Paper Discussion: Convolution Kernels for Natural
Language (Collins & Duffy '02)

Huizhen Yu

janey.yu@cs.helsinki.fi
Dept. Computer Science, Univ. of Helsinki

PSD Seminar, Feb. 07, 2008



Natural Language Task Examples
Map strings to hidden structures:

e named identity boundaries

Lou Gerstner is chairman of IBM
SP CP N N N SC

e part-of-speech tags
Lou Gerstner is chairman of IBM

N N \% N P N
e parse tree
S
NP VP
| /T~
LA
Lou Gerstner is N PP
chair‘r’r‘an P/\NP
Lo



Ambiguities in Parsing

E. Charniak, Statistical Language Learning, p. 7:

“Salespeople sold the dog biscuits.” —

N \Y NP NP

S L IS

Salespeople sold  Det N N Solespeople sold  Det N N

the dog biscuits the dog biscuits



Kernels on Parse Trees

¢ A finite set of all admissible subtrees {si,...,Sn}
e Kernel on trees from feature mapping h : {T} — R",

h(T) = (ha(T),...,ha(T)), hi(T) = #occurences of s; in T

K(T1,T2) = h(T1) - h(T2)



Kernels on Parse Trees

¢ A finite set of all admissible subtrees {si,...,Sn}
e Kernel on trees from feature mapping h : {T} — R",

h(T) = (ha(T),...,ha(T)), hi(T) = #occurences of s; in T

K(T1,T2) = h(T1) - h(T2)

where forj =1,2,

N;j: the set of (non-terminal) nodes of Tj,

T;(m): the subtree of T; rooted at node m,

I;(T (m)): the indicator function for s; seen rooted at node m of T.



Kernels on Parse Trees

¢ A finite set of all admissible subtrees {si,...,Sn}
e Kernel on trees from feature mapping h : {T} — R",

h(T) = (ha(T),...,ha(T)), hi(T) = #occurences of s; in T

K(T1,T2) = h(T1) - h(T2)

-y (z ui(mnl))) (Z n(n(nz)))

ny €Ny

where forj =1,2,

N;j: the set of (non-terminal) nodes of Tj,

T;(m): the subtree of T; rooted at node m,

I;(T (m)): the indicator function for s; seen rooted at node m of T.



Kernels on Parse Trees

¢ A finite set of all admissible subtrees {si,...,Sn}
e Kernel on trees from feature mapping h : {T} — R",

h(T) = (ha(T),...,ha(T)), hi(T) = #occurences of s; in T

K(T1,T2) = h(T1) - h(T2)

i (Z n(Tl(nl))) (Z |i(T2(n2)))

i=1 \nieN; na €Ny

-y % (Z (Ta(n)) |i(T2(“2))>

np €Ny npeNy \i=1

e (ny,np)

where forj =1,2,

N;j: the set of (non-terminal) nodes of Tj,

T;(m): the subtree of T; rooted at node m,

I;(T (m)): the indicator function for s; seen rooted at node m of T.



Kernels on Parse Trees

¢ A finite set of all admissible subtrees {si,...,Sn}
e Kernel on trees from feature mapping h : {T} — R",

h(T) = (ha(T),...,ha(T)), hi(T) = #occurences of s; in T

K(T1,T2) = h(T1) - h(T2)

i (Z n(Tl(nl))) (Z |i(T2(n2)))

i=1 \n;eN; n, €Ny

- Z Z <Z Tl nl)) Ii(Tz(nz))> (C_(K() kn: on subtrees

npeNy nyeNy \i—1 ,+) in conv.-kn. form

e (ny,np)

where forj =1,2,

N;j: the set of (non-terminal) nodes of Tj,

T;(m): the subtree of T; rooted at node m,

I;(T (m)): the indicator function for s; seen rooted at node m of T.



