Maximum Margin Markov Networks

Krishnan Narayanan

27 March 2008

This talk is based on the paper "Max-Margin Markov Networks" by B. Taskar, C. Guestrin and D. Koller [TGK03], NIPS 2003

Structured Data

- Many Real-world tasks involve Sequential, Spatial, Structured data.
 - ▶ Eg. Hand-written character recognition: Image → Word
 - ▶ NLP: Sentence Parse Tree
 - ▶ Bond prediction in Proteins: Amino acid Sequence → Bond Structure
 - ► Terrain Segmentation: 3D Image → Segmented Objects
- Common Characteristics:
 - ► Correlated Labels, Multi-label, Multi-class classification
 - Inference here is Global rather than Local

Structured Classification

- Classification: Find a function that assigns a label to an arbitrary object
- Supervised Classification: Given a sequence of labelled examples independently chosen from an arbitrary distribution, find a function that will assign labels to unseen objects
- Structured Classification: To jointly classify different objects in the supervised setting

Structured Classification and SVM

- ▶ SVM: Very effective classifier for a variety of applications
- ► SVM = Kernel + Generalization Bounds (Max-Margin)
- Kernel: Reduce arbitrary nonlinear classification in the input space to linear classification in the feature space.
- ► Generalization Bounds: Justification for Max-Margin
- SVM assign a single label to an object at a time, do not exploit correlation between labels.
- ▶ Running time of SVM: Polynomial in # classes.
- ► To jointly classify objects with a joint label, an exponential number of classes required, so infeasible

Markov Networks (MN) and Structured Classification

- Can express correlation between labels
- Can exploit problem structure
- Cannot handle high-dimensional feature spaces
- ► No strong generalization bounds

Maximum-Margin Markov Networks (M³N)

- Combines the Kernel and Max-Margin concepts of SVM with the ability of MN to handle structured data
- ▶ For structured classification, $M^3N = SVM + MN$

Characteristics	SVM	MN	$\mathrm{M}^{3}\mathrm{N}$
High-dimensional	+	-	+
Feature Space (Kernel)			
Generalization	+	-	+
Guarantees			
Ability to deal with	-	+	+
Structured Objects			

Structured Classification - Framework

- ▶ Task: Learn a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$
- ► $S = \{(\mathbf{x}^{(i)}), \mathbf{y}^{(i)} = \mathbf{t}(\mathbf{x}^{(i)})\}_{i=1}^{m} \sim D_{\mathcal{X} \times \mathcal{Y}}^{m}$
- ▶ \mathcal{H} : A parameter family
- ► Classification function h ∈ H
- ▶ Common choice: H linear family
- ▶ Given *n* basis functions $\{f_i: \mathcal{X} \times \mathcal{Y} \longrightarrow \mathbb{R}\} j = 1, \cdots, n$
- ▶ A hypothesis $h_w \in \mathcal{H}$ is defined by a set of n coefficients $w_j \in \mathbb{R}$
 - ► $h_w(\mathbf{x}) = \arg\max_{\mathbf{y}} \sum_{i=1}^n w_i f_i(\mathbf{x}, \mathbf{y}) = \arg\max_{\mathbf{y}} \mathbf{w}^\top f(\mathbf{x}, \mathbf{y})$ where $f(\mathbf{x}, \mathbf{y})$ are features (=basic functions)

Structured Classification - Framework (contd)

- ► Single-label case
 - ▶ $\mathcal{Y} = \{y_1, y_2, \dots, y_l\}$
- ▶ Our focus: Multi-Label case
 - $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_k$
- ▶ Eg: OCR where \mathcal{Y}_i : A character, \mathcal{Y} : A full word
- $|\mathcal{Y}| = I^k \sim exp(k)$
- ▶ Infeasible to
 - ▶ Represent basis functions $f_i(x, y)$
 - ► Compute $\arg \max$

Probabilistic Graphical Model for Structured Classification

- Examples
 - ► Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)
 - Markov Random Field (MRF) (aka Markov Network (MN))
- ▶ Here the model defines (directly or indirectly) a conditional distribution $P(\mathcal{Y} | \mathcal{X})$
- ▶ Goal: Select the label $argmax_v P(y | x)$
- Advantage: Possible to exploit sparse label correlations
- ▶ Eg. OCR task using Markov Network
 - $Y_i \perp \!\!\!\perp \mathcal{Y}_j \mid \mathcal{Y}_{i-1}, \mathcal{Y}_{i+1}, j \neq i-1, i+1$

