
Final Report 0.98

SQUID

Helsinki 5th May 2005

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Mikko Jormalainen
Samuli Kaipiainen
Aki Korpua
Esko Luontola
Aki Sysmäläinen

Client
Lauri J. Pesonen
Fabio Donadini
Tomas Kohout

Project Masters
Juha Taina
Jenni Valorinta

Homepage
http://www.cs.helsinki.fi/group/squid/

Change Log
Version Date Modifications
0.9 3.5.2005 First version (Esko Luontola)
0.95 4.5.2005 Improved debriefing, added project work flow (Esko Luontola)
0.98 5.5.2005 Added diagrams, features unaccounted for (Esko Luontola)

i

Contents

1 Introduction 1

2 Organization 1

3 Project 1

3.1 Work Flow . 2

3.1.1 Project Plan . 2

3.1.2 Definition . 2

3.1.3 Design . 3

3.1.4 Production . 3

3.1.5 Testing . 3

3.1.6 Installing . 4

3.2 Amount of Work . 4

3.3 Features Unaccounted For . 6

4 Debriefing 9

4.1 Overview . 10

4.2 Project . 10

4.3 People . 12

4.3.1 Team members’ evaluations of themselves 13

4.3.2 Team members’ evaluations of each others 13

Appendices

1 Hours of Mikko Jormalainen

2 Hours of Samuli Kaipiainen

3 Hours of Aki Korpua

4 Hours of Esko Luontola

5 Hours of Aki Sysmäläinen

1

1 Introduction

This document tells how the student project at the Department of Computer Science of
University of Helsinki for building a new user interface for the SQUID magnetometer at
the Department of Geophysics of the University of Helsinki went. The clients were Lauri
Pesonen with his assistants Fabio Donadini and Tomas Kohout from the Department of
Geophysics.

The Department of Geophysics uses a SQUID magnetometer for measuring the mag-
netism of rocks and meteorites. There was already a program for using the machine, but
it had bad usability and the work process included the use of many external tools and
Excel sheets to convert the measurement results to the desired format. The goal of this
project was to make a better user interface for controlling the SQUID.

The name of the produced program is Ikayaki. The name comes from a japanese seafood
- dried, grilled squid.

The project took place from 25.1.2005 to 6.5.2005.

2 Organization

The people related to this project are shown in Figure 1.

Name Role E-Mail
Mikko Jormalainen Project Team mtjormal@cc.helsinki.fi
Samuli Kaipiainen Project Team samuli.kaipiainen@cs.helsinki.fi
Aki Korpua Project Team aki.korpua@cs.helsinki.fi
Esko Luontola Project Team (Manager) esko.luontola@cs.helsinki.fi
Aki Sysmäläinen Project Team aki.sysmalainen@helsinki.fi
Lauri J. Pesonen Client lauri.pesonen@helsinki.fi
Tomas Kohout Client tomas.kohout@helsinki.fi
Fabio Donadini Client fabio.donadini@helsinki.fi
Juha Taina Course Manager taina@cs.helsinki.fi
Jenni Valorinta Instructor valorint@cs.helsinki.fi

Figure 1: The people who were part of this project

3 Project

This section discusses the progress of the project from its beginning to the end.

2

3.1 Work Flow

In this project was used the waterfall process model, where the stages were Project Plan,
Definition, Design, Production, Testing and Installing. Here is how each of the stages
went.

3.1.1 Project Plan

The project plan was written at the beginning of the project by the project manager (Esko
Luontola), while others were working on the definition part of the project. The project
plan was completed in two weeks without any problems. Right after that Esko wrote the
HourParser program for managing the team’s work hours, and the hours lists were up and
running in a couple of days.

3.1.2 Definition

The project was started with a meeting with the client. They introduced to the project
team the problem that they were having and gave the source code to the old program. The
client had made some suggestions, how the old program could be improved, but it was
right away understood by the team that the old program was totally fubar. Esko and Aki
K were assigned to have a look at the source code.

