing usually assume that a single

application is tested and therefore do not support reuse of testing assets that is

essential for the product line approach. However, it is already possible to reuse

testing assets in small scale, for example, with regression testing tools that au-

tomate the execution of existing test cases [FeG99] such as the WinRunner tool

[Mer03].

A natural approach for tool support in product line testing would be an environ-

ment that integrates different types of tools shown in Figure 11. The integrated

environment should have a repository for reusable test assets and provide sup-

port for automatic and manual generation, execution and analysis of test suites.

Unfortunaly, such environments do not yet exist [TPK02]. However, a design of

a prototype of a testing environment for product lines is discussed in Section 5.

42

4.5 State-of-the-art of product line testing

As discussed in the previous chapters, the managerial and business views of

product lines and their testing have been under extensive research. Testing re-

lated results include, for example, process frameworks for the product line ap-

proach. Frameworks by the ESAPS and CAFÉ projects [Lin02a, Lin02b], SEI

[Nor01], and ideas of reusable testing assets and their management [McG01] are

examples of the work in progress.

The difficulty with process frameworks is that none of them is as widely accepted

as a standard reference model for product line testing like the V-model is with

respect to testing of a single application. Furthermore, the presented frameworks

do not fully integrate the testing levels of the V-model into their development

phases although testing is supposed to be performed according to these levels.

Another problem with process frameworks is that they have not been compared

with each other. Thus, there is no indication of how they relate to each other,

and whether the different frameworks are better suited for different application

domains.

The main problem in the current product line approach is that the work that has

been done has focused mainly on acceptance and system levels of testing. How-

ever, since individual software components are extensively reused in the product

line approach, their thorough low-level (for example, unit level) testing should

also be assured. In other words, current research and practise focuses mainly on

the high-level view of product line testing. The low-level view of the product line

approach, where the actual testing is done, has received very little attention. It is

assumed that traditional object-oriented testing methods can be used in the prod-

uct line testing process without change. This assumption leaves many important

questions open. For example, it is not clear which of the object-oriented testing

43

methods should be used and how these methods can be scaled to the product line

level. Furthermore, it is unclear if there is a need for new, product line specific,

testing methods.

The focus of current work on product line testing related to the standard V-model

is illustrated in Figure 18. The work is focused on acceptance and system levels

and related requirements specification and architectural design levels. Existing

product line specific testing methods have been developed mainly for these lev-

els. Integration and unit testing levels have got very little attention and product

line specific testing methods for these levels are basically non-existent. Because

of this, the existing high-level methods are often not used and product line appli-

cations are tested independently as single applications using traditional testing

methods. This means, for example, that reusable testing assets are not used as

effectively as would be possible, and that the entire testing process is repeated

for every application derived from a product line.

Detailed
design

Architectural
design

Requirements
specification

Code
level

Main focus are of current product line testing

Integration test

Acceptance test

System test

Unit test

W
rite tests

Run te
sts

Figure 18: The focus of current work on product line testing related to the stan-
dard V-model.

44

In the framework-based approach to product lines, for example, the application

framework is the core of a product line and should be well-tested before any ap-

plications are derived from it [TPK02]. However, framework-based product line

applications are in practice often tested without using any information about the

product line which they are derived from. An example of this that – unfortu-

nately – characterizes the state-of-the-art of the product line testing today is the

following comment regarding development of mobile browsers in a product line

at Nokia:

“Moreover, testing a product line is more complex than testing a single soft-

ware product. We must test the product line in its various configurations,

which easily multiplies the number of test cases. To manage this complex-

ity, we system tested individual product releases instead of testing the whole

product line. This kept testing simple and guaranteed the quality of prod-

uct releases. However, we did not build a pool of tested core assets ready for

integration, which probably increased the need to test each product release.”

[Jaa02]

Product line testing also lacks specific metrics and automatic tools. There is a

need for product line specific testing measures of coverage in addition to the

traditional ones. There is also a need for product line specific testing tools that

should, on one hand, help to manage reusable testing assets and, on the other

hand, automate the execution of tests and analysis of their results. A feasible

approach for this would be to use a product line specific, integrated testing envi-

ronment.