Encoding a Probability Structure in Markov Network

- Assumption: Pairwise interaction between labels
- \blacktriangleright MN: $\mathcal{G} = (\mathcal{Y}, \mathcal{E})$
 - edge $(i,j) \mapsto \text{Potential } \psi_{ij}(x,y_i,y_j)$
- P(y|x): Joint Conditional Probability distribution encoded by the network
- $ightharpoonup P(\mathbf{y} \mid \mathbf{x}) \propto \prod_{(i,j) \in E} \psi_{ij}(\mathbf{x}, y_i, y_j)$
- ▶ MN: Compact Parametrization of a classifier
- $\triangleright \mathcal{G} = \mathsf{Tree}\mathsf{-structured}$ network:
 - $\Rightarrow \arg \max_{\mathbf{v}} P(\mathbf{y} \mid \mathbf{x}) = \text{Viterbi Algorithm}$
 - ▶ Efficient, even if there are an exponential number of labels
 - ▶ This is a great advantage of graphical models over SVM
- In general, Approximate Inference algorithm that exploit structure

Markov Network Distribution - Log-Linear (LL) Model

- ▶ Belongs to the family of Generalized Linear Models
- $\blacktriangleright \psi_{ii}(x, y_i, y_i)$: Network potential
- $f_k(x, y_i, y_i)$: Basis functions, $k = 1, \dots, n$
- ▶ MN can be parameterized by the Basis functions
- ► Assumption: All the edges in the graph denote the same type of interaction
- $f_k(\mathbf{x}, \mathbf{y}) = \sum_{(i,j) \in E} f_k(\mathbf{x}, y_i, y_j) \text{features } k = 1, \dots, n$
- $\psi_{ij}(x, y_i, y_j) = \exp\left[\sum_{k=i}^{n} w_k f_k(x, y_i, y_j)\right] = \exp\left[w^{\top} f(x, y_i, y_j)\right]$
- w in LL model can be trained by Maximum Likelihood (ML) or Conditional Likelihood
- ▶ Alternative approach: To select w by maximizing the margin is the approach in M^3N

Loss function and Risk

- Statistical Learning Theory provides the justification for maximal margin criterion
- Maximum-margin minimizes the generalization error bound
- ▶ Loss function $L: \mathcal{X} \times \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$
- ▶ L(x, y, h(x)): Loss in assigning h(x) to x when the true label is y
- $L(\boldsymbol{x},\boldsymbol{y},\boldsymbol{y})=0$
- ▶ Goal: Minimize the total loss on the labels to predicted
- ► R[h]: Expected risk in choosing classifier h
- $P[h] := \int_{\mathcal{X} \times \mathcal{V}} L(\mathbf{x}, \mathbf{y}, h(\mathbf{x})) d \mathcal{D}(\mathbf{x}, \mathbf{y})$
- ▶ R[h] cannot be computed but can be approximated by the empirical risk $R_{emp}[h]$ [Vapnik]
- $R_{emp}[h] := \frac{1}{n} \sum_{i=1}^{n} L(\mathbf{x}^{(i)}, \mathbf{t}^{(i)}, h(\mathbf{x}^{(i)}))$

Generalization Error Bound

- ► Statistical Learning Theory informs the tradeoff between the choice of the model class (expressibility) and training error.
- ightharpoonup Gives a theoretical bound on the generalization error of a classifier which is independent of the distribution \mathcal{D} (SVM)
- Generalization error independent of the dimension of the feature space
- Freedom from the 'curse of dimensionality' (SVM)
- SVM learning rooted in Statistical Learning Theory

Margin-based Structured Classification

- ▶ SVM : Single label 2-classification
- ► (Single-label) m-classification extends 2-classification
- $\triangleright \gamma$: margin
- ► max $\gamma s.t. \|\mathbf{w}\| \leq 1$; $\mathbf{w}^{\top} \Delta f_{\mathbf{x}}(\mathbf{y}) \geq \gamma$, $\forall \mathbf{x} \in S$, $\forall \mathbf{y} \neq \mathbf{t}(\mathbf{x})$
 - where $\Delta f_{\mathbf{x}}(\mathbf{y}) := f(\mathbf{x}, \mathbf{t}(\mathbf{x})) f(\mathbf{x}, \mathbf{y})$
- $ightharpoonup \arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{t}(\mathbf{x})$ is a consequence of the above constraint

