Exploiting Partial Duality in QBF

Alexandra Goultiaeva and Fahiem Bacchus University of Toronto, Canada

SAT 2013

Outline

- Background
 - Dual propagation
 - Dual propagation in existing CNF solvers
- Partial duality
 - Using reconstructed gates
 - Reconstructing Plaisted-Greenbaum
- Experiments and conclusion

 Handles conflicts well, but loses information about solutions

- Handles conflicts well, but loses information about solutions $\exists e \forall x_1 x_2 x_2 \dots x_n$
- Example:

$$((x_1 \neq x_2) \lor (x_2 \neq x_3) \lor (x_3 \neq x_4) \lor ...) \\ \lor f(x_1, x_2, x_3, x_4, e)$$

- Handles conflicts well, but loses information about solutions $\exists e \forall x_1 x_2 x_3 \dots x_n$
- Example:

$$((x_{1} \neq x_{2}) \lor (x_{2} \neq x_{3}) \lor (x_{3} \neq x_{4}) \lor ...)$$

 $\lor f(x_{1,} x_{2,} x_{3,} x_{4,} e)$
Tseitin

$$\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots$$
$$(g_1 \lor g_2 \lor g_3 \lor \dots) \qquad g_1 \equiv (x_1 \neq x_2)$$
$$g_2 \equiv (x_2 \neq x_3)$$

 $g_k \equiv f(x_1, \dots, e)$

• Handles conflicts well, but loses information about solutions $\exists e \forall x_1 x_2 x_3 \dots x_n$

Possible solution: (($(x_1 \land \neg x_2))$

$$x_{1} \neq x_{2}) \lor (x_{2} \neq x_{3}) \lor (x_{3} \neq x_{4}) \lor ..$$

$$\lor f(x_{1,} x_{2,} x_{3,} x_{4,} e)$$

Troitin

$$\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots$$

(g_1 \lor g_2 \lor g_3 \lor \dots) g_1 \equiv (x_1 \neq x_2)
g_2 \equiv (x_2 \neq x_3) g_k \equiv f(x_1, \dots, e)

• Handles conflicts well, but loses information about solutions $\exists e \forall x_1 x_2 x_3 \dots x_n$

Possible solution: ((. $(x_1 \land \neg x_2))$

$$x_{1} \neq x_{2}) \lor (x_{2} \neq x_{3}) \lor (x_{3} \neq x_{4}) \lor ..$$

$$\lor f(x_{1,} x_{2,} x_{3,} x_{4,} e)$$

Not verifiable in Tseitin

 $\exists e \forall x_1 x_2 x_3 \dots x_n \ \exists g_1 g_2 g_3 \dots \\ (g_1 \lor g_2 \lor g_3 \lor \dots) \ g_1 \equiv (x_1 \neq x_2) \\ g_2 \equiv (x_2 \neq x_3) \ g_k \equiv f(x_1, \dots, e)$

• In particular, it would have to include all the x_i

 \rightarrow An exponential number of solutions has to be explored

$$\exists e \forall x_1 x_2 x_3 \dots x_n \ \exists g_1 g_2 g_3 \dots \\ (g_1 \lor g_2 \lor g_3 \lor \dots) \ g_1 \equiv (x_1 \neq x_2) \\ g_2 \equiv (x_2 \neq x_3) \ g_k \equiv f(x_1, \dots, e)$$

• In particular, it would have to include all the x_i \rightarrow An exponential number of solutions has to be explored

In this simple example, a number of other techniques could work:

Don't care propagation

$$\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots$$

(g_1 \lor g_2 \lor g_3 \lor \dots) g_1 \equiv (x_1 \neq x_2)
g_2 \equiv (x_2 \neq x_3) g_k \equiv f(x_1, \dots, e)

• In particular, it would have to include all the x_i \rightarrow An exponential number of solutions has to be explored

In this simple example, a number of other techniques could work:

