
Structured Prediction Models

Juho Rousu

Seminar on Predicting Structured Data, March 13, 2008

Structured prediction in general

Given

I Input space X , output space Y, both arbitrary objects

I Sample {(xi , yi)}m
i=1, (xi , yi) ∈ X × Y drawn according to

some unknown joint distribution D

I Loss function L : Y × Y, L(y , y ′) gives the loss incurred in
predicting y ′ when y was correct.

I A model class M consisting of models f : X 7→ Y
We wish to learn a model f ∈ M that minimizes the expected loss

E(x ,y)∈DL(f (x), y)

Structured prediction with linear models

We consider models that

I Map inputs and output to a joint inner product space

ϕ : X × Y 7→ FXY

I Assume a the form of a linear score function

F (x , y ,w) = 〈w , ϕ(x , y)〉

I Predict y∗ = f (x) by solving the preimage problem

f (x) = argmaxy∈YF (x , y ,w)

Learning criteria

Two approaches considered for learning w :

1. “Unsupervised” formulation: Try to maximize the minimum
score of training data

w∗ = argmaxw

m
min
i=1

F (xi , yi ,w),

i.e. try to separate training data from the origin with
maximum margin (MMR, Szedmak et al. 2005)

2. “Supervised“ formulation: Try to separate correct
input-output pairs (xi , yi) from the incorrect ones (xi , y) with
maximum margin (Collins 2002; Taskar, 2003; Tsochantaridis,
2004)

w∗ = argmaxw

m
min
i=1

min
y 6=yi

F (xi , yi ,w)− F (xi , y ,w).

We will concentrate on the latter in this talk.

Running example: Hierarchical Multilabel Classification

Goal: Given document x , and
hierachy T = (V ,E), predict
multilabel y ∈ {+1,−1}k where
the positive microlabels yi form
a union of partial paths in T

news

entertainment

football athleticsfilm

champions leagueeuro 2004

sport politics

music

jazz classical

Joint feature maps & kernels

Two general approaches for creating a joint feature map:

I Tensor product of (global) input (φ(x)) and output feature
maps (ψ(y)):

ϕ(x , y) = φ(x)⊗ ψ(y) = (φk(x)ψl(y))k,l ,

consists all product features between the input and output

I Linear combination of local features:

ϕ(x , y) =
∑

l

φl(x)⊗ ψl(y),

where l enumerates the components of the structure and
φl(x) and ψl(y) are input and output features relevant to the
l ’th component.

I Assumes that input and output structures are already perfectly
aligned, this is true in tasks such as sequence annotation.

Tensor product example: hierarchical document
classification

I φ(x) is the bag of words of
the document

I ψ(y) is the vector of
edge-label indicators:
ψe,u(y) = 1 iff edge e is
labeled u.

I ϕ(x , y) contains all
word/edge-labeling
co-occurrences (or counts
thereof) in example (x , y)

news

entertainment

football athleticsfilm

champions leagueeuro 2004

sport politics

music

jazz classical

Tensor product features: statistical machine translation
(SMT)

I φ(x) is the bag of phrases of the source sentence

I ψ(y) is the bag of phrases of the target sentence

I ϕ(x , y) contains all phrase co-occurrences (or counts thereof)
in example (x , y)

(in SMT jargon, this is a kind of phrase book without alignment
information)

Structured prediction framework
(Taskar et al., 2004; Tsochantaridis et al., 2005)

I Map pairs (xi , yi) ∈ X × Y into a joint feature space via
ϕ : X × Y 7→ Fxy

I Learn a weigth vector w to separate the correct yi from the
incorrect ones y′ by a large margin.

I Prediction: given x , predict ŷ = argmaxywTϕ(x , y)

C E CLJ

Fi AM

E

N

S P

Fo

margin

w f(x,{N,E,M,S,A})

f(x,{E,M,J,S})

f(x,{N,E,M,S})

f(x,{N,E,M,S,Fo})

Optimization problem: primal form

min
w,ξξξ≥0

1

2
||w||2 + C

m∑
i=1

ξi

s.t. wT (ϕ(xi , yi)− ϕ(xi , y)) ≥ `(yi , y)− ξi ,∀i , y ∈ {+1,−1}k

I Minimization of the norm ||w|| corresponds to maximizing the
margin λ = 1/ ||w||

I Margin scaling by the loss `(yi , y): the more incorrect the
output y , the larger the required margin

I Huge constraint set: one constraint per pseudoexample
(xi , y), i = 1, . . . ,m, y ∈ Y

I Cannot be solved by off-the-shelf QP solvers

Loss functions for hierarchies

Consider vector-valued true output y = (y1, . . . , yk) ∈ {+1,−1}k ,
and a predicted one ŷ = (ŷ1, . . . , ŷk). Many choices:

I Zero-one loss: `0/1(y, ŷ) = 1{y 6=ŷ}; treats all incorrect
outputs alike =⇒ not good, we would like to penalize very
bad predictions more than almost correct ones

I Hamming loss: `∆(y, ŷ) =
∑

j 1{yj 6=ŷj}; counts incorrectly
predicted components =⇒ better, but does not take the
hierarchical structure of yj ’s into account.