Loss in Structured Problems

- ▶ Not a simple 0-1 loss
- ▶ 0-1 loss: $I(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{t}(\mathbf{x}))$
- Loss is a per-label loss aka Proportion of incorrect labels predicted
- Margin between t(x) and y scales linearly with the number of wrong labels in y, $\Delta t_x(y)$:
 - ► max $\gamma s.t \| \boldsymbol{w} \| \leq 1$, $\boldsymbol{w}^{\top} \Delta f_{\boldsymbol{x}}(\boldsymbol{y}) \geq \gamma \Delta t_{\boldsymbol{x}}(\boldsymbol{y})$, $\forall \boldsymbol{x} \in S$, $\forall \boldsymbol{y}$
- We tidy up the above by eliminating γ to get the Quadratic Program (QP)

The QP Problem for Margin-based Structured Classification and its Dual

- ▶ QP: $\min \frac{1}{2} \|w\|^2 s.t. w^\top \Delta f_x(y) \ge \Delta t_x(y), \forall x \in S, \forall y$
- Introducing slack variables ξ_x to allow linearly inseparable data, we get the Primal (P) and Dual (D)
- (P): $\min \frac{1}{2} ||w||^2 + C \sum_{x} \xi_x$;
 - s.t. $\mathbf{w}^{\top} \Delta f_{\mathbf{x}}(\mathbf{y}) \geq \Delta t_{\mathbf{x}}(\mathbf{y}) \xi_{\mathbf{x}}, \forall \mathbf{x}, \forall \mathbf{y}.$
- $(D): \max_{\mathbf{x}\mathbf{y}} \sum_{\mathbf{x}\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta t_{\mathbf{x}}(\mathbf{y}) \frac{1}{2} \left\| \sum_{\mathbf{x},\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta f_{\mathbf{x}}(\mathbf{y}) \right\|^{2};$ $s.t. \sum_{\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) = C, \ \forall \mathbf{x}; \ \alpha_{\mathbf{x}}(\mathbf{y}) \geq 0, \ \forall \mathbf{x}, \mathbf{y}.$

Difficulty in Solving Primal and Dual

- ► (P): $\min \frac{1}{2} \|w\|^2 + C \sum_{\mathbf{x}} \xi_{\mathbf{x}};$ $s.t. \ \mathbf{w}^{\top} \Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \ge \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y}) - \xi_{\mathbf{x}}, \ \forall \mathbf{x}, \ \forall \mathbf{y}.$ ► (D): $\max \sum_{\mathbf{x}\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta \mathbf{t}_{\mathbf{x}}(\mathbf{y}) - \frac{1}{2} \left\| \sum_{\mathbf{x},\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \right\|^2;$ $s.t. \sum_{\mathbf{x}} \alpha_{\mathbf{x}}(\mathbf{y}) = C, \ \forall \mathbf{x}; \ \alpha_{\mathbf{x}}(\mathbf{y}) \ge 0, \ \forall \mathbf{x}, \mathbf{y}.$
- # of constraints in (P) and # variables in (D) are both exponential in # labels
- Infeasible computation
- Can we get around it?

TGK03 give an affirmative answer in this paper!

Key idea in the [TGK03] solution

► The variables $\alpha_x(y)$ in (D) can be interpreted as an unnormalized density function over y conditional on x:

$$\sum_{\mathbf{y}} \alpha_{\mathbf{x}}(\mathbf{y}) = C, \ \alpha_{\mathbf{x}}(\mathbf{y}) \ge 0$$

- ▶ The dual objective is a function of
 - \blacktriangleright $\mathbb{E}[\Delta t_{\mathbf{x}}(\mathbf{y})]$ and $\mathbb{E}[\Delta f_{\mathbf{x}}(y)]$, where \mathbb{E} expectation w.r.t $\alpha_{\mathbf{x}}(y)$

are sums of functions over nodes and edges

- So only node and edge marginals of the measure $\alpha_x(y)$ needed to compute the above expectations
- ▶ Here the sparse correlations in the feature representations is used.

