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Natural Language Task Examples
Map strings to hidden structures:

• named identity boundaries

Lou Gerstner is chairman of IBM
SP CP N N N SC

• part-of-speech tags

Lou Gerstner is chairman of IBM
N N V N P N

• parse tree
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Ambiguities in Parsing

E. Charniak, Statistical Language Learning, p. 7:

“Salespeople sold the dog biscuits.” →
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Kernels on Parse Trees

• A finite set of all admissible subtrees {s1, . . . , sn}
• Kernel on trees from feature mapping h : {T} → <n,

h(T ) =
`
h1(T ), . . . , hn(T )

´
, hi(T ) = #occurences of si in T

K (T1, T2) = h(T1) · h(T2)
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def
= C(n1,n2)

where for j = 1, 2,
Nj : the set of (non-terminal) nodes of Tj ,
Tj(m): the subtree of Tj rooted at node m,
Ii(T (m)): the indicator function for si seen rooted at node m of T .

C(·, ·): kn. on subtrees
← K (·, ·) in conv.-kn. form
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Kernel Evaluation: Recursive Computation (I)

• Examples of admissible subtrees (tree fragments, a.-subtrees)
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• Include the complete rule productions (prod) at the node

• The full set of a.-subtrees need not be stored explicitly



Kernel Evaluation: Recursive Computation (II)

• K (T1, T2) =
P

n1∈N1,n2∈N2
C(n1, n2)

C(n1, n2) : #common a.-subtrees rooted at n1, n2

• Compute C(n1, n2) recursively:

C(n1, n2) =

(
0, prod(n1) 6= prod(n2)

1, prod(n1) = prod(n2), & n1, n2 pre-terminals

C(n1, n2) =

nc(n1)Y
j=1

 
1 + C

“
ch(n1, j)

jth child

, ch(n2, j)
”!

,

if prod(n1) = prod(n2), & n1, n2 not pre-terminals

(recursive comp. is in part due to the definition of a.-subtrees)

• Complexity of computing k(T1, T2): O(|N1||N2|), in practice, linear



Practical Concerns and Modifications of Kernels

• Tree size has too much effect on kernel; do normalization:

K ′(T1, T2) =
K (T1, T2)p

K (T1, T1) k(T2, T2)

• Extreme values between similar and dissimilar trees:

K (T1, T2) ≈ 106, T1 ∼ T2, K (T1, T2) ≈ 10, T1 6∼ T2

kernel is too “peaked;” prediction will be close to “nearest neighbor” rule
Solution? (“radialization” – ln K – didn’t help.)

• Modifications: downweight large a.-subtrees
• option 1: restrict the depth of a.-subtrees; recursive evaluation is still

possible by computing C(n1, n2, d)
• option 2: scale the relative importance of a.-subtrees by their size

K ′(T1, T2) =
nX

i=1

λsize(si )hi (T1) hi (T2)

C(n1, n2) = λ

nc(n1)Y
j=1

“
1 + C

“
ch(n1, j) , ch(n2, j)

””



Parsing Modeled as Re-ranking

• Training examples: (si , ti), sentence and correct parse tree pairs

• Create data: input s + candidate parses, e.g., C(s) = {T1, . . . , T100}

• Parse/prediction output for s:

arg max
T∈C(s)

w · h(T ) = arg max
T∈C(s)

X
j

αjK (T , bTj)

• Criterion for optimizing α: rank ti as the highest-score parse tree for si

• Training algorithm: a variant of voted perceptron



Parsing Experiments on Penn Treebank ATIS Corpus

• Treebank is randomly split (10 ways) into training (800), development
(200) and test (336) sets.

• PCFG, trained on training set, produces 100 candidates for each
sentence; use 20 candidates per sentence in training.

• Test: choose the best tree from the 100 candidates.

• Parse score: measure precision and recall
constituent: a non-terminal label and its span
ci : #correctly placed constituents in the ith test tree
pi : #constituents proposed
gi : #constituents in the true parse tree

score = 100%× 1P
i gi

X
i

gi ×
1
2

„
ci

pi
+

ci

gi

«
rel.− improvement = 100%× scoreperc − scorePCFG

100− scorePCFG

• PCFG scored 74



Parsing Experiments on Penn Treebank ATIS Corpus (Cont’d)

• Varying the maximum depth of a.-subtrees

depth 1 2 3 4 5 6
score 73± 1 79± 1 80± 1 79± 1 79± 1 78± 0.01

improvement −1± 4 20± 6 23± 3 21± 4 19± 4 18± 3

• Varying the scale parameter λ for the size of a.-subtrees

λ 0.1 0.2 0.3 0.4 0.5 0.6
score 77± 1 78± 1 79± 1 79± 1 79± 1 79± 1

improvement 11± 6 17± 5 20± 4 21± 3 21± 4 22± 4
λ 0.7 0.8 0.9

score 79± 1 79± 1 78± 1
improvement 21± 4 19± 4 17± 5



Discussions

• Compact representation of f (T ) =
P

j αjK (T , bTj):

find common a.-subtrees in bTj , add weights together, and make a
weighted acyclic graph

• A re-ranking model for structured prediction:

arg max
T∈T

f (T )

Other options?

• Kernel on joint input-output space
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