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The Magic of SAT

�nd x ∶ “x is good”

Beyond SAT
�nd f ∶ ∀x “f(x) is good”

Reduction Finding

�nd r ∶ ∀x (x ∈ P↔ r(x) ∈ Q)

Questions
• how do we represent r,P,Q, and x?
• how do we approach the problem? (CEGAR vs QBF vs ASP)
• how do current tools perform?
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How do we represent reductions?
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Representing Reductions

reduction r ∶ ∀x (x ∈ P↔ r(x) ∈ Q)

Standard reductions
• r is a (ptime, logspace, . . . ) Turing machine
• x is aword
• P,Q are sets of words given by Turing machines

Reductions in logic
• r is a (quanti�er-free, �rst-order, . . . ) query
• x is a relational structure
• P,Q are sets of structures given by formulas

Question: is there a useful correspondence?
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Relational Structures and Logics

Relational Structures A = (A,RA1 ,RA2 , . . . ,RAl , cA1 , . . . , cAm)

s

t

First-Order and Second-Order Logic over σ = {E}
The graph is a clique (FO): ∀x, y(x = y∨ E(x, y))
The graph is 3-colourable (∃SO):

∃R,G,B(∀x, y(R(x) ∨ G(x) ∨ B(x)) ∧ (E(x, y) →
¬((R(x) ∧ R(y)) ∨ (G(x) ∧ G(y)) ∨ (B(x) ∧ B(y))) )
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Descriptive Complexity

FO Interpretations (Queries) θ = (k,φ0,ψ1, . . . ,ψm)
• k is the dimension
• φ0(x1, . . . , xk) de�nes the new universe
• ψi(x1, . . . , xkri) de�ne the new relations

Example: (k = 2, φ0 = ⊺, ψ1(x1, x2, y1, y2) = E(x1, x2) ∧ (y1 = y2 ∨ y2 = s))

s ↝

s,s

s,○

○,s

○,○

Complexity classes under interpretations (Immerman)
• quanti�er-free reductions are weaker than ptime
• still P=NP i� SAT ≤qfCVP
• and NL=NP i� SAT ≤qfREACH,
• and coNL=NL (true) i� ¬REACH ≤qfREACH
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How do we �nd reductions?
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Existential SO using SAT Solvers

Transformation ∃SO ∋ φ, A ↝ ψ Boolean

Rel(a1, . . . ,ak) ↝ ⊺/A � Var(a1, . . . ,ak) ↝ XVar,a1,...,ak

φ1 ∧ φ2 ↝ φ̂1 ∧ φ̂2 ∃xφ↝ ⋁
a∈A

φ̂(a) ∀xφ↝ ⋀
a∈A

φ̂(a)

Model-Checking
(1) transform φ,A↝ ψ
(2) solveψ (using a sat solver)
(3) decode ∃SO-variables from the answer

Example: 3-colouring a graph

∃R,G,B (∀x, y(R(x) ∨ G(x) ∨ B(x)) ∧ (E(x, y) →
¬((R(x) ∧ R(y)) ∨ (G(x) ∧ G(y)) ∨ (B(x) ∧ B(y))) )
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Two Basic Applications

Example (and counter-example) �nding

φ ∈ FO, n ∈ N ↝ A ∣ ∣A∣ = n and A ⊧ φ (or A ⊧ ¬φ)

Using ∃SO: change all relations in φ to SO variables

Formula �nding

outline of φ, A ↝ φ ∣ A ⊧ φ

Outline: formula with Boolean atom guards. Example:

X1E(x1, x1) ∧ X2E(x1, x2) ∧ X3E(x2, x1) ∧ X4E(x2, x2) ∧
X5¬E(x1, x1) ∧ X6¬E(x1, x2) ∧ X7¬E(x2, x1) ∧ X8¬E(x2, x2)
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Automatic Reduction Finding

Assumptions: outline of θ and the maximal ∣A∣ �xed

Finding reductions by CEGAR
• Find a l-DNF reduction θi good on counter-examples E0, . . . ,Ei
• Find a counter-example Ei+1 to θi, iterate

Finding reductions by QBF or ASP

∃θ ∀A (A ⊧ φP ↔ θ(A) ⊧ φQ)

(1) convert the above to a Boolean formula (Σp2 ) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = [tcx,y E(x, y)](.s, .t) SC ∶= ∀x, y(tcx,y E(x, y))

(k = 1, φ0 = ⊺, ψ1 = x1 = s ∨ x2 = t ∨ E(x2, x1))

10/ 14



Automatic Reduction Finding

Assumptions: outline of θ and the maximal ∣A∣ �xed

Finding reductions by CEGAR
• Find a l-DNF reduction θi good on counter-examples E0, . . . ,Ei
• Find a counter-example Ei+1 to θi, iterate

Finding reductions by QBF or ASP

∃θ ∀A (A ⊧ φP ↔ θ(A) ⊧ φQ)

