

Nested Boolean Functions as Models for QBFs

Uwe Bubeck and Hans Kleine Büning

University of Paderborn

July 11, 2013

Outline

- Introduction: QBF and (Counter-)Models
- Free Variables and Models
- NBF Representation
- Conclusion

Introduction: QBF and (Counter-)Models

Quantified Boolean Formulas

QBF extends propositional logic by allowing universal and existential quantifiers over propositional variables.

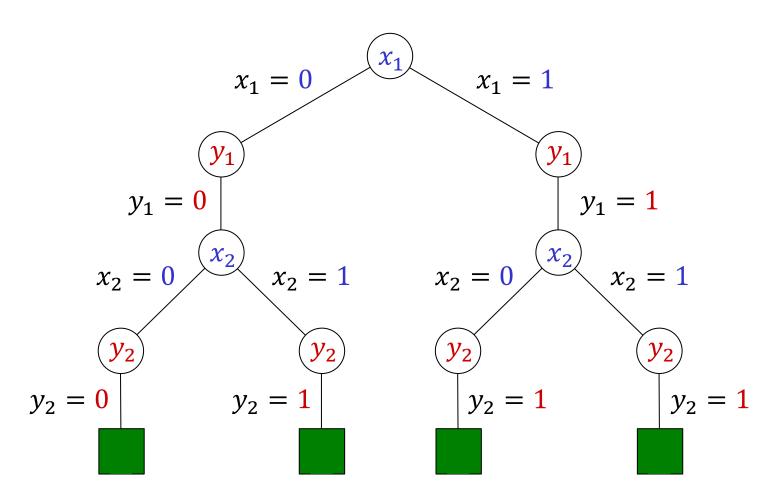
Semantics of closed QBF:

 $\exists y \, \Phi(y)$ is true if and only if $\Phi[y/0]$ is true or $\Phi[y/1]$ is true.

 $\forall x \ \Phi(x)$ is true if and only if $\Phi[x/0]$ is true and $\Phi[x/1]$ is true.

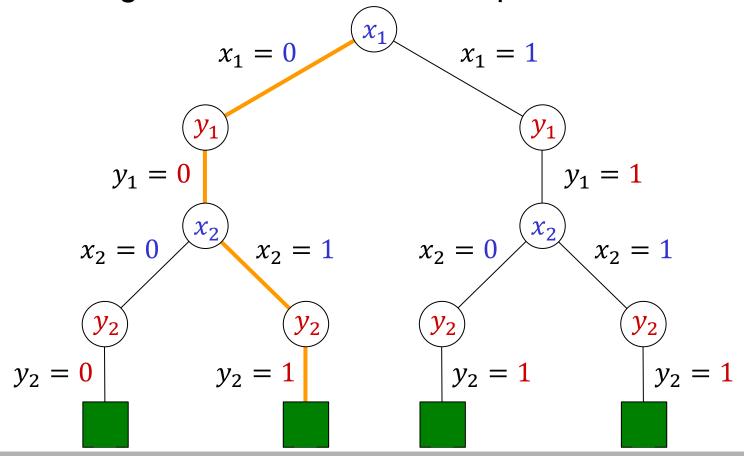
Tree Models

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \ (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_2) \land (y_1 \lor x_2 \lor \neg y_2) \land (\neg x_2 \lor y_2)$



Function Models 1/2

QBF as a 2-player game: ∃ and ∀ player alternatingly choose assignments for variables in prefix order.



Function Models 2/2

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \dots \forall x_n \exists y_n \ \phi(x_1, \dots, x_n, y_1, \dots, y_n) = \text{true}$$
 if and only if

 $\forall x_1 ... \forall x_n \ \phi(x_1, ..., x_n, f_1(x_1), ..., f_n(x_1, ..., x_n)) = \text{true}$ for some $f_1, ..., f_n$ (Skolem functions).

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \dots \forall x_n \exists y_n \ \phi(x_1, \dots, x_n, y_1, \dots, y_n) = \text{false}$ if and only if

 $\exists y_1 ... \exists y_n \ \phi(g_1(), g_2(y_1), ..., g_n(y_1, ..., y_{n-1}), y_1, ..., y_n) = \text{false}$ for some $g_1, ..., g_n$ (Herbrand functions).

