Marcin Nagy¹, N. Asokan^{2,3}, Jörg Ott¹

¹Department of Communication and Networking, Aalto University, Finland

Proximity social interactions

WHY?

Often we want to know answers to these questions:

Can I share my ride with him?

Who will let me tether through their phone?

Do I know anyone here?

WHAT?

Solving this challenges requires:

SECURITY AND PRIVACY

- Authenticity: no false claims possible
- Secrecy: secure information data are transfer
- Privacy: only common features revealed

PERFORMANCE AND USABILITY

- Time and energy-efficient operations
- Applicable in mobile scenarios

DEPLOYABILITY

Easy integration with existing social networks

HOW?

BOOTSTRAPING FROM SOCIAL NETWORKS

Take advantage of existing online social networks:

- Single Sign-On and OAuth
- Access policies using social relationships
- Social graph to learn about other users

PEERSHARE

Distribution of sensitive data among social contacts:

- User can specify authorized recipients intuitively
- Different types of protection supported
- User and application access control enforced
- Android implementation with simple to use API*

FINDING COMMON FRIENDS

1. Use PeerShare to distribute friendship token:

2. Use Private Set Intersection (PSI) on token sets to find common friends:

- Bloom Filter based PSI improves efficiency
- Applicable also for mobile scenarios
- Quick completion time
- Low energy consumption
- Common Friends Framework abstracting away
 crypto complexity from app developers*

REFERENCES

- 1. PeerShare: A System Secure Distribution of Sensitive Data Among Social Contacts, NordSec 2013
- 2. Do I Know You? Efficient and Privacy-Preserving Common Friend-Finder Protocols and Applications, ACSAC 2013
- *code available on request

