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Abstract. There is a need for terminal management mechanisms for
high volume embedded devices. Current technology provides mechanisms
for adaptation of software on embedded devices during their deployment.
These mechanisms give the opportunity to adapt a device to the wishes of
the consumer at a specific location or time. While being useful to the user,
these mechanisms might also jeopardize the software integrity on these
devices. In this paper we present mechanisms that can be used to adapt
the software configuration of a device depending on the context in which
it is used. Furthermore we present the mechanisms that can be used
to maintain software integrity in a dynamically changing system. The
challenge is to increase the value of a device by run-time adaptation of
the software configuration to the needs of the consumer, and to maintain
software integrity during run-time changes to ensure robust and reliable
operation of a device.

1 Introduction

1.1 Background

Our research was carried out in the context of the Robocop and Space4U projects4.
The goal of these projects is the definition of a component based software ar-
chitecture for the middleware layer of high volume embedded appliances. High

4 These projects are funded in part by the European ITEA program and they are joint
projects of various European companies, together with private and public research
institutes.



volume embedded appliances vary from cellular phones and personal digital as-
sistant to Internet and broadcast terminals like set top boxes, network gateways
and digital television sets. Where the Robocop project solves a number of criti-
cal issues like the enabling of software IP exchange and supporting (distributed)
developments based on resource constrained, robust, reliable and manageable
components, the Space4U project extends these goals by including the aware-
ness of the framework and its components with respect to fault-, power- and
terminal management related aspects. Our contribution to the Space4U project
focuses on the terminal management activities.

In the context of Robocop and Space4U, a terminal is a high volume embed-
ded device. Its management focuses on the period that a terminal is owned and
used by a consumer. Integrity refers to functional aspects of the software inside
the terminal but also to timing issues and resource use. The terminal must work
according to its specification. Context-aware adaptation refers to modifying the
terminal based on the location where it is used, the time on which it is used or
the user that uses it.

1.2 Motivation

The purpose of our research is to investigate how to increase the value of a device
by tailoring it to the context in which it is used and how to achieve robust and
reliable operation of devices with dynamically changing software configurations.

There is a need for mechanisms that maintain software integrity in embed-
ded devices. Robust and reliable operation of a device require the software on
the device to be consistent and suitable for that device. Producers of embed-
ded devices face the challenge of developing a continually increasing amount of
software while time-to-market should preferably decrease. Time-to-market can
be reduced by deploying a core system first and upgrading it with additional
features when the system is already owned and used by a consumer. This results
in embedded systems that are continuously evolving, which significantly com-
plicates the task of integrity management. The system integrity management
framework developed within Space4U provides mechanisms for maintaining the
integrity of the software in embedded devices.

With the increasing capabilities of embedded devices it is possible to tailor
the devices to the context in which they are used. A mobile phone can be used
as a shopping list in the supermarket and to look up departure times at the
airport. Tailoring the device to the context increases the value of the device
to the consumer. The context-aware configuration framework developed within
Space4U provides the mechanisms for tailoring devices depending on the context
in which they are used.

1.3 Overview

The remainder of this paper is structured as follows. Section 3 discusses the
requirements on the architecture imposed by the system integrity management
and the context aware frameworks. Our approach is based on models, in Section 4
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Fig. 1. Robocop component model.

we discuss why and present the models. Section 5 discusses the mechanisms we
developed for integrity management. Section 6 discusses the mechanisms we
developed for context-aware adaptation. Finally we present some concluding
remarks in Section 7.

2 Robocop Framework

In this section we will discuss the Robocop framework. We will focus on the
component model and run-time environment since these are strongly related to
integrity management and context-aware configuration.

2.1 Component Model

The Robocop component model is inspired by COM [1], CORBA [8] and Koala [9].
A Robocop component is a set of possibly related models. (see Figure 1). Each
model provides a particular type of information about the component. Models
may be in human-readable form (e.g. as documentation) or in binary form. One
of the models is the ’executable model’, which contains the executable compo-
nent. Other examples of models are the resource model and the behavior model.
The Robocop component model is open in the sense that new types of models
can be added.