Motivation

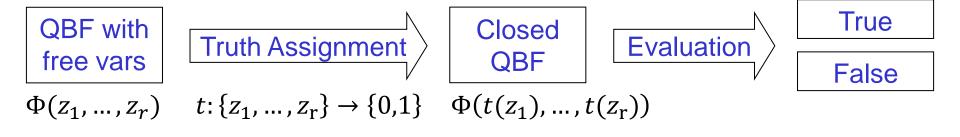
- Important applications: solver certificates, explanations, ...
- Balabanov and Jiang (2012):
 Extract Skolem model from cube-resolution proof,
 Herbrand countermodel from clause-resolution proof.
- Problem: compact representation (no polynomial-size propositional encoding if $\Sigma_2^P \neq \Pi_2^P$)
- Contributions:
 - direct polynomial-size encoding by NBFs
 - (counter)models parameterized by free variables

Free Variables and Models

Semantics of Free Variables

Closed QBF: either true or false

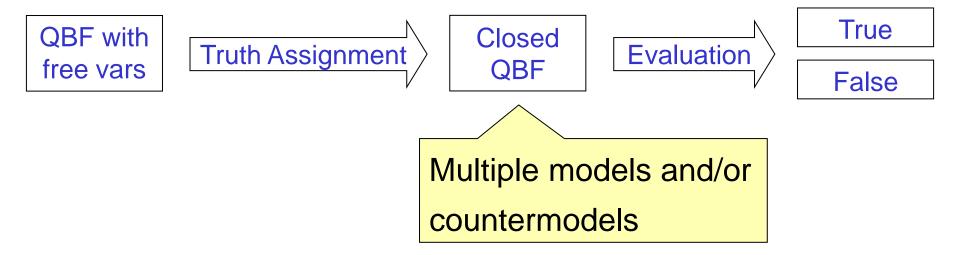
Open QBF: valuation depends on the free variables:



Propositional Formula

 \approx

Free Variables and Models



How are the models and countermodels for different assignments to the free variables related to each other?

Complete Equivalence Models 1/2

Idea: Replace all quantified variables with functions over the free variables.

$$\forall v_n \exists v_{n-1} \dots \forall v_2 \exists v_1 \ \phi(v_1, \dots, v_n, z_1, \dots, z_r)$$

$$\phi(h_1(z_1,...,z_r),...,h_n(z_1,...,z_r),z_1,...,z_r)$$

Complete Equivalence Models 2/2

Why bother about models parameterized by free variables?

Non-prenex QBF:

$$\forall a \exists b \left(\forall c \exists d \ \alpha(a,b,c,d) \right) \land \left(\forall x \exists y \ \beta(a,b,x,y) \right)$$
Open QBF with
free vars a,b .

e.g. precompute partial certificate.

NBF Representation

Nested Boolean Functions

A Nested Boolean Function (NBF) [Cook/Soltys 1999] is a sequence of functions $F = (f_0, ..., f_k)$ with

- initial functions $f_0, ..., f_t$ given as propositional formulas
- compound functions $f_i(x^i) \coloneqq f_{j_0}(f_{j_1}(x^i_1), ..., f_{j_r}(x^i_r))$ for previously defined functions $f_{j_0}, ..., f_{j_r}$.

Example: parity of Boolean variables

$$f_0(p_1, p_2) \coloneqq (\neg p_1 \land p_2) \lor (p_1 \land \neg p_2)$$

$$f_1(p_1, p_2, p_3, p_4) \coloneqq f_0(f_0(p_1, p_2), f_0(p_3, p_4))$$

$$f_2(p_1, \dots, p_{16}) \coloneqq f_1(f_1(p_1, \dots, p_4), \dots, f_1(p_{13}, \dots, p_{16}))$$

Quantifier Encoding in NBF 1/2

QBF:
$$\Phi(\mathbf{z}) \coloneqq \exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{z})$$

$$\Phi(\mathbf{z}) \approx F_1(\mathbf{z})$$

NBF:
$$F_0(x, \mathbf{z}) \coloneqq \phi(x, \mathbf{z})$$
$$F_1(\mathbf{z}) \coloneqq F_0(F_0(1, \mathbf{z}), \mathbf{z})$$

= 1 if x = 1 is a satisfying choice

$$= F_0(1, \mathbf{z}) = 1$$

Quantifier Encoding in NBF 1/2

QBF:
$$\Phi(\mathbf{z}) \coloneqq \exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{z})$$

NBF:
$$F_0(x, \mathbf{z}) \coloneqq \phi(x, \mathbf{z})$$

 $F_1(\mathbf{z}) \coloneqq F_0(F_0(1, \mathbf{z}), \mathbf{z})$
 $= 0 \text{ if } x = 1 \text{ is not satisfying}$
 $= F_0(0, \mathbf{z})$