Kernel Evaluation: Recursive Computation (I)

e Examples of admissible subtrees (tree fragments, a.-subtrees)

N NP
NP Det

NP/\VP DetNN N ‘
‘ /\ ,,,,,,,,,,,, ‘ ‘ ‘ Det N

N \ . NP ! the
| YA N, the  apple
Jeff ate ' Det N

.

the apple

,,,,,,,,,,,,,,,,,,

NP NP
N N
Det N Det N
| |

the app| e

¢ Include the complete rule productions (prod) at the node
o The full set of a.-subtrees need not be stored explicitly

apple



Kernel Evaluation: Recursive Computation (lI)

o K(T1, T2) = aneNl,nzeNz C(ny,n2)
C(ns, n2) : #.common a.-subtrees rooted at nq, n,

e Compute C(ny, n2) recursively:

0, prod(ni) # prod(nz)
1, prod(n;) = prod(n;), & ni, n, pre-terminals

C(ny,ng) = {

nc(ng)
C(ny,ng) = (1 + C(ch(nl,j), ch(nz,j)>> ,

=1 jth child

if prod(ni) = prod(n;), & ny, Nz not pre-terminals
(recursive comp. is in part due to the definition of a.-subtrees)

e Complexity of computing k(T1, T2): O(|N1]|N2]), in practice, linear



Practical Concerns and Modifications of Kernels

e Tree size has too much effect on kernel; do normalization:

K(T1,T2)
VK (T, T1) k(T2, T2)

e Extreme values between similar and dissimilar trees:

K'(T1,T2) =

K(Tl,Tz) ~ ].067 Tl ~ Tz, K(Tl,Tz) ~ 10, Tl 76 T2

kernel is too “peaked;” prediction will be close to “nearest neighbor” rule
Solution? (“radialization” — InK — didn’t help.)
¢ Modifications: downweight large a.-subtrees

e option 1: restrict the depth of a.-subtrees; recursive evaluation is still
possible by computing C(ny, ny,d)
e option 2: scale the relative importance of a.-subtrees by their size

K'(Ty, To) = > A2y (Ty) hi(T,)
i=1
nc(ng
C(ng,n2) H (1+C(Ch(n17j)1 Ch(nz,i)))

=1



Parsing Modeled as Re-ranking

Training examples: (sj, t;), sentence and correct parse tree pairs
Create data: input s + candidate parses, e.g., C(s) = {T1,..., T1w0}

Parse/prediction output for s:

argmax w - h(T) = argmax > _ ojK(T,T))
Tec(s) Tecs) 4

Criterion for optimizing o rank t; as the highest-score parse tree for s;

Training algorithm: a variant of voted perceptron



Parsing Experiments on Penn Treebank ATIS Corpus

e Treebank is randomly split (10 ways) into training (800), development
(200) and test (336) sets.

e PCFG, trained on training set, produces 100 candidates for each
sentence; use 20 candidates per sentence in training.

e Test: choose the best tree from the 100 candidates.

e Parse score: measure precision and recall
constituent: a non-terminal label and its span
¢c; : #correctly placed constituents in the ith test tree
pi : #constituents proposed
gi : #constituents in the true parse tree

1 1/¢ Ci
score = 100% X ——— P X (7. + 4)
D IY zi:g' 2\p "4

SCOr€perc — SCOr€pcrG

rel. — improvement = 1009
P %o x 100 — scorepcrs

e PCFG scored 74



Parsing Experiments on Penn Treebank ATIS Corpus (Cont'd)

o Varying the maximum depth of a.-subtrees

depth 1 2 3 4 5 6
score 73+1 | 794+1 | 80+1|79+£1|79+1 | 78+0.01
improvement | —1+4 | 20+6 | 234+3 | 21+4 | 19+4 18+ 3
e Varying the scale parameter X for the size of a.-subtrees
A 0.1 0.2 0.3 0.4 0.5 0.6
score 77+1 | 78+1 | 7941 | 79+1 | 79+£1 | 79+1
improvement | 11+6 | 174+5 | 20+4 | 214+£3 | 21+4 | 22+4
A 0.7 0.8 0.9
score 79+1 | 79+£1 | 718+1
improvement | 21+4 | 194+4 | 17+5




Discussions

 Compact representation of f(T) = 37, ajK(T,T'j):

find common a.-subtrees in 'IA', add weights together, and make a
weighted acyclic graph



Discussions

 Compact representation of f(T) = 37, ajK(T,T'j):
find common a.-subtrees in 'IA', add weights together, and make a
weighted acyclic graph

e A re-ranking model for structured prediction:

argmax f(T)
TeT

Other options?



Discussions

 Compact representation of f(T) = 37, ajK(T,T'j):
find common a.-subtrees in 'IA', add weights together, and make a
weighted acyclic graph

e A re-ranking model for structured prediction:

argmax f(T)
TeT

Other options?

e Kernel on joint input-output space



