Paper Discussion: Convolution Kernels for Natural Language (Collins & Duffy '02)

Huizhen Yu

janey.yu@cs.helsinki.fi Dept. Computer Science, Univ. of Helsinki

PSD Seminar, Feb. 07, 2008

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Natural Language Task Examples

Map strings to hidden structures:

named identity boundaries

900

Ambiguities in Parsing

E. Charniak, Statistical Language Learning, p. 7:

"Salespeople sold the dog biscuits." \rightarrow

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

- A finite set of all admissible subtrees {*s*₁,..., *s*_n}
- Kernel on trees from feature mapping $h: \{T\} \rightarrow \Re^n$,

 $h(T) = (h_1(T), \dots, h_n(T)), \quad h_i(T) = \#$ occurences of s_i in T

 $K(T_1, T_2) = h(T_1) \cdot h(T_2)$

$$= \sum_{i=1}^{n} \left(\sum_{n_1 \in N_1} l_i(T_1(n_1)) \right) \left(\sum_{n_2 \in N_2} l_i(T_2(n_2)) \right)$$
$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \underbrace{\left(\sum_{i=1}^{n} l_i(T_1(n_1)) \ l_i(T_2(n_2)) \right)}_{\frac{del}{del} C(n_1, n_2)} \xrightarrow{C(\cdot, \cdot): \text{ kn. on subtrees}}_{\leftarrow K(\cdot, \cdot) \text{ in conv.-kn. form}}$$

(ロ) (同) (三) (三) (三) (○) (○)

- A finite set of all admissible subtrees {*s*₁,..., *s*_n}
- Kernel on trees from feature mapping $h: \{T\} \rightarrow \Re^n$,

 $h(T) = (h_1(T), \ldots, h_n(T)), \quad h_i(T) = \#$ occurences of s_i in T

 $K(T_1, T_2) = h(T_1) \cdot h(T_2)$

$$= \sum_{i=1}^{n} \left(\sum_{n_1 \in N_1} l_i(T_1(n_1)) \right) \left(\sum_{n_2 \in N_2} l_i(T_2(n_2)) \right)$$
$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \underbrace{\left(\sum_{i=1}^{n} l_i(T_1(n_1)) \ l_i(T_2(n_2)) \right)}_{\frac{\text{def}}{C(n_1, n_2)}} \xrightarrow{C(\cdot, \cdot): \text{ kn. on subtrees}}_{\leftarrow K(\cdot, \cdot) \text{ in conv.-kn. form}}$$

- A finite set of all admissible subtrees {*s*₁,..., *s*_n}
- Kernel on trees from feature mapping $h: \{T\} \rightarrow \Re^n$,

 $h(T) = (h_1(T), \dots, h_n(T)), \quad h_i(T) = \#$ occurences of s_i in T

$$\mathcal{K}(T_1, T_2) = h(T_1) \cdot h(T_2)$$

$$= \sum_{i=1}^n \left(\sum_{n_1 \in N_1} I_i(T_1(n_1)) \right) \left(\sum_{n_2 \in N_2} I_i(T_2(n_2)) \right)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \underbrace{\left(\sum_{i=1}^n I_i(T_1(n_1)) I_i(T_2(n_2)) \right)}_{\frac{dd}{dd} C(n_1, n_2)} \xrightarrow{C(\cdot, \cdot): \text{ kn. on subtrees}} \leftarrow \mathcal{K}(\cdot, \cdot) \text{ in conv.-kn. form}$$

- A finite set of all admissible subtrees {*s*₁,..., *s*_n}
- Kernel on trees from feature mapping $h: \{T\} \rightarrow \Re^n$,