45

5 RITA: Framework integration and testing applica-

tion for product lines

As discussed in the previous section, work has been done to describe the product

line testing process based on reusable assets. Also, existing process frameworks

for product line engineering have a very high-level view to product lines. How-

ever, this business-related view does not define how the actual testing should

be done. Because of this, product line specific testing methods are basically non-

existent. Plethora of object-oriented testing methods that can be used in the prod-

uct line testing process do exist, but there are basically no results on how they

should be scaled to the product line level.

In this section, building on the theory discussed in the previous sections, we in-

troduce the RITA tool for product line testing developed in the CAFÉ project by

the University of Helsinki [TPK02]. First, motivation for the tool is discussed and

the main ideas behind it are introduced in Chapter 5.1. Then, the specific features

of the tool are discussed in Chapter 5.2. Chapter 5.3 describes the views to an

application under testing provided by RITA. Chapter 5.4 describe the relation be-

tween RITA and product line testing, specifically the relation between RITA and

the standard V-model and the relation between RITA and the product line testing

process. Finally, current state and future work regarding the tool and the theory

it is based on are presented in Chapter 5.5.

5.1 Motivation and introduction

The RITA tool for product line testing is designed to tackle the key question of

how the traditional object-oriented testing methods should be used when prod-

uct lines based on object-oriented application frameworks are tested. The tool can

46

also be used for evaluating if new product line specific testing thory and method-

ology are needed [TPK02]. RITA provides an environment specifically designed

for testing of framework- and framelet-based product lines. It includes services

for interface class identification, code profiling, coverage criteria analysis, driver

and stub generation, test management and statistics. The tool can be used, on

one hand, to apply the existing object-oriented testing methods in the product

line context and, on the other hand, to explore new, framework-based product

line specific testing methods, such as hook and template coverages introduced in

Chapter 4.3.

An overview of the tool is shown in Figure 19. The figure shows inputs and

outputs of the tool. The main input for RITA is the application code that is com-

posed of the used framework, framelets and application code. In addition, the

tool needs template and hook class information of the application. Testing related

inputs are test materials and drivers and stubs needed for testing of the possibly

partial application. These can be either generated manually or by the RITA tool.

Outputs of the tool include test results that contain information about passed and

failed tests, statistics of the tests (for example, different coverages), new test cases

generated by the tool (based, for example, on template and hook class interfaces)

and new drivers and stubs that are generated by the tool if needed.

5.2 RITA features

The RITA integration and testing environment consists of testing management el-

ements that offer services for white-box testing in framework-based product line

environments. The elements are template and hook class identifier, profiler, coverage

analyzer, driver and stub generator, test environment and statistics generator [TPK02].

A new application is first analyzed to identify template and hook classes. This in-

47

Figure 19: Overview of the RITA tool showing its inputs and outputs.

formation is used in testing and coverage analysis. External tools can be used to

import this information to RITA. For example, if the framework of the application

is generated with a framework editor, the hook and template class information

may be imported from the editor. One such editor is the FRED tool [Vil01]. An-

other possibility is to import the information from a tool that can regognize the

template and hook classes of the framework as patterns, such as the MAISA tool

[Nen00]. If an external tool is not used, the template and hook identifier of RITA

can be used. The template and hook class identifier first recognizes potential tem-

plate and hook class candidates, and the end user has to choose the actual classes

from a list of candidates. The template and hook class information is important,

since it allows RITA to recognize interfaces between frameworks, framelets and

application code.

When a newly added application is being tested, it is first run through a profiler.

The profiler preprocesses application code such that RITA can gather data from

actual code execution. This element allows later RITA elements to analyze the

48

executed code, and also to create graphical presentations of the code. In the first

stage RITA profiler accepts Java code as input with all standard Java structures.

Only exceptions are forbidden in the first version, since exception processing can

easily violate the normal execution flow of the program. In the later versions

also exception processing will be under research. Also, the RITA profiler will be

defined such that it can be later expanded to programming languages other than

Java.

The coverage analyzer is one of the main elements of RITA. It accepts a pro-

filer generated file as input and generates white-box -based coverage information

from the material. In the first prototype standard coverage criteria, such as code

and branch coverage, are supported. In addition, hook and template coverages,

as defined in Chapter 4.3, are supported.

From testing point of view, a designed product line is an incomplete program.

