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This talk is based on the paper “Max-Margin Markov Networks"
by B. Taskar, C. Guestrin and D. Koller [TGKO03], NIPS 2003
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Structured Data

» Many Real-world tasks involve Sequential, Spatial, Structured
data.
» Eg. Hand-written character recognition: Image — Word

» NLP: Sentence — Parse Tree
» Bond prediction in Proteins: Amino acid Sequence — Bond

Structure
» Terrain Segmentation: 3D Image — Segmented Objects
» Common Characteristics:
» Correlated Labels, Multi-label, Multi-class classification
» Inference here is Global rather than Local
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Structured Classification

» Classification: Find a function that assigns a label to an
arbitrary object

» Supervised Classification: Given a sequence of labelled
examples independently chosen from an arbitrary distribution,
find a function that will assign labels to unseen objects

» Structured Classification: To jointly classify different objects
in the supervised setting
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Structured Classification and SVM

» SVM: Very effective classifier for a variety of applications
» SVM = Kernel 4+ Generalization Bounds (Max-Margin)

» Kernel: Reduce arbitrary nonlinear classification in the input
space to linear classification in the feature space.

» Generalization Bounds: Justification for Max-Margin

» SVM assign a single label to an object at a time, do not
exploit correlation between labels.

» Running time of SVM: Polynomial in # classes.

» To jointly classify objects with a joint label, an exponential
number of classes required, so infeasible
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Markov Networks (MN) and Structured Classification

Can express correlation between labels
Can exploit problem structure

Cannot handle high-dimensional feature spaces

vV v v Yy

No strong generalization bounds
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Maximum-Margin Markov Networks (M°N)

» Combines the Kernel and Max-Margin concepts of SVM with
the ability of MN to handle structured data

» For structured classification, M3N = SVM + MN

Structured Objects

Characteristics SVM | MN | M3N
High-dimensional + - +
Feature Space (Kernel)
Generalization + - +
Guarantees
Ability to deal with - + +
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Structured Classification - Framework

Task: Learn a function f : X — Y

S ={(xD),yD =t(xN)}, ~ DR,

H: A parameter family

Classification function h € H

Common choice: H - linear family

Given n basis functions {f;: X x Y — R}j=1,--- ,n

A hypothesis h,, € H is defined by a set of n coefficients
wj € R

vVVvYy Vv V.V VY

n
> hy(x) = argmax Y w;fi(x,y) = argmaxw ' f(x,y)
y =2 y

where f(x,y) are features (=basic functions)
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Structured Classification - Framework (contd)

v

Single-label case
» V={y,y2, i}
Our focus: Multi-Label case
> Y=Y X x Vi
» Vi={y,y2, 0}
Eg: OCR where Y;: A character, ): A full word
> V= 1%~ exp(k)
Infeasible to

v

v

v

» Represent basis functions f(x, y)
» Compute arg max
y
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Probabilistic Graphical Model for Structured Classification

v

Examples

» Hidden Markov Model (HMM)
» Conditional Random Field (CRF)
» Markov Random Field (MRF) (aka Markov Network (MN))

Here the model defines (directly or indirectly) a conditional
distribution P(Y | X)

Goal: Select the label argmax, P(y | x)

v

v

v

Advantage: Possible to exploit sparse label correlations
Eg. OCR task using Markov Network
> Vi LY | Vi1, Vig, j £ —1,i+1

v
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Encoding a Probability Structure in Markov Network

» Assumption: Pairwise interaction between labels
» MN: G = (),€)
» edge (i,j) — Potential ¢;(x, y;, yj)
» P(y|x): Joint Conditional Probability distribution encoded by
the network

> Py|x) H(i,j)eE Vii(%, Yis ¥5)
» MN: Compact Parametrization of a classifier
» G = Tree-structured network:

> argmax P(y|x) = Viterbi Algorithm

» Efficient, even if there are an exponential number of labels
» This is a great advantage of graphical models over SVM

» In general, Approximate Inference algorithm that exploit
structure

11 /9K



Markov Network Distribution - Log-Linear (LL) Model

vV vy VvYy

Belongs to the family of Generalized Linear Models
¥ij(x,yi,yj): Network potential

fi(x, yi, y;): Basis functions, k =1,--- ,n

MN can be parameterized by the Basis functions
Assumption: All the edges in the graph denote the same type
of interaction

fu(x,y) = > f(x,yi,y;) - features k =1,--- ,n
(ij)eE

n
log ¥ (x, yi, yj) = kz:'kak(X7yi7yj)
=1

n
Vi (%, yi, yj) = eXP[kZ'kak(Xy)/h)/j)] = exp[w ' f(x, i, ))]
w in LL model can be trained by Maximum Likelihood (ML)

or Conditional Likelihood

Alternative approach: To select w by maximizing the margin
is the approach in M3N
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Loss function and Risk

Statistical Learning Theory provides the justification for
maximal margin criterion

Maximum-margin minimizes the generalization error bound

» Loss function L: X x Y x)Y — R
> L(x,y,h(x)): Loss in assigning h(x) to x when the true label

vV v v v Y

is y

L(XJ'»}') =0

Goal: Minimize the total loss on the labels to predicted
R[h]: Expected risk in choosing classifier h

R[M] == [y L(X,y, h(x)) d D(x,y)

R[h] cannot be computed but can be approximated by the
empirical risk Remp[h] [Vapnik]

Ranplf] 1= 335 Lx, £, (x)
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Generalization Error Bound

» Statistical Learning Theory informs the tradeoff between the
choice of the model class (expressibility) and training error.