(1) convert the above to a Boolean formula (Σp2 ) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = [tcx,y E(x, y)](.s, .t) SC ∶= ∀x, y(tcx,y E(x, y))

(k = 1, φ0 = ⊺, ψ1 = x1 = s ∨ x2 = t ∨ E(x2, x1))

10/ 14



Automatic Reduction Finding

Assumptions: outline of θ and the maximal ∣A∣ �xed

Finding reductions by CEGAR
• Find a l-DNF reduction θi good on counter-examples E0, . . . ,Ei
• Find a counter-example Ei+1 to θi, iterate

Finding reductions by QBF or ASP

∃θ ∀A (A ⊧ φP ↔ θ(A) ⊧ φQ)

(1) convert the above to a Boolean formula (Σp2 ) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = [tcx,y E(x, y)](.s, .t) SC ∶= ∀x, y(tcx,y E(x, y))

(k = 1, φ0 = ⊺, ψ1 = x1 = s ∨ x2 = t ∨ E(x2, x1))

10/ 14



Automatic Reduction Finding

Assumptions: outline of θ and the maximal ∣A∣ �xed

Finding reductions by CEGAR
• Find a l-DNF reduction θi good on counter-examples E0, . . . ,Ei
• Find a counter-example Ei+1 to θi, iterate

Finding reductions by QBF or ASP

∃θ ∀A (A ⊧ φP ↔ θ(A) ⊧ φQ)

(1) convert the above to a Boolean formula (Σp2 ) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = [tcx,y E(x, y)](.s, .t) SC ∶= ∀x, y(tcx,y E(x, y))

(k = 1, φ0 = ⊺, ψ1 = x1 = s ∨ x2 = t ∨ E(x2, x1))

10/ 14



Automatic Reduction Finding

Assumptions: outline of θ and the maximal ∣A∣ �xed

Finding reductions by CEGAR
• Find a l-DNF reduction θi good on counter-examples E0, . . . ,Ei
• Find a counter-example Ei+1 to θi, iterate

Finding reductions by QBF or ASP

∃θ ∀A (A ⊧ φP ↔ θ(A) ⊧ φQ)
(1) convert the above to a Boolean formula (Σp2 ) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = [tcx,y E(x, y)](.s, .t) SC ∶= ∀x, y(tcx,y E(x, y))

http://toss.sf.net/reduct.html

(k = 1, φ0 = ⊺, ψ1 = x1 = s ∨ x2 = t ∨ E(x2, x1))

10/ 14

http://toss.sf.net/reduct.html


Automatic Reduction Finding

Assumptions: outline of θ and the maximal ∣A∣ �xed

Finding reductions by CEGAR
• Find a l-DNF reduction θi good on counter-examples E0, . . . ,Ei
• Find a counter-example Ei+1 to θi, iterate

Finding reductions by QBF or ASP

∃θ ∀A (A ⊧ φP ↔ θ(A) ⊧ φQ)

(1) convert the above to a Boolean formula (Σp2 ) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = [tcx,y E(x, y)](.s, .t) SC ∶= ∀x, y(tcx,y E(x, y))

(k = 1, φ0 = ⊺, ψ1 = x1 = s ∨ x2 = t ∨ E(x2, x1))

10/ 14



How do current tools perform?
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Reduction Finding Results

# Unsolved cases out of 48 × 48 = 2304: CEGAR vs QBF vs ASP (claspD)

(c,n) (1, 3) (2, 3) (3, 3) (1, 4) (2, 4) (3, 4)
de-gms 0 0 10 0 5 103
de-cudd 0 116 537 0 186 722
rareqs 0 0 16 19 65 204
depqbf 0 142 547 16 297 711
qube 10 536 949 82 760 1082
cirqit 58 673 1138 511 1092 1357
cirqit’ 157 523 903 – – –
skizzo 522 1058 1156 975 1327 1434
gringo 40 393 590 72 593 836
lparse 51 396 605 75 635 850
RedFind 1 152 396 2 347 547
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CEGAR Results

Performance on ¬REACH to REACH, k = 1, scaling n (left) and c (right)
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k = 2, c = 1,n = 2 0.06 0.11 0.28 6.30 0.06
k = 2, c = 1,n = 3 3562.14 1696.26 1755.03 timeout 3267.10
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Outlook

Beyond SAT: �nd f ∶ ∀x “f(x) is good”
What can we do?

• simple evaluation and reduction �nding
• http://www-erato.ist.hokudai.ac.jp/~skip/de
• http://toss.sf.net/reduct.html

What is hard?
• high-dimensional reductions
• symmetry breaking in example �nding problems

Other possible applications
• Finding LFP formulas for NP ∩ coNP properties
• Early results on unary 1-variable 1-LFP

• reachability games in < 1 minute (answer: yes)
• parity games in < 1 hour (answer: no) (cf. Dawar, Grädel, CSL’08)

Thank You
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