The framework and framelets may be present while some or all of the applica-

tion specific code is unavailable. Because of this, RITA offers services for auto-

matic driver and stub generation. In the first prototype of RITA, drivers are based

on template and hook class interfaces. RITA uses identified template and hook

classes to generate drivers, and coverage information to hint for possible test ma-

terials. RITA is also an integration tool, since it allows framelets and application-

specific code to be tested separately from the framework.

In addition, RITA offers a complete test management environment. Executed

tests are stored into a database and expected results may be compared to test

results. Regression testing is also supported. From the tester’s point of view this

is probably the most important service of RITA although from the research point

of view this element is not very interesting.

49

Finally, RITA will generate various reports and graphical presentations of the

test process and tested software. The first prototype will include at least various

coverage percentage based on executed tests, graphical coverage information of

chosen classes and information about template and hook classes and their test

states.

5.3 RITA views

The RITA tool provides four different views to the application under testing. The

views are framework view, template view, class view and method view. Each view

offers view-specific testing services for the application. Figure 20 shows an ex-

ample application to be tested with RITA. The application is a real-time database

management system application derived from a framework-based DBMS prod-

uct line. The framework of the example provides database services and offers

three hot spots for application specific expansions. Two of the hot spots are ex-

tended, both with framelets. Framelets provide real-time capabilities and disk

management functions. The framelet providing real-time capabities has three hot

spots two of which are extended with application specific code. One extension

provides services for scheduling and the other provides service for transactions.

This example is used in the following chapters to describe the four views of the

RITA tool.

The framework view is the product line level view to the application under test.

The view offers services for testing between framework elements (the framework

and framelets and application code elements connected to the framework). The

framework view includes, for example, black-box testing services and statistics of

different coverages including hook and template coverages for the entire applica-

tion and for a single framework or framelet. At this view frameworks, framelets

50

Figure 20: An example of a real-time DBMS application of a framework-based
DBMS product line.

and application code elements and their connections are shown. Unconnected

hot spots are also visible, but the class hierarchy of elements is not shown.

The framework view of the application in Figure 20 is shown in Figure 21. The

view shows the framework, the two framelets and the two application code ele-

ments of the application. When one of these elements is clicked, the correspond-

ing template view is opened. The view also shows the two unconnected hot spots

of the application.

The template view shows a UML class diagram of a framework, a framelet or an

application code element. The classes also include template and hook classes of

the element, so interfaces between the element in question and other framework

elements is visible at this level. The template view offers services for interface

testing. This level also includes hook and template coverages for hook and tem-

plate classes and methods. The exact services of this view are under design and

will not be implemented in the first prototypes of RITA, but they can include, for

51

Unconnected hot spot

Framelet 1
(Real−time)

Framework

Application code 2
(Transactions)

Application code 1
(Scheduling)

Framelet 2
(Disk management)

(Databases)

Figure 21: The framework view of the example application shown in Figure 20.

example automatic test case generation for interface testing between framework

elements. Also, automatic driver and stub generation for framework element in-

terfaces is possible at this level.

The template view of the framelet providing real-time capabilities, Framelet 1

in Figure 21, is illustrated in Figure 22. The view shows the UML class diagram

of the framelet. In the framework area, the abstract hook class RealTimeSer-

vice is shown. Its counterpart, the instantiated hook class RealTimeService

that is used to extend the framework is shown in the framelet area of the view.

If the framework area surrounding the class RealTimeService is clicked, the

template view of the framework is shown. If the class itself is clicked, the corre-

sponding class view is shown.

52

In addition to the instantiated hook class, the framelet area shows the other classes

of the framelet. They include classes that implement the functionality of the

framework (RTDispatcher, RTQueue and RTSimpleStateMachine), and also

template and hook classes that provide the three hot spots of the framelet. The

first hot spot is provided by classes RTParellelSchedulerand RTSimpleSch-

eduler, the second by the class RTSerialScheduler and the third by classes

RTTransactionHandler and RTTransaction. The first and the third hot

spots use the connection metapattern and the second uses the unification metap-

attern. The hot spot that uses the classes RTParellelScheduler and RTSim-

pleScheduler is not implemented. When a class in the framelet area is clicked,

the corresponding class view is shown.