An executable component model offers functionality through a set of ’ser-
vices’. (see Figure 1). Services are static entities that are the Robocop equiva-
lent of public classes in Object-Oriented programming languages. Services are



instantiated at run-time. The resulting entity is called a ’service instance’, which
is the Robocop equivalent of an object in OO programming languages.

A Robocop service may define several interfaces. We distinguish a set of
’provides’ ports and a set of ’requires’ ports. The first defines the interfaces that
are implemented by a service. The latter defines the interfaces that a service
needs from other services. An interface is defined as a set of operations.

2.2 Run Time Environment

The core responsibility of the Robocop run time environment (RRE) is to handle
requests for service instances. The RRE maintains a database (registry) that
contains the executable component models available, the services implemented
by these executable component models, and compatibility information of these
services. The Robocop framework allows for run-time adaptation. This means
that components can be added and removed from the registry at run-time. Part of
the Robocop framework is an optional download framework (RoboCop Download
Process, RCDP). The download framework enables loading Robocop components
to a terminal. Executable component models can be registered after they are
resident on the device.

3 Additional Requirements on Architecture

Our approach in solving the context-aware configuration started by requirements
gathering and identification of the needed roles or frameworks in a terminal
to enable this reconfiguration. Early on we also decided to first investigate the
switching and downloading of components to a terminal based on context and to
leave the application level adaptation for future work. Nevertheless, the solution
we have designed could be easily modified to offer notifications about context
changes to application layer as well.

Dynamically changing components in a terminal based on context clearly
calls for an accompanying framework that provides mechanisms for guarding the
terminal by making sure that the components downloaded are behaving correctly
and that they contain no defects. This is where the System Integrity Management

(SIM) framework is needed. The system integrity management framework is
explained in detail in Section 5.

For the context-aware framework in terminal we identified the following
needed sub-systems:

– Interaction with the Robocop run-time environment (RRE) and download
framework,

– Context monitoring services and
– A placeholder for context data.

As previously described, the RRE provides an API e.g. for un/registering
components and instantiating services. The download framework makes it pos-
sible for a terminal to fetch components from an outside repository. An entity



Fig. 2. High level set-up.

interacting with these sub-systems is needed in terminal reconfiguration and is
therefore part of the context-aware framework.

Context monitoring means that the terminal should be able to see e.g. which
devices or Bluetooth beacons are nearby by periodic scans of the neighborhood.
The beacons might emit an XML-formatted string describing the location or an
URL which could be further mapped to the needed components in this specific
context, for details see [6].

The last item in the list is where the terminal keeps all the context related
data that is considered to be useful for reconfiguration purposes. This data struc-
ture should be accessible through a simple API e.g. for querying and depositing
data. We decided to use a blackboard-based approach which has been used pre-
viously in other context-aware frameworks as well [13]. The structure of this
data, i.e. models, is further described in Section 4.



4 A model based approach

Our approach focuses on integrity management and adaptation based on a model
of a terminal and the context in which it is used. Terminals as well as the context
in which they are used can be considered to be very complex things that contain
a large number of details. We use a model to abstract from the details and
to simplify the complex things we are dealing with. In our approach terminals
maintain and externalize a self-model. In Section 5 and Section 6 we describe
how these models are used for managing integrity and adaptation.

Next we will describe our model for the context and the terminal which is
maintained in the terminal and needed for reconfiguration of components. In the
remainder of this paper we will use the following convention: sets are identified
in uppercase, elements out of these sets are identified in lowercase. For example,
T is the set of all terminals and t ∈ T identifies one specific terminal.

The context is determined by the configuration of the terminal(t), the user(u)
using the terminal, the time(θ) at which the terminal is used and the environment(e)
in which the terminal is used. A somewhat similar division has been previously
identified e.g. in [3] and [11]. We model the specific context c ∈ C as follows:
c =< t, u, θ, e >.

C = T × U × Θ × E (1)

In the remainder of this section we will discuss the models for the terminal, user,
time and environment individually.