Loss functions for hierarchies

For hierarchies, we can construct two loss functions that take the
hierarchy into account, yet allow us penalize basd predictions more
than almost correct ones:

I Edge loss: assign loss on the edges of the hierarchy:
`H̃(y, ŷ) =

∑
j cj1{yj 6=ŷj & yparent(j)=ŷparent(j)}; mistake in the child

is penalized if the parent was correct.

I Path loss (Cesa-Bianchi et al. 2004):
`H(y, ŷ) =

∑
j cj1{yj 6=ŷj & yk=ŷk∀k∈ancestors(j)}; the first mistake

along a path from root to leaf is penalized

∆l l
H

l
H
~

Optimization problem: primal form

min
w,ξξξ≥0

1

2
||w||2 + C

m∑
i=1

ξi

s.t. wT (ϕ(xi , yi)− ϕ(xi , y)) ≥ `(yi , y)− ξi ,∀i , y ∈ {+1,−1}k

I Minimization of the norm ||w|| corresponds to maximizing the
margin λ = 1/ ||w||

I Margin scaling by the loss `(yi , y): the more incorrect the
output y , the larger the required margin

I Huge constraint set: one constraint per pseudoexample
(xi , y), i = 1, . . . ,m, y ∈ Y

I Cannot be solved by off-the-shelf QP solvers

Optimization problem: dual form

The Lagrangian dual is given by

max
ααα>0

∑
i ,y

α(xi , y)`(yi , y)− 1

2

∑
xi ,y

∑
x ′
i ,y

′

α(xi , y)TK (xi , y; x ′i , y
′)α(x ′i , y

′)

s.t.
∑
y

α(xi , y) ≤ C ,∀i

I Joint kernel K (xi , y; xj , y
′) = ∆ϕ(xi , y)T∆ϕ(xj , y

′), where
∆ϕ(xi , y) = ϕ(xi , yi)− ϕ(xj , y)

I Many approaches to make the optimization tractable (Altun
et al. 2003,Taskar et al, 2004)

I We will look at marginalization methods that will shrink the
size of the QP to polynomial size in the dimension of the
output space.

Marginalized dual problem

I The joint feature map φ(x)⊗ ψ(y) can be written as
(φ(x)⊗ ψe(y))e∈E

I Joint kernel K (xi , y; xj , y
′) = ∆ϕ(xi , y)T∆ϕ(xj , y

′)
decomposes by the edges

K (xi , y ; xj , y
′) =

∑
e

Kx(xi , xj)(ψe(yi)−ψe(y))T (ψe(yj)−ψe(y
′))

I The edge loss also decomposes similarly

`H̃(y, ŷ) =
∑

e

1{ychild(e) 6=ŷchild(e) & yparent(e)=ŷparent(e)}

, where child(e) and parent(e) denote the nodes in the two
ends of an edge

Marginalized dual problem

I The dual variables have edge-marginals, denoting the sum of
dual variables α(x , y) where y has labeling u on edge e:

µe(x , u) =
∑

y|u=ye

α(x , y)

I Collecting all the equations in a matrix: µµµ = Mααα

I The feasible set of the marginalized problem is given by

M = {µ|∃ααα ∈ A : µµµ = Mααα},

where A is the feasible set of the original dual problem
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

C

0
0

0
0
0

0
0
0

0

C

C

C

1000α

1

000

e

e’

e’’

(10)

(10)

(10)

µe

µe’

µe’’

Dual polytope Marginal dual polytope of THierarchy T

y = 1000

Marginalized problem

max
µµµ∈M

∑
e∈E

µµµT
e `̀̀e −

1

2

∑
e∈E

µµµT
e Keµµµe

I The problem has now polynomial number of marginal dual
variables O(m|E |)

I However, the constraints are now expressed in implicit form
µ ∈M

I Writing the constraint set out explicitly would make the
problem again too large (although polynomial size)

I We deal with this problem after first looking at the solution
algorithm

Conditional Gradient method

Conditional Gradient Descent (c.f. Bertsekas, 1999) can be used
to optimize the marginalized dual problem Ingredients:

I Iterative gradient search in the feasible set

I Update direction is the highest feasible point assuming current
gradient; found by solving a constrained linear program:
maxµµµ∈M(`̀̀ − Kµµµ0)

Tµµµ

I updates within single-example subspaces can be done
independently, after obtaining an initial gradient.