» Gives a theoretical bound on the generalization error of a
classifier which is independent of the distribution D (SVM)

» Generalization error independent of the dimension of the
feature space

» Freedom from the 'curse of dimensionality’ (SVM)

» SVM learning rooted in Statistical Learning Theory
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Margin-based Structured Classification

SVM : Single label 2-classification

(Single-label) m-classification extends 2-classification

~: margin

max vs.t. |w| <1, w! Af(y) > v, ¥x € S, Vy # t(x)
» where Af(y) := f(x,t(x)) — f(x,y)

arg max w' f(x,y) = t(x) is a consequence of the above

vV vy Vv Yy

v

constraint
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Loss in Structured Problems

» Not a simple 0-1 loss

> 0-1 loss: I(argmaxw ! f(x,y) = t(x))
y

> Loss is a per-label loss aka Proportion of incorrect labels
predicted
» Margin between t(x)andy scales linearly with the number of
wrong labels in y, Aty(y):
» max ys.t|w| <1, w' Af(y) > vAt(y), ¥x € S, Vy
/
> At(y) = 2 At(yi)

i=1
> At(yi) = I(yi # (¢(x)i))
» We tidy up the above by eliminating v to get the Quadratic
Program (QP)
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The QP Problem for Margin-based Structured
Classification and its Dual

> QP: min 3|w|s.t.w' Afi(y) > Aty(y), ¥x € S, Vy
» Introducing slack variables & to allow linearly inseparable
data, we get the Primal (P) and Dual (D)

» (P): min %HWH2 + C > &
s.t. w! Af(y) > Ate(y) — &, ¥x, Vy.

> (O): max Sax(y)Atly) - 3| Saxty) sty

s.t. Y ax(y) = C, ¥x; ax(y) >0, ¥x,y.
y
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Difficulty in Solving Primal and Dual

» (P): min %HWH2 +C ;{x;
s.t. w! Af(y) > Atye(y) — &, Vx, Vy.
> (0) max Saxy)atly) - 3 [Soxtnast)]

s.t. Y ax(y) = C, Vx; ax(y) > 0, Vx,y.
y

» # of constraints in (P) and # variables in (D) are both
exponential in # labels

» Infeasible computation
» Can we get around it?

TGKO3 give an affirmative answer in this paper !
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Key idea in the [TGKO03] solution

» The variables ax(y) in (D) can be interpreted as an
unnormalized density function over y conditional on x:

> Yax(y) = C, ax(y) >0

» The dual objective is a function of
» E[Atc(y)] and E[Af(y)], where E expectation w.r.t ax(y)

> Ate(y) == 2 Aty (yi)

Af(y) == 2 Ah(xi, )
i
are sums of functions over nodes and edges

» So only node and edge marginals of the measure ax(y)
needed to compute the above expectations

» Here the sparse correlations in the feature representations is
used.
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Marginal Dual Variables (MDV)

> MDV pux(yi, y;) and px(y;) are defined here

> Mx(yi’yj) = Z Qxy, \V/(I,_])GE, V}/ia}/ja VX;
y~liyl
> ux(yi) = D axy, Vi, Vyi, Vx;
y~lyil
> y ~ [yi, y;] denote a full assignment y consistent with partial
assignments y;, y;

» We now reformulate the QP (D) via MDV
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Reformulation of QP(D) via MDV

> The first term of the objective function in QP(D) Can be
written in terms of MDV as follows

> Lax(y)Atdly) = ;Zax(ymtx(yi)

=Y At(yi) > ax(y) = D oux(yi)At(yi)

i,Yi y~lyil i,yi
» Similarly the second term of the objective function in QP(D)
via the edge marginals 1ix(yi, y;)
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Consistency Conditions to produce Equivalent QP

> To ensure that the MDV (yi, y;), px(yi) are marginals
arising from a legal density a(y):

> Zﬂx(ylvyj) = /U'X(yl)a Vyj, V(I,_/) € Ev Vx
Yi

» Now we can formulate the equivalent QP in MDV.
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Factored Dual QP Equivalent to Original QP(D)

max 305 px (Vi) Ate(yi) = 355 30 30 e (vis ) ig (e, yo)beyi, vi) T i (vr, vs);

X iy X% (i,) (r,s
Yio¥j YroYs

st px(vioyy) = mx(v)i px(vi) = Ci px(yi, y;) 2 0.
» The objective function here depends only on a polynomial number of MDV

» Kernels can be used as the basis functions enter as dot products

» The solution of the Factored Dual is

»w o= 0> D ux(yi yy) Afyi, i)

X 0j oYY
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Conclusion

For Structured Data Classification, M®N = SVM + MN
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