The next meeting was held at the client’s laboratory where they demonstrated the SQUID
magnetometer. At this point the team had only a very faint idea of how the machine is
being used. It might have been better to have a private meeting with the project team
only before or between these meetings with the client, because during the next couple
of meetings there were awfully many things that had to be went through, and it maybe
slowed down the beginning of the project.

It was decided that the definition stage would include the creation of a user interface
prototype, which made the stage longer than in usual projects, but on the other hand re-
duced the work in the design stage. The process model for designing the user interface
was GUIDe (http://www.cs.helsinki.fi/u/salaakso/). There were held about three user ob-
servations with the client, and based on those was designed the user interface and three
prototypes based on three goal-based use cases.

The user observations and initial UI designs were done primarily by Samuli, Aki K and
Mikko. Aki S was sick for some weeks. It was agreed to have weekly work hours where
everybody would work together in designing the UI. This was a successful arrangement.
The final versions of the prototypes were made with Powerpoint and they were demon-
strated to the client. The client had some problems in understanding the importance of the
prototypes and why so much time was spent on making them. The team tried to explain
that it is not possible to start writing code without making careful plans, or the end result
will not be what the client wants. It would have been better, if the team had prepared
better to demonstrate how the UI decisions made by the team were better than those that
the client had suggested.

3

At the end of the definition stage had been produced three UI prototype use cases and
written the requirements document. The programming language was decided to be Java
instead of C (the project manager managed to push his will through :). There were plans
to reuse parts of the old C code and link them to Java with Java Native Interface, but the
old code was too incomprehensible. Late in the definition stage it was found out, that
there were protocol specifications for the SQUID devices. When those were found, it was
easy to dump the reuse of the old program code completely, especially so after Aki S had
studied (in design stage) how to do serial communication in Java.

3.1.3 Design

The program was divided into subsystems and they were assigned for different persons
to design. Esko designed the program architecture and Project Data classes, Samuli did
the Project Explorer and Manual Controls, Aki K the SQUID Interface and Emulator and
Device Configuration and Main Window components, Mikko the Measurement Sequence
and Project Info and Details, Aki S the Serial Communication and Graphs. The file format
for the program’s project files was decided to be XML. The use of IntelliJ IDEA for
generating Java GUI code was introduced.

The design document was written so that it would be easy to generate source code with
Javadocs from it by using Latex macros. At the end of the design stage, there was held a
FTR (Final Technical Review) for the design document.

3.1.4 Production

The production stage was started with a week of easter holiday. Some work was done dur-
ing the holiday (Esko), but the coding started in full speed after that. Primarily everybody
wrote the code for those parts that they had personally designed. In some cases it was
necessary to share the work with others, so that the programming would be completed in
time.

CVS proved to be an invaluable tool. IRC has been especially useful when writing and
testing code, because there it is quick to ask for others to help. When creating the Java
GUI, in some cases it was possible to use IntelliJ IDEA, with which it was easy to make
complex gridbag-layouts in minutes.

The production stage became much longer than initially expected. Reasons for that could
have been that the program was much larger than it was told to the team that typical
student projects would be. Also some of the team members were not giving their full
time to the project. Otherwise the production stage went according to plans without any
unremovable obstacles.

3.1.5 Testing

At first the program was tested without the real SQUID machine. However, the use of an
emulator was not successful, because the protocol documentation was not up to date with

4

the reality. The documentation was inaccurate and there had been made some changes
to the hardware after writing the documentation. What proved most beneficial in testing
the controlling of the SQUID, was the monitoring of how the old program does things. A
SerialProxy class was created to log the communication between the old program and the
hardware, and between the new program and the hardware.

It had been planned, that JUnit would be used in testing the program. There was not
enough time for doing that, so apparently only one JUnit test class was made (for the
serial communication). It would be good if the program would be tested completely
in the future. JUnit should be used to test the project data classes and the mathematical
algorithms. More real measurement data is needed to be able to test that the measurements
and calculations are working correctly.