- Don't care propagation
- Plaisted-Greenbaum encoding

$$\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots$$

(g_1 \lor g_2 \lor g_3 \lor \dots) g_1 \equiv (x_1 \neq x_2)
g_2 \equiv (x_2 \neq x_3) \qquad g_k \equiv f(x_1, \dots, e)

• In particular, it would have to include all the x_i \rightarrow An exponential number of solutions has to be explored

In this simple example, a number of other techniques could work:

- Don't care propagation
- Plaisted-Greenbaum encoding

 $\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots$ $(g_1 \lor g_2 \lor g_3 \lor \dots) \quad g_1 \rightleftharpoons (x_1 \neq x_2)$

 $g_2 = \langle x_2 \neq x_3 \rangle$ $g_k = f(x_1, \dots, e)$

• In particular, it would have to include all the x_i \rightarrow An exponential number of solutions has to be explored

In this simple example, a number of other techniques could work:

- Don't care propagation
- Plaisted-Greenbaum encoding

May get a solution

$$(x_1 \wedge \neg x_2)$$

$$\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots$$
$$(g_1 \lor g_2 \lor g_3 \lor \dots) \qquad g_1 \rightrightarrows (x_1 \neq x_2)$$
$$g_2 \sqsupset (x_2 \neq x_3)$$

 $g_k rightarrow f(x_1 \dots, e)$

• In particular, it would have to include all the x_i \rightarrow An exponential number of solutions has to be explored

In this simple example, a number of other techniques could work:

- Don't care propagation
- Plaisted-Greenbaum encoding

BUT NOT IN GENERAL

Example:

$$\exists e \forall x_1 x_2 x_3 \dots x_n (x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n) \lor f(x_{1,} x_{2,} x_{3,} x_{4,} e)$$

• Main problem: cubes are not expressive enough to represent more than one solution to $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus ... \oplus x_n)$

BUT NOT IN GENERAL

Example: $\exists e \forall x_1 x_2 x_3 \dots x_n$ $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n) \lor f(x_1, x_2, x_3, x_4, e)$ Main problem: cubes are not expressive enough to represent more than one solution to

 $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \ldots \oplus x_n)$

 Such is not a problem for conflicts, because we have Tseitin variables

BUT NOT IN GENERAL

Example: $\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots g_k$ $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n) \lor f(x_{1,1} x_{2,1} x_{3,1} x_{4,2} e)$

• Main problem: cubes are not expressive enough to represent more than one solution to

 $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \ldots \oplus x_n)$

- Such is not a problem for conflicts, because we have Tseitin variables
- But they are not useful in cubes

BUT NOT IN GENERAL

Example: $\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots g_k$ $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n) \lor f(x_{1,1} x_{2,1} x_{3,1} x_{4,2} e)$

• Main problem: cubes are not expressive enough to represent more than one solution to

 $(x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \ldots \oplus x_n)$

- Such is not a problem for conflicts, because we have Tseitin variables
- But they are not useful in cubes
- So: we lose the ability to generalize solutions

BUT NOT IN GENERAL

Example:

$$\exists e \forall x_1 x_2 x_3 \dots x_n \exists g_1 g_2 g_3 \dots g_k (x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n) \lor f(x_{1,1} x_{2,1} x_{3,1} x_{4,1} e)$$

One solution: non-CNF

One solution: non-CNF

QBF Solver

- Implicitly creates a universal copy for each Tseitin variable

Complete structure

One solution: non-CNF

- Loses implementation efficiency
- Needs specialized techniques

QBF Solver

- Limited benefits from other work

Complete structure

Original Problem

Original Problem

One solution: non-CNF

- Loses implementation efficiency
- Needs specialized techniques
- Limited benefits from other work

Specialized solvers are unnecessary.