Conditional Gradient Algorithm

Gradient

Conditional Gradient Algorithm

Gradient

Conditional
gradient

Conditional Gradient Algorithm

Saddle point

Gradient

Conditional
gradient

Conditional Gradient Algorithm

Conditional Gradient Algorithm

Conditional Gradient Algorithm

Finding update directions efficiently

I Solving the update direction maxµµµ∈F (`̀̀ − Kµµµ0)
Tµµµ with an LP

solver will constitute a bottleneck for scalability

I To find a better method, we need to look at the relationship
of the original dual (in terms of αs) and the marginalized
problem (in terms of µe ’s)

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

C

0
0

0
0
0

0
0
0

0

C

C

C

1000α

1

000

e

e’

e’’

(10)

(10)

(10)

µe

µe’

µe’’

Dual polytope Marginal dual polytope of THierarchy T

y = 1000

Finding update directions efficiently

I Consider the marginal dual variables of a single example i :
µe(i , ye) =

∑
y 1{y|ue=ye}α(i , y), denote

M =
(
1{y|ue=ye}

)
(e,ue),y

I α’s and µ’s are tied by Mααα = µµµ, for each ααα we have unique µµµ

I In particular, if ααα is a vertex of the dual feasible set, µµµ = Mααα
is a vertex on the marginal polytope

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

C

0
0

0
0
0

0
0
0

0

C

C

C

1000α

1

000

e

e’

e’’

(10)

(10)

(10)

µe

µe’

µe’’

Dual polytope Marginal dual polytope of THierarchy T

y = 1000

Finding update directions efficiently

I If ααα 6= 0 is a vertex, it has a single non-zero α(i , y∗).

I The marginal image of this vector µµµ(y∗) = Mααα is a vertex

I To find the conditional gradient argmaxµµµ∈F (`̀̀ − Kµµµ0)
Tµµµ we

can instead look for argmaxy(`̀̀ − Kµµµ0)
Tµµµ(y)

I This is a inference problem on the hierachy! Can be solved in
linear time using dynamic programming.

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

C

0
0

0
0
0

0
0
0

0

C

C

C

1000α

1

000

e

e’

e’’

(10)

(10)

(10)

µe

µe’

µe’’

Dual polytope Marginal dual polytope of THierarchy T

y = 1000

Experiments

Datasets:

I Reuters Corpus Volume 1 (’CCAT’ family), 34 microlabels,
maximum tree depth 3, bag-of-words with TFIDF wieghting,
2500 documents were used for training and 5000 for testing.

I WIPO-alpha patent dataset (D section), 188 microlabels,
maximum tree depth 4, 1372 documents for training, 358 for
testing.

Algorithms:

I Our algorithm: H-M3 (’Hierarchical Maximum Margin
Markov’)

I Comparison: Flat SVM, hierarchically trained SVM,
hierarchical regularized least squares algorithm (Cesa-Bianchi
et al. 2004)

I Implementation in MATLAB 7, LIPSOL solver used in the
gradient ascent

I Tests run on a high-end Pentium PC with 1GB RAM

Optimization efficiency

Optimization efficiency on WIPO dataset (1372 training examples,
188 nodes in the hierarchy) on a 3GHZ Pentium 4, 1GB main
memory
LP = update directions via linear programming DP = update
directions via dynamic programmming inference

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

CPU time (hours)

Q
ua

dr
at

ic
 o

bj
ec

tiv
e

(%
 o

f o
pt

im
um

)

Dynamic programming vs. Linear Programming for finding the update direction

Linear programming
Dynamic programming

Prediction accuracy: Levelwise F1

F1 statistics computed for each node depth separately for Reuters
(left) and WIPO (right)

1
2

3
4

0 10 20 30 40 50 60 70 80 90

100

N
ode depth

F1 Statistic

Levelw
ise F

1: R
euters

1
2

3
4

0 10 20 30 40 50 60 70 80 90

100
Levelw

ise F
1: W

IP
O

N
ode depth

F1 Statistic

S
V

M
H

−
S

V
M

H
−

R
LS

H
M

3−
sym

dif loss
H

M
3−

hier. loss

Flat SVM is poor in recalling deep nodes, h-m3-`H̃ is the best
prediction method in the leaves.

References

Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor,
J. (2006). Kernel-Based Learning of Hierarchical
Multilabel Classification Models. JMLR 7, pp.
1601–1626

Sandor Szedmak, John Shawe-Taylor and Emilio
Parado-Hernandez (2005). Learning via Linear
Operators: Maximum Margin Regression Technical
Report. PASCAL, Southampton, UK, Southampton,
UK.

Taskar, B., Guestrin, C. and Koller, D. Max-Margin
Markov Networks (2003). NIPS’2003

Tsochantaridis, I., Hofmann, T., Joachims, T., Altun,
Y. (2004). Support vector machine learning for
interdependent and structured output spaces.
ICML’2004.