Marginal Dual Variables (MDV)

- ▶ MDV $\mu_{\mathbf{x}}(y_i, y_i)$ and $\mu_{\mathbf{x}}(y_i)$ are defined here
- $\mu_{\mathbf{x}}(y_i, y_j) := \sum_{\mathbf{y} \sim [y_i, y_j]} \alpha_{\mathbf{x}} \mathbf{y}, \ \forall (i, j) \in E, \ \forall y_i, y_j, \ \forall \mathbf{x};$
- $\qquad \qquad \boldsymbol{\mu_{\mathbf{x}}(y_i)} \quad := \sum_{\boldsymbol{y} \sim [y_i]} \alpha_{\mathbf{x}} \boldsymbol{y}, \quad \forall i, \ \forall y_i, \ \forall \boldsymbol{x};$
- ▶ $\mathbf{y} \sim [y_i, y_j]$ denote a full assignment \mathbf{y} consistent with partial assignments y_i, y_i
- ▶ We now reformulate the QP (D) via MDV

Reformulation of QP(D) via MDV

► The first term of the objective function in QP(D) Can be written in terms of MDV as follows

$$\sum_{\mathbf{x}} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta t_{\mathbf{x}}(\mathbf{y}) = \sum_{\mathbf{y}} \sum_{i} \alpha_{\mathbf{x}}(\mathbf{y}) \Delta t_{\mathbf{x}}(y_{i})$$

$$= \sum_{i,y_{i}} \Delta t_{\mathbf{x}}(y_{i}) \sum_{\mathbf{y} \sim [y_{i}]} \alpha_{\mathbf{x}}(\mathbf{y}) = \sum_{i,y_{i}} \mu_{\mathbf{x}}(y_{i}) \Delta t_{\mathbf{x}}(y_{i})$$

▶ Similarly the second term of the objective function in QP(D) via the edge marginals $\mu_{\mathbf{x}}(y_i, y_j)$

Consistency Conditions to produce Equivalent QP

▶ To ensure that the MDV $\mu_{\mathbf{x}}(y_i, y_j)$, $\mu_{\mathbf{x}}(y_i)$ are marginals arising from a legal density $\alpha(y)$:

$$\sum_{y_i} \mu_{\mathbf{x}}(y_i, y_j) = \mu_{\mathbf{x}}(y_j), \ \forall y_j, \ \forall (i, j) \in E, \ \forall \mathbf{x}$$

▶ Now we can formulate the equivalent QP in MDV.

Factored Dual QP Equivalent to Original QP(D)

$$\max \quad \sum_{\mathbf{x}} \sum_{i,y_i} \mu_{\mathbf{x}}(y_i) \Delta \mathbf{t}_{\mathbf{x}}(y_i) - \frac{1}{2} \sum_{\mathbf{x},\mathbf{\hat{x}}} \sum_{(i,j)} \sum_{(r,s)} \mu_{\mathbf{x}}(y_i,y_j) \mu_{\mathbf{\hat{x}}}(y_r,y_s) \mathbf{f}_{\mathbf{x}}(y_i,y_j) \top \mathbf{f}_{\mathbf{\hat{x}}}(y_r,y_s);$$

s.t
$$\mu_{\mathbf{x}}(y_i, y_j) = \mu_{\mathbf{x}}(y_j); \ \mu_{\mathbf{x}}(y_i) = C; \ \mu_{\mathbf{x}}(y_i, y_j) \ge 0.$$

- ▶ The objective function here depends only on a polynomial number of MDV
- ▶ Kernels can be used as the basis functions enter as dot products
- The solution of the Factored Dual is

$$\mathbf{w} = \sum_{\mathbf{x}} \sum_{i,j} \sum_{y_i,y_i} \mu_{\mathbf{x}}(y_i,y_j) \Delta f_{\mathbf{x}}(y_i,y_j)$$

Conclusion

For Structured Data Classification, $\mathrm{M}^{3}\mathrm{N}=\mathrm{SVM}+\mathrm{MN}$

References

- ▶ Max-Margin Markov Networks. B. Taskar, C. Guestrin and D. Koller, NIPS 2003
- Combining SVM with Graphical Models for Supervised Classification: an Introduction to Max-Margin Markov Networks. Simon Lacoste-Julien, Report December, 2003
- Information Theory, Inference and Learning Algorithms.
 D.J.C. MacKay (book online)
- Pattern Classification. O. Duda, P.E. Hart and D.C. Stork
- Statistical Learning Theory. V. Vapnik