Existing search-based solvers have all the needed mechanisms

- Problem: original non-CNF is not always available
- Reconstruction methods exist, but they are necessarily unreliable and incomplete
- Want to take advantage of partially reconstructed information

CNF can be viewed as a flat tree

CNF can be viewed as a flat tree
Negating it and converting to DNF would create a new variable for every clause

for every clause

• Treating the whole tree as non-CNF would again create a variable for every remaining clause, which is inefficient

• Instead, we could create cubes only for the reconstructed part

 $(a \lor b \lor c)$

 $\wedge (\neg a \lor \neg f \lor c)$

 $\wedge (a \vee d \vee e)$

 $\wedge (\neg a \vee \neg b)$

 $\wedge (e \vee f)$

 $(a \lor b \lor c)$

 $\wedge (\neg a \lor \neg f \lor c)$

 $\wedge (a \vee d \vee e)$

 $\wedge (\neg a \vee \neg b)$

 $\wedge (e \vee f)$

Partial Duality

 $(a \lor b \lor c)$ $\land (e \lor f)$ $\land (\neg a \lor \neg f \lor c)$ $\land (a \lor d \lor e)$

- Will not gather cubes from definition clauses
- Creates new universal variables to make cubes more expressive
- No efficiency loss on poorly reconstructed instances
- Complete dual propagation on fully reconstructed instances

Plaisted-Greenbaum

- Instead of equivalences, uses implication for variable definitions
- Can be reconstructed using simple syntactic properties

 $(\alpha_1 \lor x)$ $(\alpha_2 \lor x)$ $(\alpha_3 \lor x)$ $(\alpha_4 \lor x)$

. . .

 $(\beta_1 \lor \neg x)$ $(\beta_2 \lor \neg x)$ $(\beta_3 \lor \neg x)$ $(\beta_4 \lor \neg x)$

. . .

 $(\alpha_1 \lor x)$ $(\alpha_2 \lor x)$ $(\alpha_3 \lor x)$ $(\alpha_4 \lor x)$

• • • X is tailing

 $(\beta_1 \lor \neg x)$ $(\beta_2 \lor \neg x)$ $(\beta_3 \lor \neg x)$ $(\beta_4 \lor \neg x)$

. . .

$$\begin{pmatrix} \alpha_1 \lor x \\ \alpha_2 \lor x \end{pmatrix} & (\beta_1 \lor \neg x) \\ (\alpha_2 \lor x) & (\beta_2 \lor \neg x) \\ (\alpha_3 \lor x) & (\beta_3 \lor \neg x) \\ (\alpha_4 \lor x) & (\beta_4 \lor \neg x) \\ \vdots \text{ tailing} & \cdots \\ x \text{ is tailing} \end{pmatrix}$$

Then: $(\neg \alpha_1 \lor \neg \alpha_2 \lor \neg \alpha_3 \lor ...) \rightarrow x$

Then: $(\neg \alpha_1 \lor \neg \alpha_2 \lor \neg \alpha_3 \lor ...) \rightarrow x$ Set the dual for x to be a new universal u such that: $(\alpha_1 \land \alpha_2 \land \alpha_3 \land ...) \rightarrow \neg u$

Then: $(\neg \alpha_1 \lor \neg \alpha_2 \lor \neg \alpha_3 \lor ...) \rightarrow x$ Set the dual for x to be a new universal u such that: $(\alpha_1 \land \alpha_2 \land \alpha_3 \land ...) \rightarrow \neg u$

Intuitively: set $(\neg \alpha_1 \lor \neg \alpha_2 \lor \neg \alpha_3 \lor ...) \equiv x$ and then remove blocked clauses and cubes

Extreme example

A family of benchmarks with parameter n

$$\exists e \forall x_1 x_2 x_3 \dots x_n (x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n) \lor (e \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \dots \oplus x_n)$$

Time (s)

Conclusions

- CNF does not provide enough information to reason about solutions
- It is possible to use existing incomplete methods to partially reconstruct CNF. That information can be used such that:
 - The better the reconstruction, the more beneficial it is
 - If reconstruction is poor, efficiency is not lost
- Plaisted-Greenbaum encoding can also be reconstructed