During the testing stage the client gave some extra requirements, that were not included
in the requirements document. It was possible to produce most of them, but it was time
away from the testing. It would have been best to be able to test with the real machine
every day some. The most beneficial way to work was, when changes to the program
were made at the laboratory, so that they could be tested right away.

3.1.6 Installing

The program and its source code was handed to the client at the end of the project. The
final version of the program was installed onto their computer. It was not necessary to
teach them how to use it, because at least one of the clients had been using the program
in the testing stage.

3.2 Amount of Work

The estimated size of the program was a maximum of 13000 lines of code. The final size
of the program is some 22000 lines of code. So the estimation that was made at the very
beginning of the project (before the team even understood what they were doing ;) was
more than 65% too low. During the project was also produced HourParser, a program for
managing the team’s work hours. Its size is 1200 lines of code. The source code files that
were written and who wrote them, are listed in Figures 2 and 3

The project plan was completed ahead of time. The definition and production were both
about one week longer than it was originally planned. As a result, the time left for testing
was only 50% of what it was supposed to be.

The amount of work that the team did is shown in Figure 4. The distribution of work
hours by the type of work is shown in Figures 5 and 6. The final schedule for the project
is shown in Figures 7 and 8.

5

Lines File Author
213 hourparser/Entry.java Esko Luontola
344 hourparser/HourParser.java Esko Luontola
215 hourparser/Person.java Esko Luontola
456 hourparser/Report.java Esko Luontola
275 ikayaki/Ikayaki.java Esko Luontola
101 ikayaki/MeasurementEvent.java Esko Luontola
39 ikayaki/MeasurementListener.java Esko Luontola

363 ikayaki/MeasurementResult.java Esko Luontola
216 ikayaki/MeasurementSequence.java Esko Luontola
564 ikayaki/MeasurementStep.java Esko Luontola
613 ikayaki/MeasurementValue.java Esko Luontola

2870 ikayaki/Project.java Esko Luontola
78 ikayaki/ProjectEvent.java Esko Luontola
39 ikayaki/ProjectListener.java Esko Luontola

935 ikayaki/Settings.java Esko Luontola
59 ikayaki/gui/AbstractPlot.java Aki Sysmäläinen

124 ikayaki/gui/CalibrationPanel.java Samuli Kaipiainen
72 ikayaki/gui/ComponentFlasher.java Samuli Kaipiainen

863 ikayaki/gui/DeviceSettingsPanel.java Aki Korpua
182 ikayaki/gui/FittedComboBoxRenderer.java Esko Luontola
120 ikayaki/gui/GenericFileFilter.java Esko Luontola
147 ikayaki/gui/IntensityPlot.java Aki Sysmäläinen
973 ikayaki/gui/MagnetometerStatusPanel.java Samuli Kaipiainen
199 ikayaki/gui/MainMenuBar.java Esko Luontola
78 ikayaki/gui/MainStatusBar.java

881 ikayaki/gui/MainViewPanel.java Esko Luontola
372 ikayaki/gui/MeasurementControlsPanel.java Samuli Kaipiainen
394 ikayaki/gui/MeasurementDetailsPanel.java Esko Luontola
152 ikayaki/gui/MeasurementGraphsPanel.java Aki Sysmäläinen
976 ikayaki/gui/MeasurementSequencePanel.java Esko Luontola
376 ikayaki/gui/MeasurementSequenceTableModel.java Esko Luontola
44 ikayaki/gui/NullableDecimalFormat.java Esko Luontola
54 ikayaki/gui/Plot.java Aki Sysmäläinen
56 ikayaki/gui/PositiveDecimalFormat.java Esko Luontola

