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Graph kernels

• Structured data is often represented as graphs, which comes
in wide selection of types:

• Phylogenetic trees
• RNA structures
• Gene regulation networks
• Molecules
• Natural language
• XML
• Protein representation as distance graphs

• Using graph-like data in kernel methods requires graph kernels.



Graph kernels vs tree kernels

• Last week’ tree kernel was defined on a feature vector of
counts of subtrees or substrings. The definition was general
and could be computed efficiently. Graph kernels are a
generalization of tree kernels.

• Graph kernels presented in the literature are based on measure
labeled walks. E.g.

• Probability of walks (with equal labels), which is represented
here (Kashima 2003). Infinite number of walks if graph is
cyclic.

• Counts of subgraphs (enumeration NP-hard) (Gartner 2003).
• Counts of walks with equal labels containing gaps (Gartner

2003)
• Counts of labeled walks with where first and last node are

equal (Gartner 2003). This can be trivially computed using
adjacency matrix exponential

[Al ]i,j = counts of l-length walks from node i to j



Exponential kernels

• Assume a graph with distance matrix A
A B C D E

A 0 1 1 1 1
B 1 0 0 1 1
C 1 0 0 0 0
D 1 1 0 0 1
E 1 1 0 1 0

Table: [A]1

A B C D E
A 6 8 4 8 8
B 8 6 2 7 7
C 4 2 0 2 2
D 8 7 2 6 7
E 8 7 2 7 6

Table: [A]3

• Kernel is based on vectors of walk counts.



Graph Notation

• A labeled directed graph G is a tuple (X , v ,L, e), where
• X is the set of nodes, function v maps nodes to labels
• L is the set of edges, function e maps edges to labels

Graphs are simple.

• A walk x is a sequence of nodes (x1, x2, . . . , xl) of length l ,
possibly infinite.

• A label sequence h is an alternating sequence of node and
edge labels. Label sequence associated with walk x is

hx = (vx1 , ex1,x2 , vx2 , . . . , vxl
).



Walk probabilities

• Walks and label sequences have probabilities.

• ps(x) is the probability distribution of nodes to be the first
node on a walk.

• pt(xi |xi−1) is the transition probability distribution from xi−1

to xi .
• pq(x) is the probability distribution for the walk to end at node

x .

• The probability of a walk x is

p(x|G ) = ps(x1)
l∏

i=2

pt(xi |xi−1)pq(xl).



Label sequence probabilities

• The probability of a label sequence is the sum of probabilities
of all walks emitting h

p(h|G ) =
∑

x

1h=hx · p(x|G )

=
∑

x

1h=hx ·

(
ps(x1)

l∏
i=2

pt(xi |xi−1)pq(xl)

)

• On a graph where each label is distinct, there’s only one walk
generating each label sequence. Doesn’t apply in general case
(e.g. molecular graphs).



Label sequence kernels

• The kernel for label sequences is a pair-wise product of label
kernels

kz(h,h′) = kv (h1, h
′
1)

l∏
i=2

ke(h2i−2, h
′
2i−2)kv (h2i−1, h

′
2i−1),

where kv is a kernel for nodes and ke is a kernel for edges.
Kernel kz is zero if sequences have differing lengths.

• Valid kernels kv and ke can be chosen appropriately. For
example

• Identity kernel: kv = 1v=v ′ .
• Gaussian kernel if the labels are real valued.



General graph kernel

• The graph kernel is defined as the expectation of kernel kz

over all possible h and h′

k(G ,G ′) =
∑
h

∑
h′

p(h|G )p(h′|G ′) · kz(h,h′).



Kernel’s feature space

• The kernel’s features are label sequences.

• In directed acyclic graphs feature space is limited. This case is
computed using recursive definition of the problem with
dynamic programming.

• In general case (cyclic graphs) feature space is possibly infinite
because of loops.

• The computation of cyclic graph kernel can still be done with
linear system theory and convergence properties of the kernel.



Reformulation

• For further equations, let’s define pair-wise partial kernel
values:

• s(x1, x
′
1) = ps(x1)p

′
s(x

′
1)kv (vx1 , vx′1

)
• t(x1, x

′
1, xi−1, x

′
i−1) =

pt(x1|xi−1)p
′
t(x

′
i |x ′i−1)kv (vxi , v

′
x′i

)ke(exi−1xi , ex′i−1x
′
i
)

• q(xl , x
′
l ) = pq(xl)p

′
q(x

′
l )

• Term s is the partial kernel value of the first node in the label
sequence over all possible first nodes.

• Term t is the partial kernel value for transition to next node.

• Term q is the partial kernel value for the last node in
sequence.



Computation of the graph kernel in acyclic case

• In the case of directed acyclic graphs the nodes can be
topologically ordered such that there is no path from node j
to i if i < j . Kernel can be redefined as

k(G ,G ′) =
∑
x1,x ′

1

s(x1, x
′
1)r(x1, x

′
1),

where r is a recursive function

r(x1, x
′
1) = q(x1, x

′
1) +

∑
j>x1,j ′>x ′

1

t(j , j ′, x1, x
′
1)r(j , j

′).

Since nodes are ordered, the sum iterates over smaller and
smaller set. Dynamic programming handles this problem in
time O(|X | · |X ′|).



Computation in cyclic case

• Let’s first define rl as the partial kernel value for l-length label
sequences with first node x1 and x ′1. Only thing missing from
the value is first node kernel values.

rl(x1, x
′
1) =

∑
x2,x′2

t(x2, x
′
2, x1, x

′
1)

· · ·
∑

xl ,x′l

t(xl , x
′
l , xl−1, x

′
l−1)q(xl , x

′
l )

 .

• Now the kernel can be formulated as

k(G ,G ′) =
∑
x1,x ′

1

s(x1, x
′
1)

inf∑
l=1

rl(x1, x
′
1)︸ ︷︷ ︸

Rinf(x1,x ′
1)

.

To compute the Rinf(x1, x
′
1) we have following system of linear

equations

Rinf(x1, x
′
1) = r1(x1, x

′
1)︸ ︷︷ ︸

q(x1,x ′
1)

+
∑
i ,j

t(i , j , x1, x
′
1)Rinf(i , j).

• RL is perceiveed as discrete time linear system. RL is
converging, and thus we solve the linear equations.



Matrix computation

• The linear equation system can be computed using matrix
notation with

k(G ,G ′) = (I − T )−1r1s.

Here

• s = (· · · , s(i , j), · · · )T
• r1 = (· · · , r1(i , j), · · · )T
• T is the transition probability matrix

• Computing the kernel requires solving linear equation with
|X |2 × |X |2 coefficients.



Variants

• Kernel can be modified with weight decay, where the
probabilities of label sequences decay with the length of
sequence. The decay parameter λk is appended to transition
probabilities pt(xi |xi−1):

λkpt(xi |xi−1),

where k is the length of the walk so far.



Experiments

• Graph kernel was used with SVM to classify molecule
toxicality. Method was compared with Pattern Discovery
(PD) algorithm

• PD identifies all label sequences which appear in at least m
graphs. With relatively high values of m PD finds small set of
significant features. PD is complex and computationally
prohibitive for lower values of m.

• Both methods were of comparable classification accuracy.

• Graph kernel parameters were set to uniform probabilities for
ps and pt and a constant for pq.



Summary

• A kernel for general graphs based on labeled walks (label
sequences).

• Lengths of the walks can be modified with pt and pq

parameters. Likelihood for long walks can be reduced further
with decay term λk .

• Kernel extracts structural information of the graph. Difference
with e.g. subgraph-based kernel?
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