* *

or hook class
Connected template

or hook class
Not connected template

abstract schedule()

abstract doTransaction()

abstract execute()

Framework

*

0..1

0..1

*

1

Framelet 1

A class providing
framelet functionality

abstract RealTimeService

RealTimeService

RTDispatcher RTQueue

public boolean ChangeState(int state)
public boolean isValid()

private int currentState
private boolean validStates[]

public RTSimpleStateMachine

RTParellelScheduler

abstract RTSimpleScheduler

doScheduling()

doTransaction()

RTSerialScheduler

doScheduling()

abstract schedule()

public RTSimpleStateMachine()

RTTransactionHandler

handleTransaction()

abstract RTTransaction

Figure 22: The template view of Framelet 1 in Figure 21.

53

The class view offers two presentations for a class. The first shows the method ref-

erences of each method of the class and the other shows the code of the class. The

class view offers services for class testing. It includes standard object-oriented

testing services. The services include, for example, interface testing of a class,

testing of a class state and method collaboration testing. Driver and stub gen-

eration is supported by providing places where manually generated drivers and

stubs can be plugged in. The exact services of this view are under design and will

not be implemented in the first prototypes of RITA.

The class view of the class RTSimpleStateMachine in Figure 22 is shown in

Figure 23. The class is a slightly modified version of the class used earlier (see

Figure 7). Figure 23 shows both presentations of the class view: the method refer-

ence presentation of the class is shown on the left and the code presentation on the

right. In this case, the class contains only three methods. The constructor of the

class, RTSimpleStateMachine, has no references to other methods. Method

changeState, however, uses the method isValid. The methods of this class

do not contain method calls to other classes. Such references are shown in the

method reference presentation so that the arrow from the calling method is con-

nected to the class which holds the called method. When a method is clicked in

the method reference presentation or in the code presentation, the corresponding

method view is shown.

The method view offers services for unit testing at the method level. This view in-

cludes various coverage criteria (for example, code-based, state-based and constraint-

based coverages described in Chapter 3.3) and a list of recognized indepented

paths through a method. Also this view provides places for manually generated

driver and stubs.

The view offers two presentations for a method. The first is a standard flowchart

view to the method and the other is the code of the method which could be used,

54

17: if (this.validStates[state] == true)
18: return true;
19: else
20: return false;

22: }
21: }

public boolean isValid(int state)

public boolean changeState(int state)

The method reference presentation of the class The code presentation of the class

 ...

 ...

7: }
6: validStates = {true, true, false};
5: currentState = 0;

 // constructor

 ...

3: private boolean validStates[];
2: private int currentState;

 // accessors

15: }
14: return changeOk;

13: changeOk = false;
12: else
11: currentState = state;

9: boolean changeOk = true;
8: public boolean changeState(int state) {

10: if (this.isValid(state) == true)

16: public boolean isValid(int state) {

public RTSimpleStateMachine()

1: public class RTSimpleStateMachine {

4: public RTSimpleStateMachine() {

Figure 23: The class view of RTSimpleStateMachine in Figure 22.

for example, in illustrating the statement coverage in addition to showing the

actual method code. The method view of the method changeState in Figure 23

is shown in Figure 24. The figure shows the flowchart of the method on the left

and the code on the right.

5.4 Product line testing with RITA

The RITA tool is designed to be a complete testing environment. As such it can

provide services to all levels of the standard V-model. In this sense, RITA can

bee seen as an environment where all the areas of tool support for testing illus-

trated in Figure 11 can be supported. However, all the designed features are not

implemented in the first version of RITA. Also, the focus of the tool is to sup-

port low-level white-box testing of framework-based product lines, so the higher

55

1

2

3

4 5

6

1: public boolean changeState(int state)

2: boolean changeOk = true;

3: if (this.isValid(state) == true)
4: currentState = state;
5: changeOk = false;
6: return changeOk;

The flowchart presentation of the method

public boolean changeState(int state) {
 boolean changeOk = true;

 if (this.isValid(state) == true)
 currentState = state;
 else
 changeOk = false;

 return changeOk;
}

The code presentation of the method

Figure 24: The method view of the method changeState in Figure 23.

levels of the V-model are not supported in the first version of the tool.