532 ikayaki/gui/PrintPanel.java Aki Korpua
425 ikayaki/gui/ProgramSettingsPanel.java Esko Luontola
109 ikayaki/gui/ProjectComponent.java Esko Luontola
502 ikayaki/gui/ProjectExplorerPanel.java Samuli Kaipiainen
846 ikayaki/gui/ProjectExplorerTable.java Samuli Kaipiainen
686 ikayaki/gui/ProjectInformationPanel.java Esko Luontola
733 ikayaki/gui/SequenceColumn.java Esko Luontola
98 ikayaki/gui/SettingsDialog.java Aki Korpua

193 ikayaki/gui/StereoPlot.java Aki Sysmäläinen
128 ikayaki/gui/StyledCellEditor.java Esko Luontola
84 ikayaki/gui/StyledTableCellRenderer.java Esko Luontola

127 ikayaki/gui/StyledWrapper.java Esko Luontola

Figure 2: How many lines of code there is and who primarily wrote those classes.

6

Lines File Author
425 ikayaki/squid/Degausser.java Aki Korpua
895 ikayaki/squid/Handler.java Aki Korpua, Esko Luontola
409 ikayaki/squid/Magnetometer.java Aki Korpua
408 ikayaki/squid/SerialIO.java Aki Sysmäläinen, Aki Korpua

87 ikayaki/squid/SerialIOEvent.java Aki Sysmäläinen
40 ikayaki/squid/SerialIOException.java Aki Sysmäläinen
37 ikayaki/squid/SerialIOListener.java Aki Sysmäläinen

134 ikayaki/squid/SerialParameters.java Aki Sysmäläinen
173 ikayaki/squid/Squid.java Aki Korpua
423 ikayaki/squid/SquidEmulator.java Aki Korpua

1436 ikayaki/squid/SquidFront.java Esko Luontola, Aki Korpua
143 ikayaki/util/ComponentPrinter.java Aki Korpua
154 ikayaki/util/DocumentUtilities.java Esko Luontola
338 ikayaki/util/LastExecutor.java Esko Luontola
198 ikayaki/util/LoggerPrintStream.java Esko Luontola

98 ikayaki/util/SerialProxy.java Aki Korpua, Esko Luontola
23304 total

Figure 3: How many lines of code there is and who primarily wrote those classes.

3.3 Features Unaccounted For

These are the features that were mentioned in the Requirements Document (version 1.1)
but were not produced.

Feature: Exporting to .SRM file format (UC15, R11)
Reason: There were no specifications as to what the file format is.

Feature: Error handling in exporting (UC13-15)
Reason: The error handling in ProjectExplorerPopupMenu is incomplete (no message as
to if the export failed or not). The error handling in MainViewPanel (File > Export -menu)
works, though.

Feature: Hotkeys for deleting (and inserting) steps in a sequence (UC25)
Reason: This would require some refactoring to the actions used in SequencePopup-
Menu. Now the actions depend on the parameters given to SequencePopupMenu, but a
better way would be for them to find out themselves which of the rows are selected in
the table. Selection listeners should listen to the selected rows in the sequence table, and
enable/disable the right actions depending on the current selection. The actions would
need be are added to MainMenuBar and hotkeys assigned to them.

Feature: Drag and drop for steps in a sequence (UC26)
Reason: Would have required too much time and effort to produce. The insert and delete
actions are good enough for now.

Feature: Editing stored sequences (UC28 scenario B)
Reason: Not worth the effort. Scenario A whould be good enough, because the sequences

7

Figure 4: How many hours of work the team members did.

8

Type Hours Percentage
(PS) Project Plan 19 h 1,5 %
(VA) Definition 230,4 h 17,8 %
(SU) Design 234,5 h 18,1 %
(TO) Production 386,5 h 29,9 %
(TE) Testing 123,5 h 9,6 %
(KO) Installing 10 h 0,8 %
(LR) Final Report 4 h 0,3 %
(MU) Meetings and Others 282,1 h 21,8 %
Total 1 293 h 100 %

Figure 5: The distribution of hours by the type of work

Figure 6: The distribution of hours by the type of work as a graph

are not edited on a regular basis.

