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Introducing A Label Sequence Learning Technique

Discriminative learning technique for label sequences
Structured output prediction problem hard: the set of label sequences
scale exponentially

Solution: Combination of Support Vector Machines and Hidden Markov
Models

Generalization of SVM

Handels dependencies between neighbouring labels using Viterbi decoding

Learning is discriminative and is based on a maximum/large/soft margin
criterion

Can learn non-linear discriminant functions via kernel functions

Can deal with overlapping features

Example tasks (in the paper): named entity recognition and
part-of-speech tagging
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Learning from observation sequences
Learning from observation sequences by predicting label sequences instead of
individual class labels: Label Sequence Learning

natural language processing, speech recognition, computational biology,
system identification

Can solve problems:
1. Segmenting observation sequences
2. Annotating observation sequences
3. Recovering underlying discrete source

HMM (predominant formalism for modelling label sequences) limitations:
1. Trained in a non-discriminative manner → challenge of finding more
appropriate objective functions
2. Independence assumption too restrictive → challenge of allowing direct
dependencies between a label and past/future observations
3. Based on explicit feature representations and lack power of kernel based
methods

from HMM use: the Markov chain dependency structure between labels: an
undirected graph(chain)

from HMM use: efficient dynamic programming
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Useful Properties of HMM and SVM (in general)

One use of HMM: Given the parameters of the model, find the most likely
sequence of hidden states that could have generated a given output sequence.

This problem is solved by the Viterbi algorithm i.e. we find pre image via
DP: finds most probable state sequence and reconstruct the path in reverse
direction. We have to compute the transition cost and observation cost
matrix.

SVM classifies samples based on the training set of input-output pairs
(x1, c1), ..., (xm, cm), where ci indicates (1/-1) if xi belongs to the class ci or
not.

Predict label sequences y instead of ci :s.
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Support Vectors http://www.imtech.res.in/raghava/rbpred/svm.jpg

The hypothesis space is given by the functions f (x) = sng(wx + b), where w
and b are parameters that are learned

Samples on the margin are the support vectors

Optimization problem: the norm of w and loss are minimized subject to right
classification within the allowed error(s), ξi (soft margin)

Writing the classification rule in its unconstrained dual form reveals that
classification is only a function of the support vectors
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Optimizing dual Problem and Non-separability

Maximum-margin problem: find the weight vector w that maximizes the
minimum margin of the sample.

Using the standard trick of fixing the functional margin at 1, one can
equivalently minimize the squared norm ‖w‖2 subject to the margin
constraints.

Instead of optimizing the primal problem optimize the dual problem:
introduce a Lagrangian multiplier αiy → enforce the margin constraint for
label y 6= yi and input xi → write out αiy → differentiate → substitute
equations of the primal into Lagrangian results, in a dual QP.

In order to accommodate for margin violations (a non-separable case) one
can generalize SVM formulation: one may add slack variable ξi for every
training sequence.

k((xi , y), (xj , ȳ)) = 〈δΦi (y), δΦj(ȳ)〉 denote the kernel function and can be
computed from the inner products involving values of Φ due to the linearity
of inner product and validity of k as kernel.
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Label Sequence Learning Problem

Label sequence learning is the problem of inferring a label or state sequence
from an observation sequence, where the state sequence may encode a
labelling, annotation or segmentation of the sequence

i.e. predict a sequence of labels y = (y1, ..., ym), yk ∈ Σ, from a given
observation sequence x = (x1, ..., xm).

Map observation vectors x to some representation in <d , which is the
observation feature space.

Map labels y to some representation in <d , which is the output feature space.

Make a joint feature map for pairs (x, y).

We have training pairs X ≡ {(xi , yi )} and we want to learn a linear
discriminant function F : X × Y ∈ < over input/output pairs from which
we can derive a prediction by maximizing F over the response variable,
y ∈ Y, for a specific given input x.
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Label Sequence Learning Problem continues ...

Hence, the general form of hypotheses f is (w denotes a parameter vector)

f (x;w) = arg max
y∈Y

F (x, y;w).

