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What is Maximum Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable
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CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• Maximum Satisfiability (MaxSAT):
◦ Find an assignment that maximizes (minimizes) number of satisfied

(unsatisfied) clauses
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What is Maximum Satisfiability?

CNF Formula:

x̄2 ∨ x̄1 x2 ∨ x̄3 x1

x3 x2 ∨ x̄1 x̄3 ∨ x1

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 1, x3 = 1}

• This assignment unsatisfies only 1 clause

2 / 13



MaxSAT Problems

• MaxSAT:
◦ All clauses are soft
◦ Minimize number of unsatisfied soft clauses

• Partial MaxSAT:
◦ Clauses are soft or hard
◦ Hard clauses must be satisfied
◦ Minimize number of unsatisfied soft clauses

• Weighted Partial MaxSAT:
◦ Clauses are soft or hard
◦ Weights associated with soft clauses
◦ Minimize sum of weights of unsatisfied soft clauses
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MaxSAT Algorithms

• Branch and Bound:
◦ Extensive use of lower bounding procedures
◦ Restrictive use of MaxSAT inference rules

• Linear search on the number of unsatisfied clauses:
◦ Each time a new solution is found, a new constraint is added that

excludes solutions with higher cost

• Unsatisfiability-based solvers:
◦ Iterative identification and relaxation of unsatisfiable subformulas
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh (Hard): x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs (Soft): x1 x3 x2 ∨ x̄1 x̄3 ∨ x1
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Partial MaxSAT Formula:
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ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• Identify an unsatisfiable core
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Relax unsatisfiable core:
◦ Add relaxation variables
◦ Add at-most-one constraint

5 / 13



Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

5 / 13



Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is unsatisfiable

• Identify an unsatisfiable core

5 / 13



Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

ϕs : x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ x̄1 ∨ r5 x̄3 ∨ x1 ∨ r6

• Relax unsatisfiable core:
◦ Add relaxation variables
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

ϕs : x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ x̄1 ∨ r5 x̄3 ∨ x1 ∨ r6

• Formula is satisfiable

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}
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Unsatisfiability-based Algorithms (Fu&Malik [SAT’06])

Partial MaxSAT Formula:

ϕh: x̄2 ∨ x̄1 x2 ∨ x̄3

ϕs : x1 x3 x2 ∨ x̄1 x̄3 ∨ x1

• Formula is satisfiable

• An optimal solution would be:
◦ ν = {x1 = 1, x2 = 0, x3 = 0}

• This assignment unsatisfies 2 soft clauses
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Unsatisfiability-based Algorithms

• Fu&Malik algorithm can be generalized for weighted partial
MaxSAT (Manquinho et al. [SAT’09], Ansótegui et al. [SAT’09])

• Unsatisfiability-based algorithms are very effective on industrial
benchmarks

• However, performance is related with the unsatisfiable cores given
by the SAT solver:
◦ Some unsatisfiable cores may be unnecessarily large
◦ Solution: Partitioning of the soft clauses
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Unsatisfiability-based Algorithm w/ Partitioning
(Martins et al. [ECAI’12])

(1) Partition the soft clauses
γ1 γ2 γ3
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Unsatisfiability-based Algorithms w/ Partitioning

• How to partition the soft clauses?
◦ For weighted partial MaxSAT, weight-based partitioning has shown to

significantly improve the performance of the solver
(Martins et al. [ECAI’12], Ansótegui et al. [CP’12])

◦ However, for partial MaxSAT all soft clauses have weight 1

◦ Solution: Graph-based partitioning
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Hypergraph Partitioning

Hypergraph representation of a MaxSAT formula:

• Vertices: Represents each clause

• Hyperedge: For each variable, there is an hyperedge connecting all
vertices that represent clauses that contain that variable
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Hypergraph Partitioning

• ω1 = [x̄1 ∨ x̄2]

• ω2 = [x2 ∨ x̄3]

• ω3 = (x1)

• ω4 = (x3)

• ω5 = (x2 ∨ x̄1)

• ω6 = (x̄3 ∨ x1)

!2 !4 !6

!5

!1

!3

hx3

hx2

hx1

Figure 7.1: Hypergraph representation of the MaxSAT formula defined in Equation 7.1

7.2.2 Hypergraph Partitioning

A possible graph-based partitioning is hypergraph partitioning. A hypergraph is a generalization

of a graph where an edge, also called hyperedge, can connect any number of vertices. A hypergraph

representation of a weighted partial MaxSAT formula is built as follows. For each soft and hard

clause there is a corresponding vertex in the hypergraph. Moreover, for each formula variable xj

there is an hyperedge connecting all vertices that represent soft or hard clauses containing variable

xj . This representation resembles the hypergraph obtained from a SAT formula [PG00].

Example 7.4. Consider the weighted partial MaxSAT formula ' presented in equation 7.1. This

formula has 6 clauses, ' = {!1,!2,!3,!4,!5,!6}, where !1 = [x̄2 _ x̄1], !2 = [x2 _ x̄3], !3 =

(x1, 100), !4 = (x3, 100), !5 = (x2 _ x̄1, 1) and !6 = (x̄3 _ x1, 1).

Figure 7.1 shows the hypergraph representation of '. For each variable, x1, x2, x3, there is

a corresponding hyperedge, hx1
, hx2

, hx3
connecting all vertices that represent clauses containing

the corresponding variable.

After building the hypergraph, the tool hmetis [KAKS99] is used as a black box to identify

the partitions. In the experiments, hmetis is configured to identify 16 partitions in each problem

instance [MML12d]. Afterwards, for each partition only the soft clauses are considered. As a

result, partitions containing only hard clauses are removed.