Feature: Right-clicking in the load sequence set menu (UC29, UC30)
Reason: There were problems in getting the menu to stay open when right-clicked. The
renaming and deleting in the Options dialog is good enough for now.

Feature: Warning signal (R4)
Reason: It was not clear as to how this could be done. This was dumped because the
protocol did not make it possible in any easy way. Besides, according to the protocol
specification the degausser device will take care by itself that if the target field is not
reached, it will automatically put the field down. It was found out that somebody had
done such a system by using a static timer (1 minute) and an external device for shutting
down the degausser. More details in the Realization Document.

9

Task Start End Days Plan Change
Project Plan 25.1.2005 8.2.2005 14 21 -7
HourParser 8.2.2005 9.2.2005 1
Definition 25.1.2005 1.3.2005 35 28 +7
- Prototype 24.2.2005
- Requirements Document 2.3.2005
Design 1.3.2005 22.3.2005 21 21 0
- Design Document 22.3.2005
Production 22.3.2005 14.4.2005 23 14 +9
Testing 14.4.2005 28.4.2005 14 28 -14
- Testing Plan 22.4.2005
- Testing Report 29.4.2005
Installing 28.4.2005 5.5.2005 7 7 0
- Final Report 5.5.2005
- User Manual xx.5.2005
- Realization Document xx.5.2005

Figure 7: Final project schedule

Figure 8: Final project schedule as a GANTT diagram

Feature: Changing hotkeys (R20)
Reason: This feature was decided to be unnecessary. Besides, if every use would be
changing the hotkeys all the time, nobody could learn what the keys are.

4 Debriefing

The writings in this section are based on the answers that the project team members gave
to a bunch of questions.

10

4.1 Overview

The project has been a lot of work, some pain, some nice moments and reasonable enough
results. Everybody in the team though that the theme of the program was both challeng-
ing and interesting. It was motivating to solve some real-world problems, even when it
was out of our world. Nobody from the development team knew anything about the sub-
ject when the project got started started, and it took some weeks to understand what the
people at Geophysics are actually doing and what it was that they really wanted. At start
everything as a bit confusing and stressful, but towards the end the project team got more
and more confident about the result.

The team was strong and people were supporting each other well. There were only five
guys doing it all, and sicknesses and other courses took a huge amount of time from
the project. The amount of work was much and it was shared unevenly. It took some
time before the whole team was functional, but the team improved during the project and
chemistry between the team members got better and better.

All team members learned working in a team. Some other things that were learned are:
diplomatic negotiation skills with the client, the importance of meetings, the importance
of design and that feeble feeling of things falling apart. Some technical things that were
learned: Latex, CVS, more Java, new features of Java 1.5, IRC. The English of some
students improved.

4.2 Project

The team has succeeded in making a program that works and the client appears to be
pleased with it. The team mostly succeeded in everything, but failed to put the last effort
and add a finishing touch to every step. The meetings with the client and communication
could have been better, and as a result it was not possible to guess all of the requirements
that the client would have wanted. The user requirements and the program could have
been designed better. Testing the program was not as thorough as it should have been.
The work did not keep up with the schedule, so in the end there was more work than in
the beginning. The work load could have been distributed better.

What the project team thinks about the following:

• Goal-Derived UI Design:
The UI would never have been even nearly as good if we would not have payed spe-
cial attention to it. User observations gave us a better idea about client’s workflow
with the old software. The prototypes were also essential in designing the program.

• Meetings:
Needed for the people to communicate. Things could work in plain irc/email, but
not when everyone is committed enough to it, so regular meetings are needed.

• Hour management with HourParser:
Great system, it’s good that other members can see your hours right a way. The

11

created program is much better than any previous ones. :) Other teams should try
it.