The current focus of RITA in relation to the standard V-model is illustrated in

Figure 25. The tool is focused on unit and integration testing of framework-based

product lines. Unit and integration testing are supported by the method, class

and template views of RITA. Unit tests can be executed and analyzed via method

and class views. Similarly, integration tests can be executed and analyzed via

template view. RITA has also some test design and test management features,

so code and detailed design levels of the V-model are supported, but they are not

main focus areas of the tool. System and acceptance testing nor architectural level

and requirements specification of the V-model are not directly supported, but the

tool is designed so that it is possible to manage, execute and analyze system tests

via framework view.

Another way of describing how RITA can be used in product line testing is to

relate it with a generic software testing process presented in Figure 26. The figure

also shows how RITA relates to this process, which is originally developed for

testing of single applications, but can also be used as a basis for a product line

56

Detailed
design

Architectural
design

Requirements
specification

Code
level

Integration test

Acceptance test

System test

Unit test

W
rite tests

Run te
sts

Main focus areas of RITA

Supported, but not main focus areas of RITA

Figure 25: Focus areas of RITA in relation to the standard V-model.

testing process. In this process, requirements engineering produces requirements

that are used in test planning to generate a test plan. The test plan is used when

test cases are designed in test case specification. Then, test cases are scripted so

that they are in executable form. Executable test cases are run, which produces

test results. The results are evaluated and a test report is produced. Test manage-

ment is needed in every phase of the process [FeG99, McS01].

RITA is focused on test execution and analysis, so RITA supports test scripting,

test execution and test evaluation. Related test management activities are also

supported. Furthermore, RITA can be used in test case specification, because new

test cases can be generated with the tool automatically and manually. However,

this is not the main focus of RITA. The current design of RITA does not support

requirements engineering or test planning.

Based on the generic testing process in Figure 26, the testing process supported

by RITA is illustrated in Figure 27. The process requires a test plan based on re-

quirements as input, since RITA does not support test planning or requirements

57

Requirements engineering
Output: Requirements

Test planning
Output: Test plan

Test specification
Output: Test cases Output: Test scripts

Test scripting Test execution
Output: Test results

Test evaluation
Output: Test report

Test management

Supported, but not a main focus area of RITA

Main focus areas of RITA

Figure 26: Focus areas of RITA in relation to a generic software testing process.

specification. Test cases are generated mostly manually, but the tool can gener-

ate additional test cases automatically based on, for example, hook and template

class information. After test cases are generated and selected for execution, the

tool scripts and executes the tests. After tests are run, results can be evaluated

based on the test report generated by the tool. RITA also manages testing assets

thoughout the process, for example, by maintaining a test asset repository.

The testing process supported by the RITA tool is iterative. Based on the results of

executed tests, new test cases can be generated and tests scripts may be updated.

The existing tests can also be repeated without change, for example, when regres-

sion testing is performed. When new test cases are generated, either manually or

automatically, the process is repeated for them. It is also possible that test scrips

need to be changed, for example, because interfaces of the application under test

have been changed.

The testing process illustrated in Figure 27 can be used in testing of a single ap-

plication. In this case, the test plan is designed specifically for the application and

the testing process is iterated according to its lifecycle. However, the RITA tool is

58

Test specification
Output: Test cases Output: Test scripts

Test scripting Test execution
Output: Test results

Test management

Test evaluation
Output: Test report

Iteration

Input: Test plan
Changes to
test scripts

Repeated test casesNew test
cases

Figure 27: Testing process supported by RITA.

focused on testing of product lines instead of testing of single applications. When

product lines are tested, the test plan covers the entire product line. It specifies

how the framework of the product line is tested before applications are derived

from it. The test plan also specifies how the derived applications are tested. In

this case, the testing process is iterated throughout the lifecycle of the product

line. In this way, actual product line testing can be performed and existing test

assets can be effectively reused.

5.5 Future work

We are currently implementing the first version of the RITA tool. The first pro-

totype is expected at the end of the second quarter of year 2003. This prototype

will be used as a testbench for research of existing and new testing methods for

framework-based product lines. The tool can also be used to evaluate the feasi-

bility of the approach to product line testing presented in this thesis. At this point

it seems that there is a clear need for both the tool itself and for new testing the-

ory that will bind the high-level product line testing process frameworks to the

low-lewel testing methodology in the product line context.