 $h(T) = (h_1(T), \dots, h_n(T)), \quad h_i(T) = \#$ occurences of s_i in T

$$\begin{aligned} \mathcal{K}(T_{1}, T_{2}) &= h(T_{1}) \cdot h(T_{2}) \\ &= \sum_{i=1}^{n} \left(\sum_{n_{1} \in N_{1}} I_{i}(T_{1}(n_{1})) \right) \left(\sum_{n_{2} \in N_{2}} I_{i}(T_{2}(n_{2})) \right) \\ &= \sum_{n_{1} \in N_{1}} \sum_{n_{2} \in N_{2}} \underbrace{\left(\sum_{i=1}^{n} I_{i}(T_{1}(n_{1})) I_{i}(T_{2}(n_{2})) \right)}_{\frac{def}{def} C(n_{1}, n_{2})} \overset{C(\cdot, \cdot): \text{ kn. on subtrees}}{\leftarrow \mathcal{K}(\cdot, \cdot) \text{ in conv.-kn. form}} \end{aligned}$$

- A finite set of all admissible subtrees {s₁,..., s_n}
- Kernel on trees from feature mapping $h: \{T\} \rightarrow \Re^n$,

 $h(T) = (h_1(T), \dots, h_n(T)), \quad h_i(T) = \#$ occurences of s_i in T

$$K(T_1, T_2) = h(T_1) \cdot h(T_2)$$

$$= \sum_{i=1}^n \left(\sum_{n_1 \in N_1} I_i(T_1(n_1)) \right) \left(\sum_{n_2 \in N_2} I_i(T_2(n_2)) \right)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \underbrace{\left(\sum_{i=1}^n I_i(T_1(n_1)) I_i(T_2(n_2)) \right)}_{\frac{\text{def} C(n_1, n_2)}{\text{def}}} \stackrel{C(\cdot, \cdot): \text{ kn. on subtrees}}{\leftarrow K(\cdot, \cdot) \text{ in conv.-kn. form}}$$

Kernel Evaluation: Recursive Computation (I)

• Examples of admissible subtrees (tree fragments, a.-subtrees)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Include the complete rule productions (prod) at the node
- · The full set of a.-subtrees need not be stored explicitly

Kernel Evaluation: Recursive Computation (II)

•
$$K(T_1, T_2) = \sum_{n_1 \in N_1, n_2 \in N_2} C(n_1, n_2)$$

 $C(n_1, n_2)$: #common a.-subtrees rooted at n_1, n_2

• Compute *C*(*n*₁, *n*₂) recursively:

$$C(n_1, n_2) = \begin{cases} 0, & \operatorname{prod}(n_1) \neq \operatorname{prod}(n_2) \\ 1, & \operatorname{prod}(n_1) = \operatorname{prod}(n_2), \& n_1, n_2 \text{ pre-terminals} \end{cases}$$
$$C(n_1, n_2) = \prod_{j=1}^{nc(n_1)} \left(1 + C\left(\frac{ch(n_1, j)}{jth \ child}, \ ch(n_2, j)\right) \right),$$
if $\operatorname{prod}(n_1) = \operatorname{prod}(n_2), \& n_1, n_2 \text{ not pre-terminals}$

(recursive comp. is in part due to the definition of a.-subtrees)

Complexity of computing k(T₁, T₂): O(|N₁||N₂|), in practice, linear

Practical Concerns and Modifications of Kernels

• Tree size has too much effect on kernel; do normalization:

$$K'(T_1, T_2) = \frac{K(T_1, T_2)}{\sqrt{K(T_1, T_1) k(T_2, T_2)}}$$

Extreme values between similar and dissimilar trees:

$$K(T_1, T_2) \approx 10^6$$
, $T_1 \sim T_2$, $K(T_1, T_2) \approx 10$, $T_1 \not\sim T_2$

kernel is too "peaked;" prediction will be close to "nearest neighbor" rule Solution? ("radialization" – $\ln K$ – didn't help.)