• E-Mail:
Good for coordination and communication. Mailing lists are good for communica-
tion within the project team. Much of the communication with the client was by
e-mail.

• IRC:
Was in important role when we were not working face-to-face, which was the case
in about 90% of all work. Has been very helpful when many people are working on
the same thing at the same time, especially so right before a deadline. It was also
possible that while some are testing with the SQUID equipment, others stay home
and program fixes for the found bugs, so that they can be tested right away.

• Java and Swing:
Good choice here. It’s a safe choice when the coders are not too experienced. It
would never have been possible for all to learn C++ well enough to make a program
half this complicated. Performance was not a program with current hardware.

• Latex:
Hell and pain. Chainsaw internals massacre.

• Dia:
At least the Windows version was buggy and the UI was designed to kill. Missed
code generating features. A better tool for writing UML would be needed.

• CVS:
Necessary for file management, even if a bit limited (can not rename/move files).
The commandline version is clumsy - keep away from it. IDEA has a nice CVS
front-end and propably so have many other IDEs.

• IntelliJ IDEA:
Really well designed IDE for Java coding. The UI Designer makes the creation of
complex layouts easy. For example it took for a first-timer only about 30 minutes to
make the device configuration dialog’s layout. Only stupid people write Java GUIs
100% by hand. :P

• JGoodies Looks:
Looks better than the standard Swing look.

• Virtual serial ports:
Helped at some point a lot. Was a necessity for the development of serial API.

• JUnit:
Could have been used more. The team did not get too much in to it, but it worked
well for serial testing.

12

• XML:
Easy, effective and expandable. Was the best option for the new file format.

The waterfall project model that was used is a bit stiff, but it works. It is suitable for such
short student projects as this. There would not have been time to use a more complicated
model. The amount of documentation is a bit too much, though. A more flexible project
model would be recommendable.

Those parts that were designed well, were produced according to the design. Those that
were not designed, were produced more or less without plans. The user interface was
produced accurately according to plans (use cases and prototypes) and so were also the
Project data classes (ikayaki.*). The amount of time spent on designing could have been
huge, but with this timetable the results were fair. If there had been time, the program re-
quirements could have been more detailed (requires more communication with the client)
and the program code could have been designed better (can be hard with GUI classes and
their huge API).

Almost every phase was delayed, as expected. Maybe it would have hold better if the
amount of work done by everyone were constant (20 h/week) all the time. Always some-
one (sometimes many) didn’t do their jobs when supposed to; nothing much to help it,
as everyone had other things than this project to do. Morale was low at times, which is
inevitable in such a long project. The client also gave some extra requirements, which
required some time to produce (luckily not too much). As a result, there was not enough
time to test the program properly.

The legacy C code was a nightmare. If the team had known about the existense of protocol
documentation, the old code could have been dumped sooner, because it was pretty hard
to read and had no documentation. It was a good choice to start everything from ground.
Using the old code would have created too many new risks and slowed down the project.

The protocol documentation was incomplete and did not mach the reality, so creating an
emulator was not very useful. The created SerialProxy class gave much undocumented
information about the protocol, so looking at how the old program does the things on
protocol level made the day. Hardware was actually good and safe to use when you
learned it, which helped a lot when testing and cleared errors in the documentation.

4.3 People

The client has been very interested in the project, which is good. There should have been
more communication with the client, so that the team could have explained better things
such as the process of software development. In the beginning the information from the
client was sometimes inconsistent and the team did not always known who to follow, but
this improved towards the end. The client was committed to project and ready to offer
their help and time as much as they could. Special thanks to Fabio for being of much help.

Apparently most of the team members (4 out of 5) had never been talking that much
English. The use of English slowed down the process in the beginning, but later on it was

13

just a minor issue. Sometimes it was a bit hard to understand everything and sometimes
it took time to find the right words, but it did not affect the project in the end. In overall
the use of English has been good practice for the future.