Example 7.5. Consider the hypergraph presented in Figure 7.1 that corresponds to the weighted

partial MaxSAT formula presented in equation 7.1. Assume that we give this hypergraph to the

100

Partitions given by hypergraph partitioning:

• Only soft clauses are considered in the partitions

• γ1 = {ω3, ω6}, γ2 = {ω4, ω5}
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Community-based Partitioning (CVIG)

Clause-Variable Incidence Graph (CVIG) of a MaxSAT formula:

• Vertices: Represents each variable and each clause

• Edges: There is an edge between each variable and each clause
where the variable occurs

• Each edge has a corresponding weight:
◦ More weight is given to clauses that establish edges between variables

that occur in soft clauses (details in the paper)
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Community-based Partitioning (CVIG)

• ω1 = [x̄1 ∨ x̄2]

• ω2 = [x2 ∨ x̄3]

• ω3 = (x1)

• ω4 = (x3)

• ω5 = (x2 ∨ x̄1)

• ω6 = (x̄3 ∨ x1)

x1 x2

x3

9

7.5 3.75

Figure 7.2: VIG representation of the MaxSAT formula defined in Equation 7.1

!1 !2 !3 !4 !5 !6

x1 x2 x3

1.5

0.75
0.75

1.25 3 2.5 1.5 0.75
1.5

1.25

Figure 7.3: CVIG representation of the MaxSAT formula defined in Equation 7.1

In the Clause-Variable Incidence Graph (CVIG) model, for each variable xj and for each clause

!i 2 ', there is a corresponding vertex in graph G. In this model, edges only connect vertices

representing a variable and a clause where that variable occurs. Hence, if a variable xj occurs in

clause !i, then there is an edge between those vertices with weight:

w(xj ,!i) =
I(xj)

|!i|
(7.12)

Example 7.7. Consider again the weighted partial MaxSAT formula ' presented in equation 7.1.

This formula has 6 clauses, ' = {!1,!2,!3,!4,!5,!6}, where !1 = [x̄2 _ x̄1], !2 = [x2 _ x̄3],

!3 = (x1, 100), !4 = (x3, 100), !5 = (x2 _ x̄1, 1) and !6 = (x̄3 _ x1, 1).

The incidence function I for x1, x2 and x3 has the same values as the ones presented in

Example 7.6. The weights of the edges are given by Equation 7.12 and are defined as follows.

w(x1,!1) = 3
2 = 1.5, w(x2,!1) = 1.5

2 = 0.75, w(x3,!2) = 2.5
2 = 1.25,

w(x1,!3) = 3
1 = 3, w(x2,!2) = 1.5

2 = 0.75, w(x3,!4) = 2.5
1 = 2.5,

w(x1,!5) = 3
2 = 1.5, w(x2,!5) = 1.5

2 = 0.75 w(x3,!6) = 2.5
2 = 1.25

w(x1,!6) = 3
2 = 1.5

(7.13)

Figure 7.3 shows the weighted graph representation of the CVIG model of '. Vertices corre-

spond to clauses, and variables and edges connect variables to the clauses they belong to.

103

Partitions given by the identification of communities:

• γ1 = {ω3, ω5}, γ2 = {ω4, ω6}
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Community-based Partitioning (VIG)

Variable Incidence Graph (VIG) of a MaxSAT formula:

• Vertices: Represents each variable

• Edge: If two variables belong to the same clause, then there is an
edge between them

• Each edge has a corresponding weight:
◦ More weight is given to clauses that establish edges between variables

that occur in soft clauses (details in the paper)
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!i 2 ', there is a corresponding vertex in graph G. In this model, edges only connect vertices

representing a variable and a clause where that variable occurs. Hence, if a variable xj occurs in

clause !i, then there is an edge between those vertices with weight:

w(xj ,!i) =
I(xj)
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(7.12)

Example 7.7. Consider again the weighted partial MaxSAT formula ' presented in equation 7.1.

This formula has 6 clauses, ' = {!1,!2,!3,!4,!5,!6}, where !1 = [x̄2 _ x̄1], !2 = [x2 _ x̄3],

!3 = (x1, 100), !4 = (x3, 100), !5 = (x2 _ x̄1, 1) and !6 = (x̄3 _ x1, 1).

The incidence function I for x1, x2 and x3 has the same values as the ones presented in
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Figure 7.3 shows the weighted graph representation of the CVIG model of '. Vertices corre-

spond to clauses, and variables and edges connect variables to the clauses they belong to.
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Partitions given by the identification of communities:

• Mapping from the partition of variables to clauses

• γ1 = {ω3, ω4, ω5, ω6}
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Experimental Results

• Benchmarks:
◦ 504 industrial partial MaxSAT instances

• Solvers:
◦ WBO

◦ rdm (Random partitioning − 16 partitions)

◦ hyp (Hypergraph partitioning − 16 partitions)

◦ VIG (Community partitioning − Variable Incidence Graph)

◦ CVIG (Community partitioning − Clause-Variable Incidence Graph)

◦ VBS (Virtual Best Solver)
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Experimental Results

• Running times of solvers for industrial partial MaxSAT instances
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Conclusions

• Partitioning approaches outperform WBO on most instances:
◦ Finds smaller unsatisfiable cores:

e.g. WBO: avg. 110 soft clauses VS. VIG: avg. 66 soft clauses

• All algorithms contribute to the VBS:
◦ Different graph-based partition methods solve different instances

◦ Using the structure of the formula improves the partitioning

• Partitioning approaches are not limited to WBO:
◦ The same idea can be applied to other unsatisfiability-based algorithms
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Questions?
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