4.1 Terminal model

Within Robocop and Space4U we distinguish an application layer, middleware
layer and platform layer on a terminal. We model these layers individually. In
our model a terminal t ∈ T is modeled as follows: t =< al, ml, pl >

T = AL × ML × PL (2)

Application layer model The application layer (al) is modeled as a set of
applications. Each application a is described by a name, a version, its depen-
dencies d on services and the structure that it will create when launched. The
dependencies of an application are modeled by a set of services (d ⊆ S) that are
needed by the application in order to execute.

Services provide their functionality through a number of named interfaces
called ports. In order to provide this functionality a service might require func-
tionality from other services. This dependency is made explicit through the use of
required ports, which are also named interfaces. We model a service s ∈ S as fol-
lows: s =< provided, required >, where provided ∈ P(P ) and required ∈ P(P ).

The structure of an application consists of a set of service instances (ssi ∈
P(S)), services that will be instantiated at run-time and the bindings (sb ∈ P(B))
between these services instances. A binding (b =< p1, p2 >) between two service



instances means that two ports are connected, a required port (p1) of one service
instance to a provided port (p2) of another.

AL = P(A) (3)

A = NAME × V ERSION × D × STRUCTURE (4)

NAME = STRING (5)

V ERSION = STRING (6)

D = P(S) (7)

S = P(P ) × P(P ) (8)

P = N × I (9)

N = STRING (10)

I = P(O) (11)

STRUCTURE = P(SI) × P(B) (12)

SI = S × NAME (13)

B = P × P (14)

Middleware model The middleware layer consists of a run-time environment
(runtime), a set of registered executable components models (sem ∈ P(EM)),
and a set of complies relations between services (sc ∈ P(COMPLIES)). The
run-time environment is modeled by its version number. An executable com-
ponent model is modeled by the a set of implemented services (ss ∈ P(S)). A
complies relation consist of one service (s1) that is compliant with another (s2),
therefore we model a complies relation as follows:complies =< s1, s2 >

ML = RUNTIME × P(EM) × P(COMPLIES) (15)

RUNTIME = V ERSION (16)

EM = P(S) (17)

COMPLIES = S × S (18)

Platform model The platform layer consists of an operating system (os), a
cpu, and storage. The operating system is identified by its name and version.
The cpu is identified by its vendor, the family that its part of, the clockspeed,
and its cachesize. Storage consists of memory, swap and a set of filesystems.
Each filesystem is modeled by its name and size.

PL = OS × CPU × STORAGE (19)

OS = NAME × V ERSION (20)

CPU = V ENDOR × FAMILY × MODEL × (21)

SPEED × CACHE

(22)



V ENDOR = STRING (23)

FAMILY = STRING (24)

MODEL = STRING (25)

SPEED = N (26)

CACHE = N (27)

STORAGE = MEMORY × SWAP × P (FS) (28)

MEMORY = N (29)

SWAP = N (30)

FS = NAME × N (31)

4.2 User model

The user model consists of information regarding the identity, group, role, lo-
cation and activity. Relevant standards and existing definitions to describe in
more detail this layer have been addressed e.g. in Open Mobile Alliance’s5 LOC
(location working group) and IMPS (presence information standard).

U = IDENTITY × LOCATION × ACTIV ITY (32)

IDENTITY = NAME × GROUP × ROLE (33)

NAME = STRING (34)

GROUP = STRING (35)

ROLE = STRING (36)

LOCATION = STRING (37)

ACTIV ITY = STRING (38)

4.3 Time model

The time layer has information of the current time in standard UTC format.
To make it more interesting for adaptation purposes some higher-level prop-
erties of time might also be included. These higher-level properties can be e.g.
WEEKEND−NOT WEEKEND, NIGHT−DAY, WORKING HOURS−
NOT WORKING HOURS and inference of the current property can be in
simplest form based on current time.

Θ = CURRENT TIME × HIGH LEV EL (39)

CURRENT TIME = STRING (40)

HIGH LEV EL = STRING (41)

5 http://www.openmobilealliance.org/



4.4 Environment model

The environment model consists of information about nearby devices and the
information they possibly emit that can be found with the already mentioned
Bluetooth scanning. Other information falling into this model might include
sensor readings from the environment (e.g. temperature) which can be further
processed to higher level context information. An example of an inference frame-
work enabling this is given in [7].