It might be useful to think of −F as a w-parameterized family of cost
functions [2], which we try to design in such a way that the minimum of
F (x, ·;w) is at the desired output y for inputs x of interest.

We assume F to be linear in some combined feature representation of inputs
and outputs Φ(x, y), i.e.

F (x, y;w) = 〈w,Φ(x, y)〉

An example (next two slides) from [2] and [3]:
The goal in natural language parsing is to predict the parse tree y that
generates a given input sentence x = (x1, ..., xm). Each node in the tree y is
generated by a rule of a weighted context-free grammar which is assumed to
be in Chomsky normal form.
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Label Sequence Learning Example

x = (The, dog , chased , the, cat) and

y is a grammar based parse tree with rules gj e.g. S → NP VP: ’sentence
produces noun-part and verb-part’.

f maps a given sentence x to a parse tree y.

The number of all possible productions, d , defines the joint feature space,
<d . Λ(y) and Ψ(x) are indicator vectors of the productions in a tree: if a
production is present (1) or not (0).

Mapping Φ(x, y) = Φ1(x, y) + Φ2(x, y), represents interdependencies between
labels and the nodes of the tree.

Φ(x, y) is a histogram vector counting how often each grammar rule gj

occurs in the tree y.

f (x;w) can be efficiently computed by finding the structure y ∈ Y that
maximizes F (x, y;w) via the CYK (aka CKY, complexity n3) algorithm.

Learning over structured output spaces Y inevitably involves loss functions
other than the standard zero one classification loss. A parse tree that differs
from the correct parse in a few nodes only should be treated differently from
a parse tree that is radically different.
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Illustration of Natural Language Parsing Model
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Input-Output mappings via Joint Feature Functions

The general approach we pursue is to learn a w-parametrized discriminant
function: F : X × Y ∈ < over input/output pairs and to maximize this
function over the response variable to make a prediction.

f (x) = arg max
y∈Y

F (x, y;w) (1)

In particular, we are interested in a setting, where F is linear in some
combined feature representation of inputs and outputs Φ(x, y) i.e.

F (x, y;w) = 〈w,Φ(x, y)〉 (2)

We want to apply kernel function to avoid explicit mapping Φ.

In structured-output prediction:
only a small fraction of constraints are active
+ overlap information among classes represented via the joint feature map
→ maintain working sets Si for each instance to keep track of the selected
constraints which define the current relaxation. And find the most violated
constraint (in arg max).
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Input-Output Mappings continues ...

Kernel functions avoid performing an explicit mapping Φ when this may
become intractable. This is possible due to the linearity of the function F , if
we have a kernel K over the joint input/output space such that

K ((x, y), (x̃, ỹ)) = 〈Φ(x, y),Φ(x̃, ỹ)〉 (3)

and whenever the optimal function F has a dual representation in terms of an
expansion F (x, y) =

∑m
i=1 αiK ((x̃i , ỹi ), (x, y)), i = 1, ...,m, over some finite

set of samples (x̃1, ỹ1), ..., (x̃m, ỹm)

Extract features not only from the input patterns as in binary classification,
but also jointly from input-output pairs.

The compatibility of an input x and an output y may depend on a particular
property of x in conjunction with a particular property of y.

This is especially relevant, if y is not simply an atomic label, but has an
internal structure that can itself be described by certain features. These
features may in turn interact in non-trivial ways.
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Hidden Markov Chain Discriminants
We want to learn mapping f from observation sequences x = (x1, ...x t , ...) to
label sequences y = (y1, ...y t , ...), where each label takes values from some
label set Σ, i.e. y t ∈ Σ.
Since for x we only consider label sequences y of the same length lx , the
admissible range of f : X × Y is effectively finite
Output space Y consists of all possible label sequences (its cardinality grows
exponentially in the size of y).
The definition requires a suitable parametric discriminant function F to
specify a mapping Φ which extracts features from an observation/label
sequence pair (x, y).
HMMs suggest to define two types of features, interactions between
attributes of the observation vectors and a specific label as well as
interactions between neighbouring labels along the chain.
Don’t define a proper joint probability model. Define Φ so that f can be
computed from F efficiently, i.e. using Viterbi-like decoding algorithm.
Restrict label-label interactions to nearest neighbours as in HMMs.
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Hidden Markov Chain Discriminants: Notations
Ψ maps observation vectors x to some representation Ψ(x) ∈ <d e.g. ψr (x

s)
may denote the input feature of specific word like ’rain’ occurring in the s-th
position in a sentence.
Jy t = σK denotes the indicator function for predicate y t = σ e.g. whether the
t-th word is a noun or not.
Define a set of combined label/observation features via