59

The first prototype of the tool will include the profiler, the coverage analyzer and

the test environment. In other words, the prototype can load and profile an ap-

plication, execute test cases and analyse the results in the form of hook, template

and traditional coverages. However, the first prototype does not include auto-

matic template and hook class identifier, driver and stub generator or statistic

generator. This means that template and hook classes have to be identified with

an external tool or manually, and incompleted parts of the application cannot be

fully tested with the prototype. Also, the statistic generator and the database-

based test asset repository are missing from the prototype. The prototype sup-

ports the framework, class and method views, but the template view is not fully

implemented in the first version.

In the future, the implementation of the tool will continue, and for example, the

missing parts will be implemented as needed. The RITA tool is also expected to

evolve into a useful environment for product line testing that can also be used in

practical software engineering projects in addition to its research use. However,

to be useful for real product line projects, the environment must contain all the

features discussed in Chapter 5.2. This will take time and resources and require

co-operation with industrial partners. Also, thorough evaluation of the tool and

the theory behind it are needed. The work with these issues will be started in the

follow-up projects of CAFÉ.

6 Conclusions

Software product lines have recently received attention in the research commu-

nity, but especially in industry. Instead of creating software from scratch for each

product, many companies have focused on the commonalities between their dif-

ferent products and started to capture those in product line architectures. In the

60

research area, case studies of the product line approach have been made. In ad-

dition to the case studies, a few larger projects have been launched to study the

use of product lines in software development.

A natural way to implement a software product line is an object-oriented applica-

tion framework. A framework can be seen as a partial design and implementation

for an application in a given domain. Therefore, a framework is an incomplete

system, a set of objects that captures the special expertise in some application

domain to a reusable form. Frameworks are feasible to use, because they can pro-

vide increased reusability of software components and reduced time to market

for applications.

It is expected that product lines will soon become a dominating software pro-

duction paradigm. Product flexibility is currently a very important factor in

the software market and, with product lines, the promise of tailor-made systems

built specifically for the needs of partical customers or customer groups can be

fulfilled. Especially for large companies, product lines offer an efficient way to

exploit the commonalities shared by different products to achieve economies of

production.

In the product line approach, as in all software engineering, testing is essential.

The framework of a product family must be reliable and well-tested, because all

applications of the family share the common parts implemented in the frame-

work. However, also the application specific parts as well as the application as a

whole have to be tested thoroughly. The product line approach requires a care-

fully planned testing process that can be easily adapted and used for product

families in various application domains.

The state-of-the-art of product line testing is immature, so there is a clear need

for a more mature testing methodology. Most of the research so far has concen-

61

trated on the product line testing process and on the assets that can be reused

thoughout the process. Regarding these issues, product line process frameworks

and ideas of asset repositories of product lines have been formulated. However,

there is a gap between the product line testing process and the practical testing

methods, because it is not clear which object-oriented testing methods can be ef-

fectively used in this particular context. Testing also lacks necessary tool support

and automation that are essential in the product line approach.

However, the work to tackle the problems encountered is under way. For ex-

ample, product line testing process is under extensive research and new testing

methodology is being developed. For example, the CAFÉ project and its followup

projects in Europe and SEI in the USA are currently studying new testing theory

and deriving practical methodology and tools to be used with product lines.

Examples of the work done in the CAFÉ project are the definition of hook and

template coverages and the development of the RITA tool for testing of framework-

based product lines. RITA provides a testbench for traditional as well as newly

developed testing methods for product lines. The tool includes services for inter-

face class identification, code profiling, coverage criteria analysis, driver and stub

generation, test management and statistics. It can be used to apply the existing

testing methods in the product line context and to explore new, framework-based

product line specific testing methods including hook and template coverages.

Hopefully, in the future, the tool can also be used as a complete testing environ-

ment for product line testing.

Acknowledgements

This work was funded by Nokia Research Center as a part of the ITEA project

CAFÉ (project number 00004). The author would like to thank the other mem-

62

bers of the RITA project for their advice and comments throughout the writing

process. The author would also like to thank the CAFÉ project members from

Nokia Research Center for their hands-on experiences about software product

lines and information about the relevant material for this work.