5 Managing integrity on mobile terminals

Software systems are continuously evolving; both during their development as
well as during deployment. To cater for an increasing demand for flexibility,
the Robocop architecture provides means for dynamic replacement, addition,
and removal of components. In Robocop, as well as in other component models,
service interfaces and service implementations are separated to support ’plug-
compatibility’. This allows for different services, implementing the same inter-
faces to be replaced. This facility introduces the task of maintaining a consistent
software configuration that is suitable for the terminal. This task involves:

– monitoring of the current software and hardware configuration of the termi-
nal,

– verifying the real configuration against a preferred state (diagnosis) and

– restoring a preferred state (repairing).

Using the model for a terminal and context as described in Section 4 we are
able to monitor the configuration of a terminal and verify it. To this end we
developed a solution based on three roles:

Terminal role This role has two main responsibilities. First this role exter-
nalizes the model of the terminal and context. Second this role provides a
mechanism to execute some basic actions (adding, removing, and replacing
executable component models) from a remote device.

Terminal manager role This role is responsible for monitoring, diagnosis, and
repairing. Monitoring comes down to retrieving the models externalized by
terminals. Based on the retrieved models and rules provided by the database
role the terminal manager is able to create a diagnosis report. A repair
script can be generated based on this diagnosis report and known solutions
also provided by the database. This repair script can be executed using the
mechanisms provided by the terminal role to execute basic actions from a
remote device. For an overview of this typical integrity management scenario
see Figure 3.

Database role This role provides integrity rules, that can be used during diag-
nosis. Furthermore this role provides known solutions for certain problems
that can be found during diagnosis.
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These roles can be deployed on different devices or all on one device. The
only restriction is that the terminal role must be deployed on the device that
is managed. In the remainder of this section we will discuss two possible checks
that can be used during the diagnosis phase.

5.1 Blacklist of services

During the life-cycle of a component bugs in the services that they provide can
be discovered. If the bug is discovered after the component has been published,
the component can be deployed on an unknown set of terminals. It is impossible,
undesirable and even illegal to track the deployment of every component. We
propose to maintain a database that contains the services in which a bug has been
discovered, such that these services can be replaced by the terminal management
activities.

DBoS is a (partial) function that takes an element t ∈ T and gives the set of
services provided by the middleware of the terminal t that are on the blacklist
Sb.

Sb = service blacklist (set of services with known faults) (42)

DBoS(t) = (∪em : ml =< x, y, z > ∧(em ∈ y)) ∩ Sb (43)

where t =< al, ml, pl >

For the generation of the repair script we will need executable component
models that implement services that are compliant with the services that are



on the blacklist, but are not on the blacklist themselves. The database role can
provide suggested replacements for the services that are on the blacklist.

5.2 Missing services

Applications can require a number of services to fulfill their task. In a dynam-
ically changing terminal, to which new applications are downloaded and from
which applications are removed, it can be hard to keep the set of services pro-
vided by the middleware consistent with the applications. We will now discuss
how to verify that all required services are provided by the middleware based on
the application layer- and middleware layer model.

DMS(t) gives the set of services that are needed by one or more applications
on terminal t but that are not provided by the middleware of terminal t. DMS(t)
is the difference between Sr(t) and Pc(t). Sr is the set of services that is required
by the set of applications that is available on terminal t, this comes down to the
union of the dependencies of these applications. Pc(t) is the set of services that
can be provided by the middleware of terminal t, this comes down to union of the
set of services provided by the middleware with all the services that are compliant
with the services provided by the middleware according to the complies relations
that are registered.

