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Section 1 &

Introduction:
QBF and (Counter-)Models
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Quantified Boolean Formulas &

QBF extends propositional logic by allowing universal
and existential quantifiers over propositional variables.

Semantics of closed QBF:

Jy ®(y) is true if and only if
®[y/0] is true or ®[y/1] is true.

Vx ®(x) is true if and only if
®[x/0] is true and ®[x/1] is true.
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Tree Models &

Vx13y1Vx3y, (X1 VY )) A(mxy VYR) Ay Vg Vay) A(axp Vy,)
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Function Models 1/2 &

QBF as a . 3 and V player alternatingly
choose assignments for variables in prefix order.
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Function Models 2/2 &

Vx13y,VYx,3y, VX, Ay, d(xq, .on) Xpp, Ve, ooey Vi) = true

If and only if

Vxy . Vx, ¢(xq, ..., xn, f1(x1), ..., (x4, ..., x,,)) = true
for some f1, ..., f,, (Skolem functions).

Vx,3y,Vx,3y, . Vx,, 3y, d(xq, ..., X0, V1, -v, Vi) = false
if and only if

Y1 . 3V $(910, 92(V1)s s Gn (Y1) ) Y1), V1, - Yn) = false
for some g4, ..., g, (Herbrand functions).
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Motivation &

* Important applications: solver certificates, explanations, ...

- Balabanov and Jiang (2012):
Extract Skolem model from cube-resolution proof,
Herbrand countermodel from clause-resolution proof.

* Problem: compact representation

(no polynomial-size propositional encoding if 5 # I15)
« Contributions:

— direct polynomial-size encoding by NBFs

— (counter)models parameterized by free variables
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Section 2 &

Free Variables and Models
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Semantics of Free Variables &

Closed QBF: either true or false

Open QBF: valuation depends on the free variables:

True

Closed

QBF with

free vars

Truth ASS|gnment> OBF Evaluat|0n>

False

d(zq,...,2,) ti{zq, ..,z } > {0,1} D(t(zy),...,t(z.))

~
~

Propositional
Formula
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Free Variables and Models &

QBF with True

Closed

free vars

Truth ASS|gnment> OBF Evaluatlon>

False

Multiple models and/or
countermodels

How are the models and countermodels for different
assignments to the free variables related to each other?
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Complete Equivalence Models 1/2 | &

ldea: Replace all quantified variables with functions over
the free variables.

Vv,3v,_1 ..Vv,3Av; ¢(Vq, ..., Vy, Z4, ..., Zy)

~y
~y

bd(hi(zq, .y Z), e, Ny (24, ey Z4), 24, oeny Zy)
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Complete Equivalence Models 2/2 | &

Why bother about models parameterized by free variables?

Non-prenex QBF:
vadb|(Vead ala, b,c,d)) (A (Vx3y B(a, b, x,y))

Open QBF with
free vars a, b.

e.g. precompute partial certificate.
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Section 3

NBF Representation
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Nested Boolean Functions &

A Nested Boolean Function (NBF) [Cook/Soltys 1999] is a
sequence of functions F = (fy, ..., fx) with

* Initial functions f,, ..., f; given as propositional formulas

- compound functions f;(x') = f; (f;, (x}), ..., f;.(x}))

for previously defined functions f; , ..., f; .

Example: parity of Boolean variables

fo(01,02) = (=p1 Ap2) V (p1 A —D2)
f1(P1, P2, 93, P4) = fo(fo(01,02), fo(P3,D4))
f2(01) s 016) = 11 (D1, s D4), o) f1 (D135 s P16))
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Quantifier Encoding in NBF 1/2 d

QBF:. @(z) :=3x ¢p(x, 2z)

®(z) = Fi(z)
Fy(x,z)
Fi(z)

¢ (x,2)

NBF:
Fy(Fy(1,2),2)

= 1 1f x = 1 Is a satisfying choice

\ J

— Fo(l,Z) =1
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Quantifier Encoding in NBF 1/2 d

QBF:. &(z) =3x ¢p(x,2)

Fy(x,z)
Fi(2)

¢ (x,2)

NBF:
Fy(Fy(1,2),2)

= 0 If x = 1 Is not satisfying

\ J

—_ FO (0, Z)
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Quantifier Encoding in NBF 2/2 d

QBF:. ®(z) :=Vydx ¢p(x,y,2)

FO(ny'Z) — qb(x,y,z)
NBF: Fl(y'z) — FO(FO(lJy'Z):yJZ)
F;(z) = F1(\F1(0; Z))»Z)

= 0 If y = 0 Is not satisfying

\ J

— Fl(O, Z) =0
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Quantifier Encoding in NBF 2/2 d

QBF:. ®(z) :=Vydx ¢p(x,y,2)

FO(ny'Z) — qb(x,y,z)
NBF: Fl(y'z) — FO(FO(lJy'Z):yJZ)
F;(z) = F1(\F1(0; Z)}»Z)

= 1 1f y = 0 Is satisfying

\

— Fl(l' Z)
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Quantifier Encoding in NBF 2/2

QBF:. ®(z) :=Vydx ¢p(x,y,2)

FO(ny'Z) = qb(x,y,z)
NBF: Fl(y'z) — FO(FO(lJy'Z):yJZ)
F,(z) = F1(F;(0,2),2)

— Concise representation of QDPLL branching:

Innermost call of F; Is the first branch,

outermost call of F; is the second branch, or a

repetition of the first one If it is already conclusive.
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Complete Equiv. Model in NBF 1/2 | &

First branch determines which branch is conclusive.
— this Is our witness, i.e. (counter)model.
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Complete Equiv. Model in NBF 1/2 | &

First branch determines which branch is conclusive.
— this Is our witness, i.e. (counter)model.

QBF:. ®(z) :=Vydx ¢p(x,y,2)

FO(x'y'Z) = gb(x,y,z)
NBF: Fi(y,2) = Fy(Fy(1,y,2),y,2)
F,(z) = F;(F1(0,2),2)
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Complete Equiv. Model in NBF 1/2 | &

QBF:. ®(z) :=Vydx ¢p(x,y,2)

FO(x'y'Z) — gb(x,y,z)
NBF: F;(y, z) = FO(FO(l, ,z),y, z)
F,(z) = F(F(0,2),2)
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Complete Equiv. Model in NBF 2/2 |&

In general:
CI)(Z) = ann lel ¢(v1' oy U, Z)

Complete equivalence model:

Fi—l(oi hl'_|_1(Z), ey hl(Z),Z) ,1f Qi =V
Fi—1(11 hi+1(Z), ) hl(Z),Z) , 1f Qi = 3

Clearly polynomial size, which is not possible with a

hi(z) = {

propositional encoding if ©5 = I17.
Admittedly more difficult to evaluate. But:

Equiv. model checking PSPACE-hard even if h;(z) € {0,1}.
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Section 4

Conclusion
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Conclusion &

« Complete equivalence models as a generalization of
Skolem/Herbrand (counter)models parameterized by
free variables.

» Concise characterization of QDPLL branching and thus
polynomial space by nested Boolean functions with
one Initial function and special recursive instantiation.
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Future Work &

* Restrictions on the model structure for subclasses of
QBF, e.g. Horn, 2-CNF, etc.

 Build a NBF solver.

The End
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