63

References

AlA01 Alkadi, I., Alkadi, G., Algorithms that Compute Test Drivers in

Object-Oriented Testing. Proceedings of the IEEE Aerospace Conference,

Big Sky, Montana, USA, March 2001, Volume 1, 115–119.

Ard00 Ardis, M., et al., Software Product Lines: A Case Study. Software –

Practice and Experience, Volume 30, Number 7, June 2000, 825–847.

Bal00 Ball, T., et al., State Generation and Automated Class Testing.

Software Testing, Verification and Realibility, Volume 10, Number 3,

September 2000, 147–170.

Bei90 Beizer, B., Software Testing Techniques. Van Nostrand Reinhold, Sec-

ond Edition, 1990.

Bin94 Binder, R., Design for Testability in Object-Oriented Systems. Com-

munications of the ACM, Volume 37, Number 9, September 1994, 87–

101.

BOP00 Buy, U., Orso, A., Pezzé, M., Automated Testing of Classes. Proceed-

ings of the International Symposium on Software Testing and Analysis (IS-

STA’00), Portland, Oregon, USA, August 2000. Software Engineering

Notes, Volume 25, Number 5, 2000, 39–48.

Bos99 Bosch, J., Product Line Architectures in Industry: A Case Study.

Proceedings of the 21st International Conference on Software Engineering

(ICSE’99), Los Angeles, California, USA, May 1999, 544-554.

Bos00 Bosch, J., et al., Object-Oriented Framework-based Software Devel-

opment: Problems and Experiences. ACM Computing Surveys, Vol-

ume 32, Number 1 (electronic supplement), March 2000, 3–7.

64

Coh02 Cohen, S., Product Line State of the Practice Report. Technical Note

CMU/SEI-2002-TN-017, Carnegie Mellon University, Software En-

gineering Institute, October 2002.

CzK00 Czarnecki, K., Eisenecker U., Generative Programming : Methods, Tools,

and Applications. Addison-Wesley, 2000.

DHS02 Daley, N., Hoffman, D., Strooper, P., A Framework for Table Driven

Testing of Java Classes. Software – Practice and Experience, Volume 32,

Number 5, April 2002, 465–493.

FeG99 Fewster, M., Graham, D., Software Test Automation – Effective Use of

Test Execution Tools. Addison-Wesley, 1999.

FHB00 Fayad, M., Hamu, D., Brugali, D., Enterprise Frameworks Character-

istics, Criteria, and Challenges. Communications of the ACM, Volume

43, Number 10, October 2000, 39–46.

Fow99 Fowler, M., Refactoring – Improving the Design of Existing Code.

Addison-Wesley, 1999.

FSJ99 Fayad, M., Schmidt, D., Johnson, R., Building Application Frameworks.

Wiley and Sons, 1999.

Gam94 Gamma, E., et al., Design Patterns – Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1994.

GiG93 Gilb, T., Graham, D., Software Inspection. Addison-Wesley, 1993.

GuB01 van Gurp, J., Bosch, J., Design, Implementation and Evolution of

Object-Oriented Frameworks: Concepts and Guidelines. Software –

Practice and Experience, Volume 31, Number 3, March 2001, 277–300.

65

HMF92 Harrold, M., McGregor, J., Fitzpatrick, K., Incremental Testing of

Object-Oriented Class Structures. Proceedings of the 14th International

Conference on Software Engeneering (ICSE’92), Melbourne, Australia,

May 1992, 68–80.

HoW02 Hoffman, D., Wilkin, S., JUnit Extensions for Documentation and

Inheritance. Proceedings of the 20th Pacific Northwest Software Quality

Conference (PNSQC’02), Portland, Oregon, USA, October 2002.

Jaa02 Jaaksi, A., Developing Mobile Browsers in a Product Line. IEEE Soft-

ware, Volume 19, Number 4, July/August 2002, 73–80.

JoS02 Jones, L., Soule, A., Software Process Improvement and Product Line

Practice: CMMI and the Framework for Software Product Line Practice.

Technical Note CMU/SEI-2002-TN-012, Carnegie Mellon University,

Software Engineering Institute, July 2002.

JRL00 Jazayeri, M., Ran, A., van der Linden, F. (eds.), Software Architectures

for Product Families: Principles and Practice. Addison-Wesley, 2000.