Pc(t) = (∪em : ml =< x, y, z > ∧(em ∈ y)) ∪ (44)

{s1 ∈ S |

(s2, s1) ∈ (∪complies : ml =< x, y, z > ∧

(complies ∈ closure(z))) ∧

s2 ∈ (∪em : ml =< x, y, z > ∧(em ∈ y))}

where t =< al, ml, pl >

and closure(z) gives the transitive closure

of the complies relations in z

Sr(t) = {s ∈ S | s ∈ d ∧ (45)

< name, version, d, structure >∈ al}

where t =< al, ml, pl >

DMS(t) = Sr(t) \ Pc(t) (46)

Generation of the repair script can be straight forward. The repair script can
add executable component models that provide the missing services or remove
the applications that require these missing services.

6 Adapting mobile terminals based on context

So far we have presented all the models (i.e. terminal, user, time and environ-
ment) and the integrity management mechanisms (i.e. the blacklist of compo-
nents and missing services) but we have not yet depicted their usage in detail



in context-aware reconfiguration of a terminal. A scenario illustrating our ap-
proach is therefore outlined. Consider a user equipped with a Robocop terminal
arriving to an airport. The context framework in the terminal notices the arrival
to the airport (e.g. through periodic scanning of the environment or location
data usage) and receives an identifier that can be further mapped to a list of
components which are preferred in this specific location. One of the components
offers a timetable functionality (in this case the component is also executable)
using two existing components in the terminal. In this case one of the existing
(i.e. a component registered to the registry) components in the terminal does not
offer a specific service required by the application and a missing service script is
prepared to repair the situation. Luckily the component repository contacted by
the device contains an updated version of the component in question that has
one more provided interface which in this case is the one needed by the timetable
component. The component is downloaded to the terminal and registered to the
RRE.

The user executes the timetable application and easily finds all the needed
departure times of flights etc. Later on that day the user notices that the device is
not working correctly or more specifically two applications using the same newly
downloaded component are not executing properly. The user therefore starts the
check terminal status -procedure from the management interface of the terminal.
After this the SIM framework sends all the model data deposited to the terminal
to a server offering integrity checking services. The server contains information
about the newly downloaded component which has been blacklisted after the
user downloaded it by a developer who has noticed problems with this specific
component after it was released. Luckily, a bug-free implementation of the com-
ponent can be found from the repository and this component is downloaded and
registered to the RRE.

7 Conclusions

Current technology allows for run-time adaptation of software on embedded
devices. This gives the opportunity to adapt a device to the wishes of consumer
at a specific location or time. This also introduces some risks concerning the
software integrity on the device.

There is a need for mechanisms that maintain software integrity in embedded
devices. Robust and reliable operation of a device require the software on the
device to be consistent and suitable for that device. In this paper we present
the mechanisms we used to maintain a consistent software configuration on a
device. We applied these mechanisms in the context of high volume consumer
electronic devices. Our approach for software integrity management has two large
advantages:

– Support for local integrity management as well as for remote integrity man-
agement. The roles we use in our solution can be deployed in a flexible
manner. This allows for a terminal manager to be deployed on a terminal or
a remote server.



– Management based on models allows to abstract from the details. Using the
models we are able to consider integrity at a configuration level. Simplicity
is achieved by abstracting from the details of the specific service instances.

Some work has been done on remote management and configuration of a
device. SNMP [2] and SyncML DM [10] are existing network / device manage-
ment technologies that are widely adopted by industry. These technologies focus
on the mechanisms needed for remote configuration and adaptation. We focus
more on what needs to be adapted (diagnosis), how (repair script), and when
(depending on context).

Some work has also been done on architecture based approaches for self-
healing systems [5] [12]. These approaches focus on detecting when to make a
particular repair based on architectural styles. In their approach, an architec-
tural style is a set of constraints. Constraint violation is cause for inducing a
repair. The difference with our approach is that our approach allows diagnosis
and repairing based on different kind of models (resource, behavior, etc). Our
diagnosis is not restricted to use only the architectural description of a system.

The value of a device for a consumer can be increased by customizing the
device to the wishes of the consumer in a specific context. For example a mo-
bile telephone can present an e-commerce application when visiting a mall or
an airplane arrival and departure schedule application in an airport. This paper
presented mechanisms for context-aware configuration applicable for component
based embedded devices. Related work with similar kind of context-aware mech-
anisms and entities supporting download and managing context information in
component middleware can be found in [4].
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