φst
rσ(x, y) = Jy t = σKψr (x

s), 1 ≤ r ≤ d , σ ∈ Σ (4)

e.g. φst
rσ = 1 would indicate the conjunction of the two predicates: s-th word

is ’rain’ and t-th word has been labelled as a noun. (In general this may not
be binary, but real-valued.) Features φst

rσ conjunctively combine input
attributes ψr with states σ. For example, if each input is described by L
attributes ψr and if there are K = |Σ| possible states, then one may extract a
total of K · L features of this type by combining every input attribute with
every state.
For the second type of features we have inter-label dependencies

φ̄st
στ = Jy s = σ ∧ y t = τKψr (x

s), σ, τ ∈ Σ (5)

These features simply count how often a particular combination of labels
occur at neighbouring sites.
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The Sum of partial Feature Maps

From previous features a partial feature map Φ(x, y; t) at position t can be
defined by selecting appropriate subset of the features φst

rσ and φ̄st
στ . For

example, an HMM only uses input-label features of the type φtt
rσ and

label-label features φ̄
t(t+1)
στ , reflecting the first order Markov property of the

chain. (1.) Define feature representation of input pattern, (2.) select
appropriate window size and (3.) stack together all extracted features at
location t.

I.e. the feature map is extended to sequences (x, y) of length T in an additive
manner (In this way, we can compare sequences of different lengths easily):

Φ(x, y) =
T∑

t=1

Φ(x, y; t) (6)

The similarity between two sequences depends on the number of common
two-label fragments as well as the inner product between the feature
representation of patterns with common label:

〈Φ(x, y),Φ(x̄, ȳ)〉 =
∑
s,t

Jy s−1 = ȳ t−1∧y s = ȳ tK+
∑
s,t

Jy s = ȳ tKk(x s , x̄ t) (7)
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HM-SVM: derive a maximum margin formulation for the joint kernel learning setting

Generalize the notion of a separation margin by defining the margin of a training
example with respect to a discriminant function, F , as:

γi = F (xi , yi )−max
y 6=yi

F (xi , y) (8)

Then the maximum margin problem can be defined as finding a weight vector w
that maximizes mini γi .

Restrict the norm of w ( = 1) or fix the functional margin (maxi γi ≥ 1); the
latter results to quadratic objective

min
1

2
‖w‖2, s.t.F (xi , yi )−max

y 6=yi

F (xi , y) ≥ 1, ∀i . (9)

Each non-linear constraint in Eq. (9) can be replaced by an equivalent set of
linear constraints,

F (xi , yi )− F (xi , y) ≥ 1, ∀i and ∀y 6= yi (10)

Introduce an additional threshold θi . Function zi stresses that (xi , yi ) takes
the role of positive example and (xi , y) for y 6= yi takes the role of negative
pseudo-example.

zi (y)(F (xi , y) + θi ) ≥
1

2
, zi (y) =

{
1 if y = yi

−1 otherwise
(11)
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Hidden Markov SVM continues ...

The dual formulation of quadratic program

maxW(α) = −1

2

∑
i,y

∑
j,ȳ

αi (y)αj(ȳ)zi (y)zj(ȳ)ki,j(y, ȳ) +
∑
i,y

αi (y) (12)

s.t. αi (y) ≥ 0, ∀i = 1, ..., n, ∀y ∈ Y and
∑

y∈Y zi (y)αi (y) = 0,∀i = 1, ..., n
where ki,j(y, ȳ) = 〈Φ(xi , y),Φ(xj , ȳ)〉
αi (y) = 0, if αi (yi ) = 0, i.e. only if the positive example (xi , yi ) is a support
vector, will there be corresponding support vectors created from negative
pseudo-examples.
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HM-SVM Optimization

The actual solution might be extremely sparse, since we expect that only very
few negative pseudo-examples (which is possibly small subset of Y) will
become support vector.