- Modifications: downweight large a.-subtrees
 - option 1: restrict the depth of a.-subtrees; recursive evaluation is still possible by computing C(n₁, n₂, d)
 - option 2: scale the relative importance of a.-subtrees by their size

$$\begin{aligned} \mathcal{K}'(T_1, T_2) &= \sum_{i=1}^n \lambda^{size(s_i)} h_i(T_1) h_i(T_2) \\ \mathcal{C}(n_1, n_2) &= \lambda \prod_{j=1}^{nc(n_1)} \left(1 + C(ch(n_1, j), ch(n_2, j)) \right) \end{aligned}$$

(ロ) (同) (三) (三) (三) (○) (○)

Parsing Modeled as Re-ranking

- Training examples: (s_i, t_i), sentence and correct parse tree pairs
- Create data: input s + candidate parses, e.g., $C(s) = \{T_1, \ldots, T_{100}\}$
- Parse/prediction output for s:

$$\underset{T \in \mathcal{C}(\mathsf{s})}{\operatorname{arg\,max}} \, w \cdot \mathit{h}(T) = \underset{T \in \mathcal{C}(\mathsf{s})}{\operatorname{arg\,max}} \, \sum_{j} \alpha_{j} \mathit{K}(T, \widehat{T}_{j})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Criterion for optimizing α : rank t_i as the highest-score parse tree for s_i
- Training algorithm: a variant of voted perceptron

Parsing Experiments on Penn Treebank ATIS Corpus

- Treebank is randomly split (10 ways) into training (800), development (200) and test (336) sets.
- PCFG, trained on training set, produces 100 candidates for each sentence; use 20 candidates per sentence in training.
- Test: choose the best tree from the 100 candidates.
- Parse score: measure precision and recall constituent: a non-terminal label and its span
 - c_i : #correctly placed constituents in the ith test tree
 - p_i : #constituents proposed
 - g_i : #constituents in the true parse tree

$$score = 100\% \times \frac{1}{\sum_{i} g_{i}} \sum_{i} g_{i} \times \frac{1}{2} \left(\frac{c_{i}}{p_{i}} + \frac{c_{i}}{g_{i}} \right)$$
$$rel. - improvement = 100\% \times \frac{score_{perc} - score_{PCFG}}{100 - score_{PCFG}}$$

(ロ) (同) (三) (三) (三) (○) (○)

PCFG scored 74

Parsing Experiments on Penn Treebank ATIS Corpus (Cont'd)

Varying the maximum depth of a.-subtrees

depth	1	2	3	4	5	6
score	73 ± 1	79 ± 1	80 ± 1	79 ± 1	79 ± 1	78 ± 0.01
improvement	-1 ± 4	20 ± 6	23 ± 3	21 ± 4	19 ± 4	18 ± 3

• Varying the scale parameter λ for the size of a.-subtrees

λ	0.1	0.2	0.3	0.4	0.5	0.6
score	77 ± 1	78 ± 1	79 ± 1	79 ± 1	79 ± 1	79 ± 1
improvement	11 ± 6	17 ± 5	20 ± 4	21 ± 3	21 ± 4	22 ± 4
λ	0.7	0.8	0.9			
score	79 ± 1	79 ± 1	78 ± 1			
improvement	21 ± 4	19 ± 4	17 ± 5			

Discussions

- Compact representation of f(T) = ∑_j α_jK(T, T̂_j): find common a.-subtrees in T̂_j, add weights together, and make a weighted acyclic graph
- A re-ranking model for structured prediction:

 $\underset{T \in \mathcal{T}}{\operatorname{arg\,max}} f(T)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other options?

Kernel on joint input-output space

Discussions

- Compact representation of f(T) = ∑_j α_jK(T, T̂_j): find common a.-subtrees in T̂_j, add weights together, and make a weighted acyclic graph
- A re-ranking model for structured prediction:

 $\underset{T \in \mathcal{T}}{\operatorname{arg\,max}} f(T)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other options?

Kernel on joint input-output space

Discussions

- Compact representation of f(T) = ∑_j α_jK(T, T̂_j): find common a.-subtrees in T̂_j, add weights together, and make a weighted acyclic graph
- A re-ranking model for structured prediction:

 $\underset{T \in \mathcal{T}}{\operatorname{arg\,max}} f(T)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other options?

Kernel on joint input-output space