JSL02 Jeon, T., Seung, H., Lee, S., Embedding Built-in Tests in Hot Spots of

an Object-Oriented Framework. ACM SIGPLAN Notices, Volume 37,

Number 8, August 2002, 25–34.

Lab00 Labiche, Y., et al., Testing Levels for Object-Oriented Software. Pro-

ceedings of the 22nd International Conference on Software Engineering

(ICSE’00), Limerick, Ireland, June 2000, 136–145.

Lin02a van der Linden, F., Software Product Families in Europe: The Esaps

& Café Projects. IEEE Software, Volume 19, Number 4, July/August

2002, 41–49.

66

Lin02b van der Linden, F., ESAPS-CAFÉ Inputs. Proceedings of the 3rd

ITEA Symposium, Amsterdam, Netherlands, October 2002, URL:

http://www.itea-office.org/symposium/ [March 13, 2002].

Mau93 Maunder, C., A Universal Framework for Managed Built-in Test. Pro-

ceedings of the International Test Conference, Altoona, Pennsylvania,

USA, October 1993, 21–29.

McG01 McGregor, J., Testing a Software Product Line. Technical Report

CMU/SEI-2001-TR-022, Carnegie Mellon University, Software Engi-

neering Institute, December 2001.

McK94 McGregor, J., Korson, T., Integrated Object-Oriented Testing and De-

velopment Process. Communications of the ACM, Volume 37, Number

9, September 1994, 59–77.

McS01 McGregor, J., Sykes, D., A Practical Guide to Testing Object-Oriented

Software. Addison-Wesley, 2001.

Mer03 Mercury Interactive, WinRunner Data Sheet. URL: http://www-

svca.mercuryinteractive.com/products/winrunner/whitepapers

[March 13, 2003].

Nen00 Nenonen, L., et al., Measuring Object-Oriented Software Architec-

tures from UML Diagrams. Proceedings of 4th International ECOOP

Workshop on Quantitative Approaches in Object-Oriented Software Engi-

neering, Sophia Antipolis, France, June 2000, 87-100.

Nor01 Northorp, L. (director), A Framework for Software Product Line Practice

– Version 3.0. Software Engineering Institute, Carnegie Mellon Uni-

versity, 2001, URL: http://www.sei.emu.edu/plp/framework.html

[March 13, 2003].

67

Par03 Parasoft Corporation, Automating and Improving

Java Unit Testing: Using Jtest with JUnit. URL:

http://www.parasoft.com/jsp/products/tech_papers.jsp?product=

Jtest [March 13, 2003].

Pre95 Pree, W., Design Patterns for Object-Oriented Software Development.

Addison-Wesley, 1995.

Pre97 Pressman, R., Software Engineering – A Practitioner’s Approach.

McGraw-Hill, Fourth Edition, 1997.

PrK99 Pree, W., Koskimies, K., Rearchitecting Legacy Systems – Concepts

and Case Study. Proceedings of the First Working IFIP Conference on

Software Architecture (WICSA’99), San Antonio, Texas, USA, February

1999, 51–64.

Roy70 Royce, W., Managing the Development of Large Software Systems:

Concepts and Techniques. Proceedings of the IEEE Western Electronic

Show and Convention (WESCON), Los Angeles, California, USA, Au-

gust 1970, A/1–1–A/1–9.

SBF96 Sparks, S., Banner, K., Faris, C., Managing Object-Oriented Frame-

work Reuse. Computer, Volume 29, Number 9, September 1996, 52–

61.

TPK02 Taina, J., Paakki, J., Kauppinen, R., RITA - a fRamework Integra-

tion and Testing Application. Proceedings of the Finnish Data Processing

Week (FDPW’02), Petrozavodsk, Russia, July 2002, to appear.

Vil01 Viljamaa, A., Pattern-Based Framework Annotation and Adaptation – A

Systematic Approach. Licentiate Thesis, Report C-2001-52, University

of Helsinki, Department of Computer Science, 2001.

68

Wan00 Wang, Y., et al., On Built-in Test Reuse in Object-Oriented Frame-

work Design. ACM Computing Surveys, Volume 32, Number 1 (elec-

tronic supplement), March 2000, 7–12.