The instructor did her work well, silently observing the project team when everything was
going well and stepping in to direct when time was running out or the team was going to
make a mistake. At very beginning there was some confusion about the authority between
her and the project manager, but that was then sorted out. She kept the project and the
group on trail and emphasized things that got less attention. She could have been a bit
more relaxed on some issues when the internal pressure of the group was already high.
But on the other side the pressure tolerances of the team got much better and more ready
for real world challenges. In general she was nice and fair.

4.3.1 Team members’ evaluations of themselves

Mikko Jormalainen
- Poor.

Samuli Kaipiainen
- Tried to do my jobs on time, some (but not many) failings to do so though, tried a couple
of times to silently keep the project in one piece, lost some (or at few times, a lot) morale
in the end.

Aki Korpua
- Lazy parasite. I was really working hard, but WoW and and other intrests took too much
time.

Esko Luontola
- Maybe I worked a bit too much, but the work does not disappear by itself. Running a
project team was new for me and what made it more difficult, was that everybody in the
team were strangers at the beginning of the project. I’ll try to improve in delegating work
to others in the future. I know that I’m overconscientious.

Aki Sysmäläinen
- At the beginning my use of time for the project was minimal but towards the end it got
better. I was eager to take the lead when it was quiet on that front. I at least tried to add
some diplomacy to client-project group relations.

4.3.2 Team members’ evaluations of each others

Mikko Jormalainen
- That one guy. Could have been more in contact with other members. Did his work well
anyway.
- Didn’t have that much interest in the project, or so it seemed at the beginning, but not so
much towards the end. Was most always ready to have a meeting of some sort. Had some
weird problems with cvs updating frequency x)
- Communication was lagging quite much. Does he even have 24/7 internet access at

14

home?
- Did his part in documenting. Could have done more coding. He was also a bit distant
from the group from time to time.

Samuli Kaipiainen
- Does excellent work when he is into it.
- Did what was assigned to him and did it well.
- Good.
- Did a great job with the project explorer which is an achievement of usability. But when
he got full of the coding the whole group got a bit affected by that. His sense of humor
and analytic attitude on problems were invaluable to group and the project.

Aki Korpua
- Fast worker, didn’t care so much for perfection :) Did his part even when tired and out
of morale. Had some good sympathy for the clients, which drove him to try and make a
working final software.
- Was also good in what he did. Did a good job in digging into the SQUID and the old
program. Had time for the project in spite of WoW. :)
- Good.
- He did a lot of work with interface and emulator. Some of his emotional reactions at
the beginning distracted other group members. His support and hard work kept the group
going during the black spots.

Esko Luontola
- Hero. Kept our project alive. Could have taken more leader role at the beginning.
- Kept the project in one piece. Did something like 80% of all coding, and was good at
it too. Didn’t care (or so it seemed) about work hours being accumulated to him. Made
some vague changes to others’ codings =)
- Excellent.
- At the start it took some time of him to take the lead but after that he’s work has been
pretty convincing. His contribution to coding was huge and he kept the code together and
fixed and added a lot to other guys coding.

Aki Sysmäläinen
- Sleepyhead, hehe. Dont try to do all courses at same time. Good social skills and does
his work good.
- Had many other project going on at the same time 8) But, did his part in the end, such
as the graphs for the program, which would have been a shame not to have. Took the lead
sometimes, when things didn’t go forwards.
- Was a bit too busy with life outside the project. Was good in asking questions for
example when designing the UI. Also good in communicating with the client.
- OK.

1

Appendix 1. Hours of Mikko Jormalainen

REPLACE WITH PDF

1

Appendix 2. Hours of Samuli Kaipiainen

REPLACE WITH PDF

1

Appendix 3. Hours of Aki Korpua

REPLACE WITH PDF

1

Appendix 4. Hours of Esko Luontola

REPLACE WITH PDF

1

Appendix 5. Hours of Aki Sysmäläinen

REPLACE WITH PDF

