Protein function prediction
via graph kernels

Jing Tang

Overview

e Review on Borgwardt et al., 2005.
Bioinformatics.

e Prediction of protein functions using
seguence and structure information

e Graph kernel and hyperkernel techniques

Biological motivation

e Determination of a protein function according
to Its sequence and structure remains a
daunting task.

e A protein is assumed to perform the same
function as the most similar proteins in a
database of known proteins.

e Question: How to define similarity? Sequence
alignment, structure, common binding sites,
chemical features ...

However, ...

e There are no universally valid standards In
defining similarity.

e Similarity in one aspect or another does not
guarantee similar functions.

e Therefore, multiple similarity measures need
to taken in combination.

Solution

e Kernel methods and support vector machines

Protein data

A 4

Feature vectors

Margin maximization

A
Function classification

Kernel methods

SVM

Why bother a new kernel?

e EXisting kernel methods simply transform
protein data into a simplified feature vector
description, where detailed information was
lost.

e Graph kernel provides a natural way to
capture the protein structure information.

protein secondary sequence structure
data structiure elements

Graph terms

e Graph G: G(V,E)
e Attributed graph
e Adjacency matrix
e Walk in a graph

Protein graph representation

e Each graph represents one protein.

e Nodes represent Secondary structure
elements (SSE).

e Edges represent either the actual linkage
along the (amino acid) sequence, or the
spatial neighbors in the structure

e Every node Is connected to its three nearest
spatial neighbors.(?)

Protein graph representation

e Sequential and structural information are
represented as attributes.

e Node attributes

Type. (Helix, sheet, turn, ...)
Length. (in amino acid sequence or in angstroms)

e Edge attributes

Type.
Length.

Random walk graph kernel

e Random walk counts the number of matching
between two labeled graphs.

e The match is determined by comparing the
attribute values along the walk path.

Korapn(G1, G1) = Z Z Kwany (Walky . walks).
walk, € &y walk. e (r,

Direct product graph

e Designed for facilitating the computation of
random walk kernel.

e Compared via a Dirac kernel (exact match).

Pyl = Ga)={lvi,un) e V= W
(label(vi) = label(w1))).

E (G % Gy) ={{(vy, wy), (v2.u1)) € (G} x G3) -
(v.17) e EAa(wy,un) e F

A (label(vy. 1) = label(wy, un))}.

Computation of random walk
kernel

e The adjacency matrix of the direct product
graph can be used for computing random walk
kernel

Ve [=a

ki (G1.G2) = Z Z}?”‘iﬂ;{

i,.j=1 Ln=0 dij

Modified random walk kernel

e The nodes in the protein graph contain continuous
attributes such that an exact match required in the
direct product graph is not applicable.

e Therefore, the adjacency matrix has to be continuous.
e This is done by introducing step kernel.

i

k;;”p |_r1, (A |'I_.i; /N Ly M'Jl')
[‘:.-13{][I:L'.i.El'.'_i_:I.[l'_li_El'.'_li]:l — *:.,f”l'.:- [I_,r'1"- “'[I!'- u-l_,"H = E?-{-
| 0 otherwise

X,

With Ey, = Ex(G1 x Gy)and (vi,vj) € E and (w;, w;) € F.

Step kernel

DEFINITION 4 (Step kernel). Fori e {1,....n— 1}, thestep
frernel is defined as
Ksgrep (U, Ui1), (wy, wiqq))
= Kpode Vi, Wi) * Kpade(Vig1, Wigq)

% Kedpe ((V, Viqa), (Wi, wigp1)),

where K.gq. 15 defined as

-":E:'E_gf”'-"f L). (wy, wy)
= Ktype (Ui, ig1), (W wiq1))

d Kiengeh ((U7. Vi41). (wy, wig1))

and fori e {1,....n}, kpode Is defined as

Knode (Ui, W)

= Kivpe (Vi. W) % Kpade labels (Vi W5) % Kiengeh (U5, Wy).

Three component kernels

o Type kernel 1 y“n*p.e“] — T}.‘l::ef,'l,"r]__

Kivpe(x,x') = _
e 0 otherwise.

e Length kernel

kiength (x,x") = max(0,c — |length(x) — length(x")]).

e Node labels kernel

llabels(x) — labels(x")||*)

-~

knode labels (X, X") = exp (— —

Prove of positive definiteness

K_graph

A 4

kerapn(G 1, G2) = Z Z Kean (Walky , walky).

walk, e &y walk, e+,

K_walk

y

n—1
Kwaip (walky, walky) = l_I Kstep (U5, Ui). (wy, wigq)).
=1

K_walk(j)

Type kernel

A 4

Kstep ({05, Vig1), (Wi, wigq))

K_step

= Knode Vi, Wi) * Kyode (Vig1, Wig1)

l

Length kernel

¥ -':ffc?'gf ((vi, vig1), (Wi, wisr)),

Node lable kernel

Hyperkernels

e A trick to choose best kernel (informative
attributes ?)

e Offset by controlling the kernel complexity

e Obtained through minimizing a regularized
guality functional (?)

e Semidefinte programming (SDP) (?)
Implemented in MATLAB/SVLAB

Discussions