Quantifier Encoding in NBF 2/2

QBF:
$$\Phi(z) := \forall y \exists x \ \phi(x, y, z)$$

NBF:
$$F_0(x, y, \mathbf{z}) \coloneqq \phi(x, y, \mathbf{z})$$

$$F_1(y, \mathbf{z}) \coloneqq F_0(F_0(1, y, \mathbf{z}), y, \mathbf{z})$$

$$F_2(\mathbf{z}) \coloneqq F_1(F_1(0, \mathbf{z}), \mathbf{z})$$

$$= 0 \text{ if } y = 0 \text{ is not satisfying}$$

$$= F_1(0, \mathbf{z}) = 0$$

Quantifier Encoding in NBF 2/2

QBF:
$$\Phi(\mathbf{z}) \coloneqq \forall y \exists x \ \phi(x, y, \mathbf{z})$$

NBF:
$$F_0(x, y, \mathbf{z}) \coloneqq \phi(x, y, \mathbf{z})$$

$$F_1(y, \mathbf{z}) \coloneqq F_0(F_0(1, y, \mathbf{z}), y, \mathbf{z})$$

$$F_2(\mathbf{z}) \coloneqq F_1(F_1(0, \mathbf{z}), \mathbf{z})$$

$$= 1 \text{ if } y = 0 \text{ is satisfying}$$

$$= F_1(1, \mathbf{z})$$

Quantifier Encoding in NBF 2/2

QBF:
$$\Phi(\mathbf{z}) \coloneqq \forall y \exists x \ \phi(x, y, \mathbf{z})$$

$$F_0(x, y, \mathbf{z}) := \phi(x, y, \mathbf{z})$$

$$F_1(y, \mathbf{z}) := F_0(F_0(1, y, \mathbf{z}), y, \mathbf{z})$$

$$F_2(\mathbf{z}) := F_1(F_1(0, \mathbf{z}), \mathbf{z})$$

 \rightarrow Concise representation of QDPLL branching: innermost call of F_i is the first branch, outermost call of F_i is the second branch, or a repetition of the first one if it is already conclusive.

Complete Equiv. Model in NBF 1/2

First branch determines which branch is conclusive.

→ this is our witness, i.e. (counter)model.

Complete Equiv. Model in NBF 1/2

First branch determines which branch is conclusive.

→ this is our witness, i.e. (counter)model.

QBF:
$$\Phi(z) := \forall y \exists x \ \phi(x, y, z)$$

NBF:
$$F_0(x, y, \mathbf{z}) \coloneqq \phi(x, y, \mathbf{z})$$

$$F_1(y, \mathbf{z}) \coloneqq F_0(F_0(1, y, \mathbf{z}), y, \mathbf{z})$$

$$F_2(\mathbf{z}) \coloneqq F_1(F_1(0, \mathbf{z}), \mathbf{z})$$

Complete Equiv. Model in NBF 1/2

QBF:
$$\Phi(z) := \forall y \exists x \ \phi(x, y, z)$$

$$F_0(x, y, \mathbf{z}) \coloneqq \phi(x, y, \mathbf{z}) \stackrel{h_{\mathcal{X}}(\mathbf{z})}{=}$$

$$F_1(y, \mathbf{z}) \coloneqq F_0(F_0(1, h_y(\mathbf{z}), \mathbf{z}), y, \mathbf{z})$$

$$F_2(\mathbf{z}) \coloneqq F_1(F_1(0, \mathbf{z}), \mathbf{z})$$

Complete Equiv. Model in NBF 2/2

In general:

$$\Phi(\mathbf{z}) \coloneqq Q_n v_n \dots Q_1 v_1 \, \phi(v_1, \dots, v_n, \mathbf{z})$$

Complete equivalence model:

$$h_i(\mathbf{z}) := \begin{cases} F_{i-1}(\mathbf{0}, h_{i+1}(\mathbf{z}), \dots, h_1(\mathbf{z}), \mathbf{z}) & \text{if } Q_i = \forall \\ F_{i-1}(\mathbf{1}, h_{i+1}(\mathbf{z}), \dots, h_1(\mathbf{z}), \mathbf{z}) & \text{if } Q_i = \exists \end{cases}$$

Clearly polynomial size, which is not possible with a propositional encoding if $\Sigma_2^P \neq \Pi_2^P$.

Admittedly more difficult to evaluate. But:

Equiv. model checking PSPACE-hard even if $h_i(z) \in \{0,1\}$.

Conclusion

Conclusion

- Complete equivalence models as a generalization of Skolem/Herbrand (counter)models parameterized by free variables.
- Concise characterization of QDPLL branching and thus polynomial space by nested Boolean functions with one initial function and special recursive instantiation.

Future Work

- Restrictions on the model structure for subclasses of QBF, e.g. Horn, 2-CNF, etc.
- Build a NBF solver.

The End