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Graph kernels

e Structured data is often represented as graphs, which comes
in wide selection of types:

Phylogenetic trees

RNA structures

Gene regulation networks

Molecules

Natural language

XML

Protein representation as distance graphs

e Using graph-like data in kernel methods requires graph kernels.



Graph kernels vs tree kernels

o Last week’' tree kernel was defined on a feature vector of
counts of subtrees or substrings. The definition was general
and could be computed efficiently. Graph kernels are a
generalization of tree kernels.

e Graph kernels presented in the literature are based on measure
labeled walks. E.g.

e Probability of walks (with equal labels), which is represented
here (Kashima 2003). Infinite number of walks if graph is
cyclic.

e Counts of subgraphs (enumeration NP-hard) (Gartner 2003).

e Counts of walks with equal labels containing gaps (Gartner
2003)

e Counts of labeled walks with where first and last node are
equal (Gartner 2003). This can be trivially computed using
adjacency matrix exponential

[A"];j = counts of /-length walks from node i to j



Exponential kernels

e Assume a graph with distance matrix A

A B C D E
Ajl0O 1 1 1 1
Bf1 0 0 1 1
ci1 0 0 0 O
Dj1 1 0 0 1
E|{1 1 0 1 O

Table: [A]*

A B C D E
Al6 8 4 8 8
B8 6 2 7 7
cCl4 2 0 2 2
D8 7 2 6 7
E|8 7 2 7 6

Table: [A]?

e Kernel is based on vectors of walk counts.



Graph Notation

e A labeled directed graph G is a tuple (X, v, L, e), where

e X is the set of nodes, function v maps nodes to labels
e L is the set of edges, function e maps edges to labels

Graphs are simple.

e A walk x is a sequence of nodes (x1, x2, ..., Xx;) of length /,
possibly infinite.

e A label sequence h is an alternating sequence of node and
edge labels. Label sequence associated with walk x is

hy = (Vags €500 Vs - - -5 Vg )-



Walk probabilities

e Walks and label sequences have probabilities.

e ps(x) is the probability distribution of nodes to be the first
node on a walk.

e pi(x;|xi—1) is the transition probability distribution from x;_;
to Xx;.

e py(x) is the probability distribution for the walk to end at node
X.

e The probability of a walk x is

/
p(x|G) = ps(x1) [ | pe(xilxi-1)pq(x)-

i=2



Label sequence probabilities

e The probability of a label sequence is the sum of probabilities
of all walks emitting h

p(h|G) = Zlh he - P(X|G)

I
= Z lh=n, - (Ps(xl) HPt(Xi’Xil)Pq(X/))
X i=2

e On a graph where each label is distinct, there's only one walk
generating each label sequence. Doesn't apply in general case
(e.g. molecular graphs).



Label sequence kernels

e The kernel for label sequences is a pair-wise product of label
kernels

/
k,(h,h') = kv(hl,hll)er(hzi—m pi_o)ky(h2i—1, hhi_1),
i—2

where k, is a kernel for nodes and k. is a kernel for edges.
Kernel k, is zero if sequences have differing lengths.

e Valid kernels k, and k. can be chosen appropriately. For
example

o |dentity kernel: k, =1,_,/.
e Gaussian kernel if the labels are real valued.



General graph kernel

e The graph kernel is defined as the expectation of kernel k,
over all possible h and h’

ZZp h|G)p(W|G') - ky(h,h').



Kernel's feature space

e The kernel's features are label sequences.

e In directed acyclic graphs feature space is limited. This case is
computed using recursive definition of the problem with
dynamic programming.

e In general case (cyclic graphs) feature space is possibly infinite
because of loops.

e The computation of cyclic graph kernel can still be done with
linear system theory and convergence properties of the kernel.



Reformulation

For further equations, let’s define pair-wise partial kernel
values:

o s(x,x1) = ps(x)PL(x)) kv (Vi vig)

L4 t(XlaXLXifl»lefl) =

pe(xalxi—1) (X7 1Xi_1 ) v (Vi Vi ) ke (€110 €1t )

* q(x1,x/) = pq(x1)pg(x))
Term s is the partial kernel value of the first node in the label
sequence over all possible first nodes.
Term t is the partial kernel value for transition to next node.

Term q is the partial kernel value for the last node in
sequence.



Computation of the graph kernel in acyclic case

e In the case of directed acyclic graphs the nodes can be
topologically ordered such that there is no path from node j
to i if i < j. Kernel can be redefined as

k(G,G) = s(xa,x{)r(xa, %),

!
X1,X]

where r is a recursive function

/ / .y ’ -
r(Xl?Xl) = q(X17X1) + Z t(.lv./ 7X17X1)r(.la./ )
j>X1,j/>X{
Since nodes are ordered, the sum iterates over smaller and

smaller set. Dynamic programming handles this problem in
time O(|X] - |X']).



Computation in cyclic case
o Let's first define r; as the partial kernel value for /-length label

sequences with first node x; and x{. Only thing missing from
the value is first node kernel values.

rI(XhX{) = (Z t(XZ',Xé%leX{) ( (Z t(X“XI/vXI11XI/1)q(X/7XI/)>>) .

/ /
X2,%3 X1X]

e Now the kernel can be formulated as

inf
k(G,G') = s(xa,x) > rnlxax).
X1,X{ =1

Rinf(x1,X1)

To compute the Rip¢(x1,x{) we have following system of linear
equations

Rinf(x1,x0) = ni(xa, x) + Y (i, x1, 1) Rine (. J)-
~— —
q(x1,x]) J

e R, is perceiveed as discrete time linear system. Ry is
converging, and thus we solve the linear equations.



Matrix computation

e The linear equation system can be computed using matrix
notation with

k(G,G)= (I — T) 'rs.
Here

o s=(-- 75(,'71')7...)T
°r :( ,rl(i,j),"')T
e T is the transition probability matrix
e Computing the kernel requires solving linear equation with
|X|? x |X|? coefficients.



Variants

e Kernel can be modified with weight decay, where the
probabilities of label sequences decay with the length of
sequence. The decay parameter A\, is appended to transition
probabilities p:(x;j|xi—1):

Akpe(Xi|Xi—1),

where k is the length of the walk so far.



Experiments

e Graph kernel was used with SVM to classify molecule
toxicality. Method was compared with Pattern Discovery
(PD) algorithm

e PD identifies all label sequences which appear in at least m
graphs. With relatively high values of m PD finds small set of
significant features. PD is complex and computationally
prohibitive for lower values of m.

e Both methods were of comparable classification accuracy.

e Graph kernel parameters were set to uniform probabilities for
ps and p; and a constant for p,.



Summary

o A kernel for general graphs based on labeled walks (label
sequences).

e Lengths of the walks can be modified with p; and pq

parameters. Likelihood for long walks can be reduced further
with decay term .

e Kernel extracts structural information of the graph. Difference
with e.g. subgraph-based kernel?
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