Design a computational scheme that exploits the anticipated sparseness of
the solution

Since the constraints only couple Lagrange parameters for same training
example, the authors propose to optimize W iteratively, at each iteration
optimize over the subspace spanned by all αi (y) for a fixed i .

If α∗ is a solution of the Lagrangian dual problem in Eq. (12), then α∗i = 0
for all pairs (xi , y) for which F (xi , y) < maxȳ 6=y F (xi , ȳ;α∗).

Define the matrix D((xi , y), (xi , ȳ)) ≡ zi (y)zj(ȳ)ki,j(y, ȳ). Then
α′Dei (y) = zi (y)F (xi , y), where ei (y) refers to the canonical basis vector
corresponding to the dimension of αi (y).

Use working set approach to optimize over the i-th subspace that adds at
most one negative pseudo-example to the working set at a time. Maximize
Wi (αi ; {αj : j 6= i}) over arguments αi while keeping all other αj ’s fixed.
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HM-SVM Optimization Algorithm

Algorithm 1 Working set optimization for HM-SVMs

1: S ← {yi}, αi = 0
2: loop
3: compute ŷ = arg maxy 6=yi

F (xi , y;α) // a 2-best Viterbi with cost matrices
4: if F (xi , yi ;α)− F (xi , ŷ;α) ≥ 1 then
5: return αi

6: else
7: S ← S ∪ {ŷ}
8: αi ← optimize Wi over S // SVM optimization
9: end if

10: for y ∈ S do
11: if αi (y) = 0 then
12: S ← S − {y}
13: end if
14: end for
15: end loop
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Soft Margin HM-SVM

In the algorithm step 8, we want to introduce slack variable to allow margin
violation. A slack variable per training data point, which is shared across all
the negative pseudo-examples, is generated. Using either L2 or L1 penalties
defines which constraints are used in step 8.

With L2 we have objective

min
1

2
‖w‖2 +

C

2

∑
i

ξ2
i (13)

s.t. zi (y)(w, 〈Φ(xi , y)〉+ θi ) ≥ 1− ξi
and ξi ≥ 0,∀i = 1, ..., n,∀y ∈ Y

By solving Lagrangian function for ξi we get penalty terms with variables αi .
We can further absorb the penalty into kernel and get

KC ((xi , y), (xi , ȳ)) = 〈Φ(xi , y),Φ(xi , ȳ)〉+ 1

C
zi (y)zi (y

′) (14)

and KC ((xi , y), (xj , y′)) = K ((xi , y), (xj , y′)) for i 6= j .
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Soft Margin HM-SVM, L1 penalty

We have optimization problem

min
1

2
‖w‖2 + C

∑
i

ξi (15)

s.t. zi (y)(〈w,Φ(xi , y)〉+ θi ) ≥ 1− ξi , ξi ≥ 0

∀i = 1, ..., n,∀y ∈ Y

The box constraints on the αi (y) takes the following form

0 ≤ αi (y), and
∑
y∈Y

αi (y) ≤ C (16)

Whenever ξi > 0,
∑

y∈Y αi (y) = C . This means that

αi (yi ) =
∑
y 6=yi

αi (y) = C/2 (17)
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Applications
Named Entity Recognition (NER): find phrases, e.g. containing person, location
and organization names. Each entry is annotated with the type of its expression
and its position in the expression, i.e. the beginning or the continuation of the
expression. There are 9 labels. In the particular example, there are 34 support se-
quences, whereas the size of Y is 169.

(left) Test error of NER task over a window of size 3 using 5-fold cross validation.
(right) Example sentence, the correct named entity labelling, and a subset of the
corresponding support sequences. Only labels different from the correct labels
have been depicted for support sequences. The support sequences with maximal
αi (y) have been selected.
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