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Natural Language Task Examples
Map strings to hidden structures:

e named identity boundaries
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Ambiguities in Parsing

E. Charniak, Statistical Language Learning, p. 7:

“Salespeople sold the dog biscuits.” —
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Kernels on Parse Trees

¢ A finite set of all admissible subtrees {si,...,Sn}
e Kernel on trees from feature mapping h : {T} — R",

h(T) = (ha(T),...,ha(T)), hi(T) = #occurences of s; in T

K(T1,T2) = h(T1) - h(T2)
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Kernel Evaluation: Recursive Computation (I)

e Examples of admissible subtrees (tree fragments, a.-subtrees)
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¢ Include the complete rule productions (prod) at the node
o The full set of a.-subtrees need not be stored explicitly

apple



Kernel Evaluation: Recursive Computation (lI)

o K(T1, T2) = aneNl,nzeNz C(ny,n2)
C(ns, n2) : #.common a.-subtrees rooted at nq, n,

e Compute C(ny, n2) recursively:

0, prod(ni) # prod(nz)
1, prod(n;) = prod(n;), & ni, n, pre-terminals

C(ny,ng) = {

nc(ng)
C(ny,ng) = (1 + C(ch(nl,j), ch(nz,j)>> ,

=1 jth child

if prod(ni) = prod(n;), & ny, Nz not pre-terminals
(recursive comp. is in part due to the definition of a.-subtrees)

e Complexity of computing k(T1, T2): O(|N1]|N2]), in practice, linear



Practical Concerns and Modifications of Kernels

e Tree size has too much effect on kernel; do normalization:

K(T1,T2)
VK (T, T1) k(T2, T2)

e Extreme values between similar and dissimilar trees:

K'(T1,T2) =

K(Tl,Tz) ~ ].067 Tl ~ Tz, K(Tl,Tz) ~ 10, Tl 76 T2

kernel is too “peaked;” prediction will be close to “nearest neighbor” rule
Solution? (“radialization” — InK — didn’t help.)
¢ Modifications: downweight large a.-subtrees

e option 1: restrict the depth of a.-subtrees; recursive evaluation is still
possible by computing C(ny, ny,d)
e option 2: scale the relative importance of a.-subtrees by their size

K'(Ty, To) = > A2y (Ty) hi(T,)
i=1
nc(ng
C(ng,n2) H (1+C(Ch(n17j)1 Ch(nz,i)))
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Parsing Modeled as Re-ranking

Training examples: (sj, t;), sentence and correct parse tree pairs
Create data: input s + candidate parses, e.g., C(s) = {T1,..., T1w0}

Parse/prediction output for s:

argmax w - h(T) = argmax > _ ojK(T,T))
Tec(s) Tecs) 4

Criterion for optimizing o rank t; as the highest-score parse tree for s;

Training algorithm: a variant of voted perceptron



Parsing Experiments on Penn Treebank ATIS Corpus

e Treebank is randomly split (10 ways) into training (800), development
(200) and test (336) sets.

e PCFG, trained on training set, produces 100 candidates for each
sentence; use 20 candidates per sentence in training.

e Test: choose the best tree from the 100 candidates.

e Parse score: measure precision and recall
constituent: a non-terminal label and its span
¢c; : #correctly placed constituents in the ith test tree
pi : #constituents proposed
gi : #constituents in the true parse tree

1 1/¢ Ci
score = 100% X ——— P X (7. + 4)
D IY zi:g' 2\p "4

SCOr€perc — SCOr€pcrG

rel. — improvement = 1009
P %o x 100 — scorepcrs

e PCFG scored 74



Parsing Experiments on Penn Treebank ATIS Corpus (Cont'd)

o Varying the maximum depth of a.-subtrees

depth 1 2 3 4 5 6
score 73+1 | 794+1 | 80+1|79+£1|79+1 | 78+0.01
improvement | —1+4 | 20+6 | 234+3 | 21+4 | 19+4 18+ 3
e Varying the scale parameter X for the size of a.-subtrees
A 0.1 0.2 0.3 0.4 0.5 0.6
score 77+1 | 78+1 | 7941 | 79+1 | 79+£1 | 79+1
improvement | 11+6 | 174+5 | 20+4 | 214+£3 | 21+4 | 22+4
A 0.7 0.8 0.9
score 79+1 | 79+£1 | 718+1
improvement | 21+4 | 194+4 | 17+5
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find common a.-subtrees in 'IA', add weights together, and make a
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e Kernel on joint input-output space



